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ABSTRACT  
In this work we compare four different methods to extract topological skeletons from three 
dimensional (3D) images of porous media. The applied methods are: (i) medial axis, (ii) 
maximal ball, (iii) velocity based, and (iv) grain recognition based algorithms. The 
methods are applied to 3D rock microstructure images of both sandstones and carbonates. 
The images were obtained from process based reconstructions and X-ray micro-
tomography. From the computed skeletons, the complete pore network representations are 
generated using the same geometrical partitioning and analysis algorithms. The networks 
are compared in terms of key morphological parameters (connectivity, pore and throat size 
distribution). The petrophysical properties, i.e. permeability and formation factor, predicted 
by the networks are compared with the results that are calculated directly on the voxel 
based images. Predicted primary drainage and waterflood relative permeabilities for water 
wet conditions are computed and compared for one sandstone and two carbonate samples. 
We show the agreement and discrepancies of the predictions from these different methods. 
The results are compared and related to the structures of the extracted networks. 
 
INTRODUCTION  
The microstructure of a porous rock largely controls its flow, electrical and acoustic 
properties. Although the topology and geometry of the pore structure is complex, transport 
properties can be predicted through the use of simplified network models (Øren et.al., 1998; 
Patzek, 2001; Blunt et.al., 2002). The premise of a network model is that the complex pore 
structure can be represented by an equivalent network of interconnected pores in which 
larger pores (pore bodies) are connected via smaller pores (pore throats). Although the 
level of details necessary to predict a given property can differ, the actual pore structure 
must always be mapped onto a network structure. Direct mapping of a pore structure 
requires some method for acquiring three-dimensional descriptions of the actual rock of 
interest. In recent years, several methods have been made available for obtaining such 
descriptions. Direct measurements of a rock microstructure are now available via X-ray 
micro-tomography (Spanne et.al., 1994; Arns et.al., 2004). A complementary tool to micro-
tomography is process based models which simulates the actual rock forming processes 
(Bakke and Øren, 1997, Øren and Bakke, 2002). 
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The most critical and difficult part of constructing an equivalent network is to identify the 
topological skeleton, i.e. specifying the pore bodies and throats. A number of algorithms 
have been proposed for skeleton extraction. These algorithms fall into two main classes. 
The first works directly on the pore space and are based on either medial axis transform 
(e.g. Lindquist et.al., 1996) or maximal balls (e.g. Silin and Patzek, 2006). The second 
exploits the complementarity of the pore and grain spaces and are based on Delaunay or 
Voronoi tessellation (e.g. Bryant et.al., 1993; Øren and Bakke, 2002). Application of the 
latter algorithms requires knowledge of the grain locations. If these are not known, the 
grain space must first be partitioned before extracting the skeleton. 
 
In this work we apply and compare different methods for extracting topological skeletons 
from 3D rock microstructure images of sandstones and carbonates. The methods that we 
apply are based on: (i) medial axis transform, (ii) maximal balls, and (iii) grain recognition 
followed by Voronoi tessellation. We also present a new method (iv) that is based on 3D 
thinning of the velocity field in the pore space. The velocity field is calculated from a 
solution of the Stokes equations directly on the rock microstructure image. The pore 
networks generated by these four methods are compared in terms of morphological 
parameters, single phase properties, and multiphase flow parameters. 
 
SKELETONIZATION METHODS 
Below we briefly describe the four methods we applied to extract topological skeletons 
from 3D rock microstructure images. Detailed descriptions of the different algorithms can 
be found in the references.  
 
Medial axis based method 
The medial axis based method (denoted MA) transforms the pore space into a medial axis 
that is the topological skeleton of the pore space running roughly along its geometric 
middle (Lindquist et.al., 1996; Sheppard et.al., 2005). The medial axis can be obtained by a 
morphological thinning algorithm (Baldwin et.al., 1996; Liang et.al., 2000) or a pore space 
burning algorithm (Lindquist et.al., 1996), by which the pore space is eroded from the 
grain surfaces until the burning from different directions ends up in one voxel. In this study, 
the MA method is implemented by using the skeletonization function in a commercial 
software Avizo (earlier called Amira), which is based on a hybrid algorithm that combines 
thinning and distance map based techniques called Distance Ordered Homotopic Thinning 
(Youssef et.al., 2007). To obtain a consistent comparison of the topological features of the 
four different methods, the output skeletons are directly used without pruning the branches 
induced by surface irregularities and image noise. The MA method in our tests seems to 
introduce  spurious nodes, which could be eliminated by removing the corresponding false 
branches in the skeleton. 
 
Maximal ball method 
The maximal ball (denoted MB) based algorithm (Silin and Patzek, 2006; Al-Kharusi and 
Blunt, 2007; Dong, 2007) finds the largest inscribed spheres at each voxel in the pore space 
and removes those included in other spheres. Those remaining are called maximal balls and 
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describe the pore space without redundancy. The maximal balls are constructed and 
hierarchized by a clustering process (Dong, 2007) to define pores and throats by affiliating 
the maximal balls into family trees according to their size and rank (the sequence being 
connected to earlier defined branches on the family trees). The ancestor of each family tree 
defines the pore and the common child defines the throats. The skeleton is generated 
during the clustering as mainstream branches on the family trees. 
 
Flow velocity based method 
The flow velocity based method (denoted VB) generates a pore skeleton by tracking the 
fastest path for laminar flow through the pore space of the rock. Using 3D computational 
fluid dynamics the flow velocity is calculated for all voxels in the pore-space of the rock 
(Øren et.al., 2006). The pore skeleton is then extracted by doing greyscale 3D thinning on 
the pore space, where each pore voxel is represented by a scalar proportional to the 
maximal flow velocity at the voxel. The maximal flow velocity equals the maximum of the 
flow velocities in all 18 directions in an 18-connected lattice. The intersections on the 
skeleton define the link-node or node-link interfaces, where a single flow path splits up, or 
multiple flow paths are joined into a single flow path. 
 
Grain recognition based method 
Contrary to the other three methods, the grain recognition based method (denoted GR) 
starts by partitioning the solid phase to identify the granular structure (Thompson et. al., 
2005). Once the solid voxels have been grouped into individual grains by Euclidian 
distance transformation, the grain centers are identified using the maximum inscribed 
sphere and solid phase partitioning. When the grains have been identified, the pore space 
can then be divided into polyhedra using Voronoi tessellation (Øren and Bakke, 2003). The 
edges of the Voronoi polyhedra define the pore skeleton.  
 
SAMPLES  
The samples analysed include 3D rock microstructure images of both sandstones and 
carbonates. The images were obained from process based reconstructions (denoted PB) and 
X-ray micro-tomography (denoted MCT). The PB images include a regular sphere packing 
(P1) and two Fontainebleau sandstones (F11 and F22). The MCT images are two 
carbonates (C1 and C2) and one reservoir sandstone (S1). Cross-sections of the PB and 
MCT samples are shown in Figures 1 and 2, respectively. 
     
P1: The regular sphere packing P1 contains 490 spherical grains with uniform radii of 32 
µm and 1.6 µm overlapping of each grain. The unit cell contains eight grains in a 
rhombohedral-hexagonal arrangement. The pack has an image resolution of 1µm and a 
porosity of 12.1%, representing a volume of 3753 µm3. 
 
F11 and F22: The two reconstructed (Øren and Bakke, 2002) Fontainebleau samples, F11 
and F22, have porosity of 11% and 22%, respectively. The high porosity image has a 
resolution of 5 µm. The resolution of the low porosity images is 2.5 µm.  The extracted 
sample size is the same for both models (3.375 mm3).  
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Figure 1. From left to right: cross-sectional images of sample P1, F11 and F22 generated using the PB 
method. The side lengths are 0.375 mm, 1.5 mm and 1.5 mm respectively. In the images, black is the pore 
space; white is the quartz grain. 
 

   
Figure 2. From left to right; cross-sectional images of the MCT samples C1, C2 and S1. The side lengths are 
0.84 mm, 1.55 mm and 2.68 mm, respectively. In the images, black is the pore space; grey is clay; and white 
is the solid matrix. 
 
C1: C1  is a vuggy replacement dolostone without fabrics preservation, consisting of sub- 
and euhedral dolomite crystals. Solution-enlarged irregular intercrystal porosity indicates 
post dolomite calcite dissolution. Large vugs are probably biomolds. Abundant patchy, 
poikilotopic anhydrite cement is present. The image resolution is 1.4 µm consisting of 6003 
voxels across a volume of 0.6 mm3. The segmented porosity is 33%. The measured 
permeability of the larger core sample is 460 mD. 
 
C2: This outcrop sample of Mt Gambier limestone (Oligocene – Miocene) is a high 
porosity, cool-water bryozoan-rich grainstone with accessory benthonic foraminifera and 
echinoids from South Australia. The image was obtained from the Australian National 
University. The image contains 5123 voxels with a resolution of 3.024 µm and segmented 
porosity of 43.6%. 
 
S1: The sandstone sample is a poorly sorted channel sandstone with angular to sub-angular 
grains of low to medium sphericity. The grain size ranges from very fine sand to coarse 
sand. The rock consists of approximately 61% quartz, 10% poikilotopic carbonate cement 
and 8-9% clay. The intergranular porosity is around 20%. The image contains 5123 voxels 
with a resolution of 5.24 µm representing a rock volume of 19.3 mm3. 
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STRUCTURAL COMPARISONS 
Having determined the skeleton, i.e. identified all the pore bodies and throats, we next 
applied geometric partitioning and analysis to construct the complete pore network 
representation. Details about the geometrical analysis and the morphological parameters 
used in the network representation are given elsewhere (Øren and Bakke, 2003). Below we 
compare key morphological parameters of the extracted networks. 
 
Numbers of pores and throats and their connectivity 
Table 1 summarises the numbers of pores and throats identified in the various networks. 
For all the samples, there are large variations in the number of pores identified by the 
different algorithms. This illustrates the sensitivity of the different methods to image noise 
and geometrical complexity of the pore space. The VB method tends to produce the largest 
number of pores and throats, which indicates that the method is responsive to geometrical 
details. The VB method is of course also sensitive to the accuracy of the computed velocity 
profile. This, in turn, depends strongly on the image quality.  
 
The MA network for sample S1 is clearly different from the others. It contains roughly 5 
times as many pores as the networks extracted by the other methods. This suggests that the 
applied MA method is not able to produce an accurate representation of the pore structure. 
Sample S1 has a high level of image noise, mainly due to the presence of clay (8-9%) and 
insufficient image resolution to accurately capture smaller pores. 
 
Table 1. Numbers of the pores and throats in the networks extracted using MA, GR, MB and VB methods. 
The numbers of throats are in brackets. 

Samples P1 F11 F22 C1 C2 S1 

MA 1028 
(2367) 

2501 
(2991) 

1560 
(2415) 

67623 
(100470) 

3924 
(5765) 

75055 
(41886) 

GR 1455 
(2869) 

2005 
(2433) 

1676 
(2824) 

50863 
(99865) 

4763 
(6623) 

9810 
(9277) 

MB 1110 
(2462) 

1496 
(2109) 

1516 
(2861) 

53487 
(107727) 

3994 
(6160) 

14709 
(20559) 

VB 1952 
(3353) 

4027 
(6102) 

2492 
(4286) 

62745 
(128896) 

4643 
(7603) 

16749 
(28656) 

 
The network topology or connectivity is expressed by the coordination number, i.e. the 
number of throats connected to a pore body. Table 2 summarises the average and 
maximum coordination numbers of the networks. The corresponding distributions can be 
found in Figure 3. For the regular sphere packing P1, all the methods successfully identify 
the interior pores, i.e. pores with coordination number 4 and 8. However, differences are 
found on the sides of the image due to different schemes for handling boundary effects. 
The GR and VB methods tend to define more 1- and 2-connected pores on the P1 image 
boundaries, resulting in lower average coordination number. 
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Table 2. Average and maximum (in brackets) coordination numbers of the networks using MA, GR, MB and 
VB methods. 

Samples P1 F11 F22 C1 C2 S1 
MA 5.3 (8) 2.5 (13) 3.4 (13) 3.0 (132) 3.2 (92) 1.1 (64) 
GR 4.5 (8) 2.6 (10) 3.8 (14) 4.0 (149) 3.0 (119) 2.0 (41) 
MB 5.1 (8) 3.1 (10) 4.3 (12) 4.1 (122) 3.3 (83) 2.9 (31) 
VB 4.0 (9) 3.2 (22) 3.8 (24) 4.2 (187) 3.5 (108) 3.5 (60) 

 
For the Fontainebleau samples, the MA and GR methods produce more isolated and 1-
connected pores than the other methods, especially for the low porosity sample F11. This 
sample has significant amounts of quartz cementation which makes it difficult to identify 
the original grains. The GR method thus tends to identify grain clusters rather than 
individual grains. We also note that the maximum coordination number for the VB method 
is about twice that of the other methods. The reason for this is currently being investigated. 
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Figure 3. Coordination number distributions of samples. (a) P1; (b) F11; (c) F22; (d) C1; (e) C2 and (f) S1. 
 
The level of noise in MCT images is generally higher than in PB images. The sensitivity of 
the different methods to image noise can thus be more clearly illustrated. Figure 3 shows 
that for the MCT images, the MA and GR methods find more 0- and 1- connected pores 
than the other methods. The 1-connected pores are small bumps on the solid surfaces while 
0-connected pores are single points on the skeleton that can be artefacts of the method or 
actual isolated pores. For sample S1, more that 55% of the pores identified by the MA 
method is 0-connected. It seems physically unrealistic that the majority of pores in 
sandstone having intergranular porosity of 20% should be isolated; strongly suggesting that 
the large number of isolated pores is due to image noise. If we neglect the isolated pores, 
the average coordination number of the MA network increases from 1.1 to 2.6. Similarly, 
the coordination number for the GR network increases from 2.0 to 2.4. 
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Pore size distribution 
Figure 4 shows the pore size distributions of all the networks. For sample P1, all the 
methods show a bi-modal pore size distribution. The locations of the main peak for the two 
distributions are also similar in the different networks. Differences are mainly found for 
small pore sizes that are associated with the image boundaries.  
 
For the other samples, all the methods find a uni-modal pore size distribution with a long 
tail towards larger pore sizes. The pore size distribution of the high porosity sample C2 is 
almost identical for the different networks. For samples F11 and F22, the MB and GR 
networks are very similar. Compared to the MA and VB networks, the peaks in the MB 
and GR pore size distributions are located slightly towards larger pore sizes. This is also 
observed for sample C1. The MA pore size distribution for sample S1 differs clearly from 
the distributions found by the other methods. The height of the peak is larger and the 
location of the peak is at a smaller pore size. This is due to the large amount of small 
isolated pores present in the MA network.  
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Figure 4. Pore body size distributions of samples;  (a) P1; (b) F11; (c) F22; (d) C1; (e) C2 and (f) S1. 
 
Throat size distribution 
Figure 5 shows the pore throat size distributions of all the networks. Except for samples 
F11 and S1, the computed throat size distributions of a given sample are similar for all the 
networks. For sample F11, the peak in the distribution is much more distinct for the MA 
and VB networks than for the MB and GR networks. The average throat size of the GR 
network for sample F11 is also larger than that found by the other methods.  
 
For sample S1, the GR throat size distribution is clearly different from the others. The 
distribution has no clear peak and it also has a higher frequency of larger throats. We also 
note that for sample C1, the GR throat size distribution is more flat in the vicinity of the 
peak found by the other methods. However, the average throat size for sample C1 is similar 
for all the networks. 
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Figure 5. Throats size distributions of samples; (a) P1; (b) F11; (c) F22; (d) C1; (e) C2 and (f) S1. 
 
TRANSPORT PREDICTIONS 
We have implemented the extracted networks in a network model (Øren et.al., 1998) and 
computed single and multiphase properties. Network permeability and formation factor are 
compared to the directionally averaged results computed on the 3D images by solving the 
Stokes equations (Øren et.al., 2006) and the Laplace equation (Øren and Bakke, 2002) for 
the permeability and formation factor, respectively. Two-phase relative permeability for 
primary drainage and waterflooding under water wet conditions were calculated and 
compared for the networks extracted from the MCT images. 
 
Single phase properties 
Tables 3 and 4 summarize the predicted petrophysical properties of the networks. In most 
cases, the calculated permeability of the networks is larger than that computed on the voxel 
image. On average, the MB and VB networks over-predict the permeability with a factor 
1.1. The corresponding values for the MA and GR are 1.3 and 1.7. For the GR networks, 
the largest permeability discrepancy is found for sample C2. This is probably due to the 
fact that the sample is not grain based. Excluding the regular packing sample P1, the 
permeability of the MB and VB networks are over-estimated by a factor of 0.99 and 1.03 
on average. This indicates that the topological and geometrical properties, relevant for 
permeability predictions, are representative for the actual pore structures. 
 
The computed formation factor of the networks is consistently lower than that calculated 
on the grid representation. On average, the networks under-predict the formation factor by 
approximately a factor 1.6. This suggests that the tortuousity of the network representations 
is smaller than that of the actual pore structures and/or that the electrical conductance 
(proportional to the cross-sectional area) is over-estimated.  
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The predicted permeability is mainly determined by the larger pore elements in the 
network, while the formation factors are influenced by the smaller ones. Excluding sample 
P1, the average over-estimation factor for permeability is 1.2, compared to an average 
under-estimation factor of 1.5 for formation factor. This indicates that the networks are 
representative for the interconnected large pores on the backbone skeleton while more 
careful investigations are required to optimize the descriptions of small crevices in the pore 
network. Nevertheless, the deviation on small pores can be theoretically improved by a 
finer image resolution. 
 
Table 3. Absolute permeability of  the voxel based image and networks. 
 Voxel image MA GR MB VB 
P1 (mD) 49 100 99 78 70 
F11 (mD) 239 268 369 225 237 
F22 (mD) 4167 4289 7610 4289 3912 
C1 (mD) 336 370 634 351 367 
C2 (mD) 24045 31863 46275 21139 23428 
S1 (mD) 2403 3061 2428 2473 2807 
Over-estimation factor 1.32 1.70 1.09 1.10 

 
Table 4. Formation factors of  the voxel based image and networks. 
 Voxel image MA GR MB VB 
P1 26.7 13.1 13.2 15.0 14.1 
F11 83.4 53 50.0 53.3 50.7 
F22 14.4 11.2 7.9 10.4 9.6 
C1 9.3 6.2 4.8 5.6 5.9 
C2 7.9 4.9 3.7 4.5 5.2 
S1 17.7 18.1 30.1 16.5 19.4 
Under-estimation factor 1.50 1.70 1.51 1.54 

 
 
 
Primary drainage 
The details of two-phase displacement mechanisms in primary drainage and waterflooding 
are given elsewhere (Øren et.al., 1998). Figure 7 depicts calculated primary drainage 
relative permeability curves on the different networks from the three MCT images. 
Considering the small size of the networks and the large percolation threshold effects, the 
differences in the computed relative permeabilities are small. Since the injected oil phase 
proceeds by invading the largest available pore element, this suggests that for a given 
sample the distribution and connectivity of the larger pore elements are similar between the 
different networks. The irreducible water saturation Swi is determined by the water fraction 
associated with micro-porosity in clay, and isolated pore volumes. For sample S1, the Swi is 
0.27 for the MA network, compared to 0.24, 0.20 and 0.20 for the GR, MB and VB 
networks, respectively. The higher Swi for the MA and GR networks are due to larger 
numbers of isolated pores. 
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Figure 7. The primary drainage relative permeability of samples C1 (left), C2 (middle) and S1 (right). 
 
Waterflooding 
Figure 8 depicts the calculated waterflood relative permeability curves. In water wet 
systems, waterflooding proceeds by water preferentially invading the smallest (i.e. largest 
capillary entry pressure) available pore elements. The behaviour of the waterflood is thus 
sensitive to the distribution and connectivity of the smallest pore elements in the network. 
For samples C1 and C2, all the networks predict similar relative permeability curves. For 
sample C1, the residual oil saturations Sor for all the networks range from 0.27 to 0.32. For 
sample C2, the residual oil saturations are from 0.49 to 0.51 for MA, MB and VB networks, 
while it is 0.41 from the GR network. This relatively large variation can be caused by finite 
size effects (very small networks) or that the backbone skeleton of the GR network is better 
connected (although the GR network has the lowest average coordination number). 
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Figure 8. The waterflooding relative permeability of samples C1 (left), C2 (middle) and S1 (right). 
 
For sample S1, the MA network behaves drastically different from the other networks. The 
water and oil relative permeabilities are almost constant over a large saturation range. This 
shows that many of the smaller pore elements are in the form of branches that do not form 
closed loops. Invasion of these branches contribute to saturation, but has little effect on the 
hydraulic conductance and thus the relative permeability. The shape of the computed 
relative permeability curve is rather unphysical for water wet systems, suggesting that the 
MA network is a poor representation of the actual pore structure. The main reason for this 
is probably the presence of clay and image noise. As for sample C2, we observe that 
although the GR network has the lowest average coordination number, the computed 
residual oil saturation (0.38) is similar to that of the MB network (0.38) and VB network 
(0.41). 
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CONCLUSION  
Four methods (MA, GR, MB and VB) have been applied to extract topological skeletons 
from 3D images of sandstones and carbonates. The complete pore networks are extracted 
from the computed skeletons using the same algorithm for geometrical partitioning and 
analysis. The structural and predicted transport properties of the networks are compared. 
 
For all the samples analysed, the MA and GR methods produce networks which contain 
more isolated and 1-connected pores than the MB and VB networks. For the sample with 
highest level of noise (sample S1), the applied MA algorithm failed to identify a realistic 
pore network. Pore sizes determined by the VB and MB networks tend to be similar. The 
pore sizes for the MA and GR networks are also similar (except for sample S1), but 
slightly larger than those of the VB and MB networks. 
 
The networks tend to over-predict the permeability compared to the one computed directly 
on the voxel image. On average, the MB and VB networks over-predict the permeability by 
a factor of 1.1. The corresponding value for the MA and GB networks are 1.3 and 1.7, 
respectively. All the networks under-predict the formation factor roughly by a factor 1.6. 
This suggests that the tortuousity of the network representations is smaller than that of the 
actual pore structures. 
 
The predicted primary drainage relative permeability curves for the three MCT samples are 
similar for all the networks. The computed imbibition relative permeabilities on the 
different networks are also similar for samples C1 and C2. For sample S1, the MA network 
predicts relative permeabilities that differ drastically from those computed on the other 
networks. The residual oil saturation for the GR networks tend to be smaller than that of 
the other networks. In general, we find that the MB and VB networks give similar transport 
predictions. 
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