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ABSTRACT  
 
The creation of a 3D pore-scale model of a porous medium is an important step in 
quantitatively characterising the medium and predicting its two-phase and three-phase 
relative permeabilities and capillary pressures. Recently, we have developed pore 
architecture models (PAMs) to reconstruct 3D reservoir rocks from 2D thin section images 
along with a set of pore analysis tools (PATs) to quantitatively analyse the reconstructed 
pore systems. The PATs reveal the pore topology and geometry, from which we can 
construct pore network models and compare the original and reconstructed 3D 
microstructures. Compared to other published reconstruction and network extraction 
methods, the PAMs and PATs algorithms are computationally significantly more efficient. 
  
In this paper we describe a series of tests involving rock PAM reconstructions and extracted 
networks, and compare the flow properties predicted using network flow simulations. 
Specifically, we validate the reconstruction method through “self-reconstruction”; i.e. we 
take numerical thin sections from a reconstructed rock or known 3D tomograph to create a 
new reconstruction, for which the properties are compared with the original. First, we 
consider a fairly homogeneous sandstone rock, for which good agreement is found between 
the original and the new reconstructions in terms of numbers of pores, pore size distribution 
and connectivity. The permeability of the sandstone example is also closely matched and, in 
addition, two-phase relative permeabilities for both drainage and imbibition agree well. 
Second, the reconstruction method is applied to more heterogeneous carbonate rocks. When 
such materials possess distinct pore systems with wide ranges of pore sizes, we overcome 
some of the difficulties of the multiple scales by integrating multiple reconstructions based 
on different resolution input images. Two-phase relative permeabilities are compared for the 
individual and the combined scale reconstructions. The results reported here indicate that the 
smaller elements of the pore system are important in governing aspects of the flow. 
 
The above suggests that the reconstruction process produces a good representation of 
homogeneous and some heterogeneous rocks, although prediction of multi-phase flow 
properties in multi-scale rocks will require larger reconstruction volumes, which seem to be 
within reach of our efficient methods. 
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INTRODUCTION 
 
Quantitative characterisation of porous media at the pore scale is of fundamental importance 
in many scientific subjects. The pore structure of reservoir rocks is complex, but the 
geometry and topology of porous rocks must be known if we wish to a priori predict the 
physical rock properties. The pore geometry ultimately affects many macroscopic 
phenomena associated with mechanical, acoustic and fluid flow responses.  
 
Although direct measurements of 3D microstructures are now available via X-ray computed 
microtomography (Dunsmoir et al., 1991; Spanne et al., 1994; Hazlett, 1998; Arns et al., 
2001), it is often difficult and expensive to obtain reliable “images” of the 3D pore structure. 
Such methods are also limited in terms of their scale of resolution because there is a trade-off 
between resolution and sample size, which in turn relates to sample representativity. 
Recently, workers at the Australian National University (ANU) have made significant 
progress in generating micro-CT images of the 3D pore space of carbonate rocks (Arns et al, 
2005; Knackstedt et al, 2007). These images show the larger pores and vugs in carbonates 
but they do not fully resolve all of the microporosity which is present. As alternatives to CT 
methods, several techniques have been proposed to statistically generate 3D pore structures 
from spatial information derived from readily-obtained 2D images (Joshi, 1974; Quiblier, 
1984; Roberts, 1997; Hazlett, 1997; Yeong and Torquato, 1998; Manswart and Hilfer, 1998). 
Quantitative comparisons of these models with tomographic images of sedimentary rocks 
have shown that statistical reconstructions may differ significantly from the original sample, 
in particular with respect to their connectivity (Hazlett, 1997; Biswal et al., 1999; Manswart 
et al., 2000). In another approach, Bakke and Øren (1997) have developed a process-based 
reconstruction procedure, which directly models the particle sedimentation process. This 
method was successfully applied to reconstruct Fontainebleau sandstone, but it involves 
intensive computing and it currently works only for rocks with a straightforward history that 
is primarily dependent on the original depositional texture     
 
This paper is based on the work of Wu et al. (2006), who described a stochastic 
reconstruction method that can in principle overcome some of the fundamental problems of 
the above described methods. The new method creates reconstructions of a (possibly) 
heterogeneous porous medium using Markov Chain Monte Carlo (MCMC) simulation. The 
models are referred to as “pore architecture models”, or PAMs. This approach differs in one 
important aspect from earlier two-point (or multi-point) correlation methods (e.g. Okabe and 
Blunt, 2004), in that it involves a multiple-voxel interaction scheme (a high-order 
neighbourhood system) to preserve structural characteristics of the input data. Moreover, the 
PAMs approach is non-iterative, which allows much faster computations and therefore 
generation of significantly larger reconstructions. In this paper we present s validation of the 
PAM reconstruction method using a “self-reconstruction” approach; i.e. we take numerical 
thin sections from a reconstructed rock or known 3D tomography to create a new 
reconstruction, for which the properties are compared with the original. The 
self-reconstruction is applied to a relatively simple sandstone sample.  
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For more complicated rocks, such as carbonates, with distinctive macropore (pore size in 10s 
µm to mm) and micropore (pore size in sub-µm to µm) systems, our 3D Markov random 
field models can be used to reconstruct representative systems at each scale. For a carbonate 
sample, thin section images have been obtained under different microscope magnifications, 
allowing PAMs reconstructions from which we extract networks for the coarse and fine 
scales. A method is proposed to combine the reconstructions from the coarse and fine scales. 
We extract networks for the coarse, fine and combined scales and we compare the predicted 
relative permeabilities at each scale. 
 
 
3D PORE RECONSTRUCTION AT MULTIPLE SCALES  
 
The PAMs method originates from Markov Random Fields (MRF) models (Geman and 
Geman, 1984). MRF methods are based on using only a small number of local conditions 
(derived from a training image) to predict global features. In typical usage, the training 
image is pixelated, and the probability of each pixel of the model being in a particular state 
(black or white, for example) is determined (or conditioned) by means of a transition matrix 
of conditional probabilities that is obtained from the training (prior) image. The general 
multi-point statistics scheme (e.g. Okabe and Blunt 2004) uses larger templates, but in that 
method, the probabilities of all possible templates must be determined, which is 
computationally expensive. The PAMs approach differs in one important aspect from the 
two-point (or multi-point) correlation methods (e.g. Okabe and Blunt, 2007) in that it 
involves a multiple-voxel interaction scheme (a high-order neighbourhood system) to 
preserve structural characteristics of the input data. Moreover, the Markov Chain approach is 
non-iterative, which allows much faster computations and therefore the generation of 
significantly larger reconstructions. The details of the PAMs method are described in Wu et 
al (2006). We have applied the PAMs approach to a wide range of rocks and soils, for >100 
different materials to date (Wu et al, 2007). The measured permeabilities of these materials 
range over more than six orders of magnitude, and the materials exhibit both simple and 
complex pore systems. Although extensive validations have been carried out to validate the 
PAM reconstructions, e.g. they are visually similar in terms of morphology, the structural 
features are captured, the permeability is matched, etc, we are continuing to further test the 
robustness of the reconstructions and use multiple methods (PATs tool, LB and network 
extraction) to evaluate their material properties. In this paper, an emphasis is placed on 
validating PAMs by self-reconstruction, as described in the next section. 
 
The PAM reconstruction procedure has proven to be relatively straightforward for the case 
of typical reservoir sandstones (Wu et al, 2006). However, some serious challenges arise 
when we consider more difficult rocks, such as carbonates, siltstones, and deformed rocks 
(Wu et al, 2007). The main difficulty arises from the fact that the pore system in these rocks 
has multi-scale features, e.g. macropores and micropores coexist, and therefore images at 
different scales have to be considered. The micropores can be observed in a fine-scale 
(submicron) images, while coarse resolution images have to be used to handle the 
macropores and fractures in a relatively large frame. Because of computer memory 
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limitations, we can only deal with a small volume for a 3D image (perhaps to ~5003 voxels). 
If the model has macropores, then in a high resolution reconstruction, there would be only a 
few scattered large pores which would dominate the model. For example in Fig 4d, the 
reconstructed cube is 3003 in volume of voxels and the resolution is 1 voxel = 0.14 microns. 
If we have micropores, at say 28 microns in diameter, located within the cube, then a single 
pore will take up about 2143 voxels - 70 % of the volume of the cube. In addition, the 
transition probabilities, derived from the training image, would not properly represent the 
micropores because the variations occur at scales that are larger than our template. To 
overcome this problem, we here show an approach in which we sub-sample a small part of 
the training image at high resolution, focusing on the smaller pores, i.e. the high resolution 
training image does not contain any complete large (macro pores), and we reconstruct a 
separate model that gives a good representation of the micropore system. 
 
In capillary dominated reservoir fluid flow calculation, micropores play an important role in 
multi-phase flow, and it is vital to understand the comprehensive flow system that results 
from a combination of macropore and micropore systems. In section 4 we will explain the 
method of integration from different scales. 
 
 
VALIDATION OF PORE SPACE RECONSTRUCTION  
 
In the validation by means of “self-reconstruction”, we use two cycles of reconstruction to 
allow a comparison with their parent structure based on the geometry, topology and flow 
predictions: (i) the first reconstruction is run using 2D training images taken from a 
“reference” 3D tomographic image; (ii) the second cycle reconstruction is then based on 2D 
slices from the reconstructed structure. All the reconstructed 3D structures are analysed and 
compared in terms of  the number of pore bodies and bonds, pore connections (coordination 
number), as well as the calculated absolute permeability and relative permeability.  
 
The analysis of the 3D structure of these models uses the pore network extraction approach 
of Jiang et al. (2007). This method extracts the geometrical/topological network that 
represents the pore structure of a porous medium, referred to as the GT-network. The 
GT-network extraction algorithm involves a number of steps including: (a) calculation of the 
3D Euclidean distance map; (b) clustering of voxels; (c) extraction of the network of the pore 
space; (d) partitioning of the pore space; and (e) computation of shape factors.  
 
A two-phase flow network model has been developed (Ryazanov et al, 2008) that takes as 
input the extracted network and its properties. The model is similar to that of Valvatne and 
Blunt (2004), although compared to the latter a more accurate pore shape description has 
been included, as well as the (correct) thermodynamically-based criteria for collapse of oil 
layers in pore corners during imbibition. 
 
The two-cycle self reconstruction is designed to test the error propagation of the PAM 
method. Due to the relatively small neighbourhood structure used in the PAM model for 3D 
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reconstruction, there is a trade-off between the efficiency and the accuracy of the pore 
morphology reproduction. Therefore, we might anticipate that there is some degree of 
degradation after each cycle of reconstruction. The general idea of this test is to see how 
much deviation will occur in each reconstruction cycle.  
 
The First Cycle Reconstruction from Original 3D CT Image 
For the first cycle of reconstruction, an input 3D reference structure is required. In our 
implementation, a 3D CT scanned image of a sandstone is used, with a volume of 300^3 
voxels and a resolution of 5.6 µm, as illustrated in Figure 1a. 
  

     
 (a)    (b)    (c) 
 

     
 (a')    (b')    (c') 
 
Figure 1.   (a) The 3D CT image of sandstone with volume of 300^3 voxels, the resolution is 5.6 µm per 
pixel; (a') the extracted network from 3D image (a);  (b) The first cycle reconstruction of sandstone and 
(b') pore network extraction; (c) the second cycle reconstruction (Self-reconstruction) of sandstone and 
(c') the extracted pore network. 
 
The extracted network (Fig.1a') from the 3D CT image (Fig. 1a) has 2953 pores, 5256 throats 
and a coordination number of 3.51. The network-derived absolute permeability is 2509 mD.  
 
2D slices in the x, y and z directions were randomly taken from the 3D tomography image 
for use as training images for the subsequent reconstruction. One realisation of the resulting 
PAM is shown in Figure 1b.  Then we use PATs to extract the G-T network (Figure 1b').  The 
resulting network in Figure 1b' has 2913 nodes, 4953 bonds and the average coordination 
number of 3.34. The resultant network permeability is 2046 mD, which is 18% lower than 
that of the original rock from which the CT image was taken. 
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The Second Cycle Reconstruction from Reconstructed Structure  
The second cycle reconstruction is carried out using thin sections taken from the already 
reconstructed image as training images, to achieve a so called “self-reconstruction”. The 
self-reconstruction and the corresponding extracted G-T network is shown in Figures 1c and 
1c' respectively. The G-T network has 2886 nodes, 4810 bonds and a coordination number of 
3.28. The resultant absolute permeability predicted from the network flow model is 1514 mD, 
which is 28% lower than that of the first reconstruction, and 39% less than the permeability 
of the original model.  
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(a)         (b) 

Figure 2. Comparison  of pore size distribution and shape factor distribution curves for the original 
reference 3D image, the reconstruction and the “self reconstruction”.  
 
The pore size distributions and shape factors (shape factor = area /perimeter^2) computed 
from these images are shown in Figure 2a and Figure 2b respectively, which show very close 
agreement. However, a small reduction is noted in the relative frequency of smaller pores as 
a result of the reconstruction process. This, combined with the reduction of bonds in the 
reconstructed networks, indicates that the smallest components of the pore system are being 
eliminated by the current method. Additional effort is needed to understand and correct this 
artefact. To allow a comparison of the two-phase flow properties of the original image and 
the reconstructed structures, the corresponding relative permeability curves (for water-wet 
systems) are displayed in Figure 3. Agreement is generally good, although a slight 
degeneration occurs, in particular for the oil curves. This is compatible with the reduction in 
the smallest pore components, noted above. 
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   (a)      (b)  
Figure 3. Prediction of two-phase flow, (a) drainage  and (b) imbibition curves for the original, the 
reconstructed and the self reconstructed images. 
 
MULTI-SCALE RECONSTRUCTION AND 2-PHASE FLOW 
PREDICTION OF A CARBONATE ROCK 
 
Here we also illustrate the use of the PAM approach to reconstruct multi-scale pore systems 
based on different-scale training images. We assemble a single multi-scale pore system by 
integrating the different-scale systems into a unified image. We then predict two-phase flow 
properties using the extracted network from this unified pore system. This approach can be 
applied to other scales.  

We have two different scale 2D thin section images with a factor of ten difference in the 
pixel resolution i.e. 1.33 µm and 0.13 µm (Figure 4). These different scale images are used 
as input for the reconstruction of 3D carbonate macro- and micro-pore structures, as shown 
in Figure 4. 

     
 (a)       (b)    (c)       (d) 
 
Figure 4. Carbonate SEM images and reconstructions: (a) Coarse resolution image of 1.33 µm /pixel; (b) 
coarse-scale reconstruction with volume of 2003 voxels; (c) fine resolution image  0.13 µm /pixel; (d) 
fine-scale reconstruction with volume of 5003 voxels.   
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Figure 5. Pore size distributions in the reconstructed carbonate: Fig. 8b – coarse scale model - and Fig. 
8d – fine scale model.   
 
The resulting pore-size distributions (Figure 5) clearly show the effects associated with 
image resolution. The higher-resolution models (sub-micron scale PAM) indicate an average 
pore-size diameter of approximately 0.8 µm. In contrast, the coarse-resolution models 
(micron scale PAM) show a much larger mode for the pore size of about 4.5 µm. Using a 
low-order neighbourhood scheme, it is not possible to reproduce all scales simultaneously in 
the reconstruction.  

However, it may be possible (see below) to combine the different-scale models to derive a 
better understanding of the composite material. 

When the two different scale reconstructions are generated, as in Figure 4, these must be 
combined to give a single composite model. One possible approach is to refine the coarser 
scale 3D image to equivalent resolution as the finer scale and then combine these two 
structures with the same volume into a single model. For example, Figure 6a is a sub sample 
extracted from Figure 4b with volume 503 voxels, which has a resolution of 1.33 µm/voxel. 
We then (i) refine the image up to 5003 voxels (dividing every voxel into a 10x10x10 
sub-region) hence the refined image has a finer resolution of 0.13 µm/voxel, and then (ii) 
superimpose (for each voxel, it is assigned to be a pore if the corresponding voxel of either 
input image is a pore) the refined image on the fine-scale image of Figure 4d to form the 
integrated structure shown in Figure 6a′. The same procedure was applied to construct 
Figure 6b′.  
 
Using the combined structure of Figure 6a′, we extract a new network (Figure 7c). This new 
pore structure has an average coordination number of 2.65, which is slightly higher than the 
2.60 of the original coarse scale image. The maximum coordination number increased from 
12 to 89. In addition, the permeability increased from 14 mD to 18 mD, since the 
poorly-connected macropores are now connected by micropores. Using the extracted 
networks, we can predict the two-phase flow properties (Figure 8) using our network flow 
model (Ryazanov et al. 2008).  
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  (a)           (a')            (b)    (b')          
Figure 6.  Illustration of the integration of the coarse and fine scale networks for 2 realisations of the 
multi-scale carbonate model.  Figures show cases with only macroporosity (a, b) and with both macro- 
and micro-porosity (a′, b′).   

    
  (a)   (b)        (c) 
Figure 7.  Extracted pore network skeletons from (a) coarse scale, (b), fine scale and (c) the combined 
scale (c). (a) extracted network from Fig. 6a; average connection 2.6, maximum connection 21, 
permeability = 121 mD; (b) extracted fine scale network from Fig. 4d, average connection 2.55, 
maximum connection 16, permeability = 0.42 mD; (c) extracted fine scale network from Fig. 6 a, average 
connection 2.66 and maximum connection 89, permeability = 348 mD.  
 
It can be seen that there are some differences between the curves for the coarse-scale and 
combined models showing that the presence of the microporosity does have an effect. In the 
self-reconstruction described above in this paper, we suggested that the loss of the smallest 
pore components resulted in a reduction of flow properties, and here we show that the 
inclusion of the small pores improves the flow. We are currently applying these techniques 
to a suite of carbonate samples, for which the flow data has been measured; this work will 
appear in due course. Additionally, we intend to apply the self-reconstruction validation to 
the multi scale cases in the future. 
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Figure 8. Two-phase flow predictions using a pore network flow model from coarse scale (dashed line) 
and combined scale (solid line). 
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SUMMARY AND CONCLUSIONS  
 
In this work, we describe an approach for reconstructing and predicting multi-scale flow 
properties of homogeneous sandstones and inhomogeneous carbonates by first constructing 
a 3D pore image from 2D thin sections using the Pore Architecture Model approach (Wu et 
al., 2006, 2007).  We then apply our pore analysis tools (PATs), which are a suite of 
algorithms which allow us to extract quantified descriptions from which we can build 
network models for simulating two- and three-phase fluid flow at the pore scale (Jiang et al., 
2007). 
 
In assessing the stability of the reconstruction method , we take as our starting point, a 3D 
CT image of sandstone as “reference” data. We then use “self-reconstruction” as a robust test 
of the methodology. The fact that (a) the PAM generated 3D image agrees in detail with the 
original “reference” image, and (ii) that successive “self reconstructions” agree reasonably 
well, validates the PAM approach in simple sandstone rocks, although there is the potential 
for improving our treatment of the smallest pore components.  
 
The PAM technique has also been applied to a carbonate rock to tackle the problems 
associated with the fact that such rocks have a multi-scale pore system. We have separately 
constructed the 3D macro- and micro-pore system models at different (coarse and fine scales) 
resolution of the thin sections. These were then combined into the same unified model which 
incorporated both scales of pore heterogeneity, from which we extracted the corresponding 
multi-scale GT network which was used to calculate relative permeability.  
A comparison between the calculated two-phase relative permeabilities of the macro-pore 
system and the combined macro/mico-pore system did show some differences. We do not 
fully explain these results here, or present any comparisons with experiment. Here, our main 
objective is to illustrate the methodology and approach, and to demonstrate the feasibility of 
calculating two-phase properties in such multi-scale pore systems. This approach is being 
applied to carbonate rocks with experimental property data, and the next step of this work 
will investigate the self reconstruction validation and compare the flow properties predicted 
using PAMs with lab experiments. 
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