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ABSTRACT 
A range of 3D image registration techniques have been developed to extend the capabilities 
of X-ray micro-CT and to allow the calibration of micro-CT data to other microscopic 
techniques. In contrast to the alignment of 2D images, for which many tools are publicly 
available, registration of very large 3D images, for which distributed-memory parallel 
algorithms are required, pose a considerable challenge. We are not aware of available 
software which is capable of accomplishing this task. To illustrate the diverse capabilities 
and potential value of our registration techniques, we provide examples of successfully 
aligned core images.  

As a first example, we show 2D back-scattered scanning electron microscopy (BSEM) 
images of polished thin sections extracted from plugs previously imaged by X-ray micro-
CT. BSEM imaging generates nanometre resolution images, and can even provide detailed 
mineralogical maps through energy dispersive X-ray spectroscopy (EDS). Accurate 
registration of the 2D microscopic image within the 3D image volume increases the 
potential for mapping X-ray grey-levels to mineral phases, reveals information about 
features too fine for X-ray micro-CT and provides an invaluable quality control on the 3D 
image data. 

We also present examples where pairs of 3D micro-CT images are registered. Cores are 
imaged dry, then removed from the micro-CT apparatus, flooded under different 
wettability conditions and saturation states, and re-imaged. This process can be repeated 
with any length of time between image acquisitions. Accurate alignment then allows for 
the information from all images to be combined, thus adding enormously to the value of 
both the imaging and the flooding experiments. 

INTRODUCTION 
Micro-CT imaging and the computational methods for analysing the generated X-ray 
attenuation data are becoming increasingly popular for characterising many macroscopic 
properties of porous media. From micro-CT images of dry cores, it is possible to compute 
properties such as porosity, permeability, conductivity, elasticity, and mercury injection 
capillary pressure that are in good agreement with laboratory experiment (C. H. Arns et al. 
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2002, M. A. Knackstedt 2004). In addition to dry-core micro-CT analysis, the imaging of 
cores that have been flooded with an X-ray blocking liquid allows the study of fluid 
partitioning in the pore space (Prodanovic et al. 2006, Prodanovic et al. 2007). Flooded 
core analysis has the potential to enable the determination of key multiphase flow 
parameters and provide validation data for fluid transport models. 

While the study of X-ray Micro-CT tomograms can provide a variety of information 
regarding pore and rock-matrix structure of a core sample, a complete analysis is often 
impeded because: (a) X-ray attenuation alone is insufficient to distinguish mineralogy, (b) 
there exists significant regions in the sample that contain pore/matrix features below the 
image resolution, (c) there is limited X-ray contrast when imaging fluid distributions and 
(d) when imaging wet cores, flooding needs to occur quickly and must take place at 
atmospheric temperature and pressure, since the sample must normally remain resident in 
the micro-CT apparatus. To overcome (a) and (b), complementary information from other 
imaging and analysis techniques can be combined with micro-CT to data to reveal the core 
structure at micro, meso and macro scales (Padhy et al. 2007) as well as mineralogy 
discrimination. Furthermore, aligning 2D BSEM or thin-section optical images with the 
corresponding region of the micro-CT 3D images allows the possibility of classifying 
micro-CT voxels as a particular mineral phase, based on their tomographic grey level. Sub-
voxel accurate alignment of the high-resolution 2D images with the micro-CT tomogram 
also provides a means of making a rapid qualitative assessment of the micro-CT image. 
Impediment (c) can be overcome by aligning micro-CT images of dry and partially 
saturated cores, then masking the flooded image with the solid phase obtained from the dry 
image and classifying voxels belonging to the liquid phase in this masked image to identify 
the fluid distribution. Similarly, (d) can be avoided through the use of automated 
registration tools, as it becomes possible to remove samples from the micro-CT apparatus 
in order to perform flooding. The flooded core can then be imaged at arbitrary times with 
the resulting flooded and dry tomographic images becoming easily compared when 
accurately aligned. 

In general terms, image registration is the task of bringing into geometric alignment two or 
more images, of the same scene, taken at different times, from different orientations and/or 
by different instruments. While solutions to this problem are well represented in the 
literature for specific problem domains, there is yet to appear a single automated solution 
which can be reliably applied in all problem domains. There are a variety of different 
approaches for performing image registration and a recent survey of techniques can be 
found in (Zitová and Flusser 2003). In this paper, we present a registration algorithm which 
has been successfully applied to the task of aligning Scanning Electron Microscopy 
(BSEM) 2D images with micro-CT 3D images, and aligning dry/flooded 3D image pairs. 
The algorithm can be categorised as a “multi-resolution area-based multi-start 
optimization” approach and can deal with arbitrary differences in rotational and 
translational orientation. The C++ implementation is capable of registering large datasets 
on distributed memory high-performance architectures through the use of the Message 
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Passing Interface (MPI). To date, micro-CT tomographic images as large as 2×20483 bytes 
have been registered using this implementation. 

REGISTRATION ALGORITHM 
A common approach (and the approach adopted in this paper) for solving the registration 
task is to first formulate it as an optimization problem. Fundamental to this formulation is a 
cost-function or distance-metric which gives a quantitative value indicating the merit of the 
alignment between two images with respect to a number of transform parameters. These 
transform parameters define how the two images are overlaid. An optimization algorithm 
can then be used to discover the transform parameters which give the minimum value of 
the distance-metric. It is these minimizing-parameters that immediately yield the desired 
alignment of the two images. 

We formulate the optimisation problem using the correlation coefficient as the distance-
metric and the similarity transformation as the deformation, which results in 7 degrees of 
freedom (3 translational, 3 rotational and 1 isotropic scaling) to be solved by an 
optimization search strategy. There are many mathematical optimization algorithms for 
reliably and efficiently discovering local minima, less common are practical optimization 
methods for reliably finding global minima. Global methods based on annealing, evolution 
or Monte-Carlo sampling are capable of discovering global minima but do so at the price 
of a large number of distance-metric evaluations. The appeal of local mathematical 
optimization methods is fast and accurate convergence (provided the distance-metric 
satisfies certain conditions), and hence a fewer number of distance-metric evaluations, but 
the price is that there is no guarantee of discovering a global minimum. To increase the 
likelihood of local optimization methods finding a global minimum and to further reduce 
the amount of computation, many registration methods use a multi-resolution approach. 
The idea is to find transformation parameters which are close to the global minimum using 
low resolution versions of the original pair of images and then to further perfect the low-
resolution transformation parameters using increasingly higher resolutions. In this paper, 
the multi-resolution search strategy is to use an exhaustive low-resolution search to 
determine an initial small set of transformation parameters, where at least one element of 
this initial set of parameters is within the capture radius of a global minimum. These initial 
sets of transformation parameters are used as starting-solutions for a local numerical 
optimization method (Powell's method as implemented in Press et al. 2002) to further 
refine and reduce the transformation parameter sets at increasingly higher resolutions until 
the final best transformation parameters are determined at the original highest resolution. A 
more detailed description of the implementation and parallelisation strategy can be found 
in the appendix. 

REGISTRATION RESULTS 
In this section, we present results generated by applying the above registration algorithm to 
align BSEM images with micro-CT images, and to align a micro-CT image of a flooded 
core sample with the micro-CT image of the corresponding dry core sample. 
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Alignment of BSEM 2D Images with Micro-CT 3D Images 
To obtain high-resolution BSEM images from within the volume imaged by micro-CT, we 
use the following experimental protocol. Firstly, the sample, usually a cylinder with a 
diameter of 5mm, is imaged in the micro-CT. The sample is then cut, perpendicular to the 
cylinder’s axis, and one half is impregnated with epoxy. This half is then polished down to 
form a thin section with a thickness of around 30 microns which is mounted on a glass 
slide. Clearly this is a destructive process which precludes re-imaging of the sample. Thin-
sections are normally imaged using two methods. The first method, BSEM, generates 
images from the top 1-2 micrometres of the thin-section and all 2D results presented in this 
work arise from the BSEM method. The second back-illuminated optical microscopy 
method, as per traditional petrographic analysis, can be used to generate images consisting 
of the integrated (average) properties over the full 30 micron thickness of the thin-section. 
Registration of these optical images is beyond the scope of this work, although it is likely 
our registration method would be capable of aligning these images by using a different 
distance-metric. 

Being a destructive imaging technique, the quality of the 2D BSEM image can be 
adversely affected by a number of factors including the trapping of air bubbles in the epoxy 
and the removal of friable core material during polishing. We have observed both these 
effects in the registered images studied to date. The amount of core material removal 
appears to be insignificant, however, air bubbles are a significant problem that will affect 
quantitative characterisation of the pore space. 

 

 
Figure 1: Four “quadrant” BSEM images of carbonate thin section taken at 40× magnification. 
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Techniques for resolving this problem are beyond the scope of this work. However, it is 
worth noting that our approach allows for quality control of both the 3D tomographic 
image and the 2D SEM image, since one can invariably infer the source of discrepancies 
between the two registered images. It is also possible that fine particles may be dispersed 
through the pore space during the epoxy filling, however, to date this has not been 
observed. BSEM images of core sample thin sections are obtained at a number of 
resolutions, (for the samples shown here, magnifications factors were ≈40×, ≈450× or 
≈1000×). For the lowest magnification, a series of BSEM scans is performed so that the 
entire area of the core-sample thin section is imaged. Figure 1 shows four “quadrant” 
BSEM images taken at ≈40× magnification of a carbonate thin section with pixel size of 
1.24 microns. These lowest resolution BSEM 2D images were individually pre-processed 
to remove distortion, which is introduced during the BSEM image acquisition. 

Figure 2: BSEM images of carbonate samples (left column) and registered region of corresponding micro-
CT 3D image (right column). 
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Figure 5: High-resolution 500x magnification BSEM image region (left) and registered region of micro-CT 
3D image (right). 
 
The distortion removal uses a BSEM image of a known grid to de-warp the sample images. 
The separate BSEM thin section images were then registered to form a single montage 
image of the thin section. This 2D registration was performed using a phase-correlation 
frequency-domain technique, which is highly efficient at determining translational shifts 
between images.  The result of this registration is a mosaic image typically containing 
around 4000x4000 pixels. The montage image was then registered with the micro-CT 3D 
image by employing our multi-start multi-resolution algorithm, with the correlation 
coefficient used as the distance-metric. The higher-resolution BSEM images were 
registered with the montage image and then were overlaid with the corresponding region of 
the registered micro-CT image. Figure 2 shows BSEM images (left column) of two 
carbonate samples with the registered region of their corresponding micro-CT image (right 
column). The left image of the first row is the montage image formed by performing 2D 
registration on the “quadrants” of the de-warped images of Figure 1. The right image of the 
first row is the corresponding slice of the micro-CT 3D image (2.59 micron voxel size). 
The alignment between the two images is good, with a correlation coefficient of 0.641. A 
perfect correlation value of 1 indicates a linear relationship between the intensity values in 
the two images. In general, two random variables are said to have large correlation when 
the coefficient is between 0.5 and 1.0, medium correlation when the coefficient is between 
0.3 and 0.5 and small correlation when the coefficient is between 0.0 and 0.3. Note that the 
BSEM images are visually similar to X-ray projection images, since both methods are 
primarily sensitive to the density of the electron cloud surrounding each atom. 
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There are noticeable differences between the two images in the top row of Figure 2 where 
some of the larger empty pore spaces in the micro-CT image appear to have non-empty 
counterparts in the BSEM image. Presumably, there has been some disruption to the 
sample during the thin-section preparation. The bottom row of Figure 2 shows good 
alignment between the montage BSEM image on the left (40× magnification, 1.24 micron 
pixel size) and the micro-CT image slice on the right (2.69 micron voxel size) with a 
correlation coefficient of 0.716. Figure 3 shows the 1000× magnification BSEM image 
(top), from the sample in the top row of Figure 2 and the corresponding region of the 
micro-CT 3D image (bottom). The high-resolution BSEM image clearly illustrates features 
(porosity) which are not easily classifiable in the micro-CT image. The upper image in 
Figure 4 is a 450× magnification BSEM image (0.110 micron pixel size) of the sample 
from the bottom row of Figure 2 and the lower image is the corresponding region of the 
micro-CT image. Figure 5 compares a 500× magnification BSEM image region (0.099 
micron pixel size) with the corresponding micro-CT image slice for clay-rich reservoir 
sandstone.  Again, there is structure present in the high-resolution BSEM image which is 
simply not present in the micro-CT image. 

Alignment of Flooded with Dry Micro-CT 3D Images 
The top row of Figure 6 shows slices from the registered micro-CT 3D images of a dry 
(left) and a flooded (right) 5 mm diameter sucrosic dolomite carbonate core. The dry 
sample tomogram was obtained by drilling the sample core in water followed by oven 
drying to constant weight and then imaging in the micro-CT apparatus. This dry core was 
then removed from the micro-CT apparatus to conduct the flooding experiment. The 
flooded sample was prepared by initially plasma cleaning (Kumar et al. 2008) the dry core 
and then bringing it into hydraulic contact with a capillary bed made from plasma treated 
glass wool, which was completely saturated with 1 M CsI solution. Spontaneous imbibition 
was carried out in a high humidity environment over a 24 hour period to produce a strongly 
water wet core. The flooded sample was then replaced into the micro-CT apparatus for 3D 
imaging. Both the wet and dry tomograms were acquired/reconstructed at image size of 
10243 voxels with voxel side-length ≈6.72 microns. 

In the flooded image, the contrast liquid shows as the brightest pixels. The correlation 
coefficient distance metric is a good indicator of correct alignment when there is a linear 
relationship between the attenuations of the fixed and moving images. For the dry and 
flooded samples there is a nonlinear relationship between the attenuations. The pore-phase 
attenuation in the dry image may be mapped to either the dry-pore-phase attenuation or to 
the liquid-phase attenuations in the flooded image. In addition, because a high-contrast 
liquid was used in this particular experiment, there is some blurring of the liquid-filled-
pores in the flooded image, so that near the edges of the pores in the dry sample image the 
solid-phase attenuations may correspond to liquid-phase attenuations in the flooded image. 
Ideally, a lower contrast liquid would be preferred for fluid distribution analysis to reduce 
the blurring. However, this example highlights the ability of the registration method to deal 
with fundamentally different images by simple adjustment to the distance-metric. 
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Figure 6: Micro-CT images: dry sample (top left), registered flooded sample (top right), segmented dry 
sample (bottom left) with pore space shown in white and segmented flooded sample (bottom right) with 
contrast-liquid shown in grey and dry pore space in white. 
 
Because of the non-linear attenuation relationship, the correlation coefficient was not a 
good discriminator for correct alignment when calculated using the entire range of image 
attenuations. To overcome this difficulty, only voxels with dry-pore attenuation in the 
flooded image were considered when calculating the correlation coefficient. Spurious 
registrations were avoided, where only a few dry-pore regions may overlap but still yield a 
large correlation coefficient, a penalty term based on the percentage of non-overlapping 
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dry-pore voxels is subtracted from the correlation coefficient. The bottom row of Figure 6 
shows a slice from the segmented dry 3D image (left) and the corresponding slice from the 
segmented flooded 3D image (right). In both segmented images the rock matrix is shown 
in black and the dry-pore space shown in white. The segmented dry image was used as a 
mask on the flooded image in order to delineate the regions containing contrast-liquid, 
which are shown as grey pixels in the bottom right image of Figure 6. 

CONCLUSION 
We have described a registration method for accurately aligning high-resolution BSEM 2D 
images of core thin sections with the corresponding region of the micro-CT 3D image of 
the core. Typically, the BSEM alignment takes less than 1 hour to run on 64 CPUs of an 
SGI Altix-3700-Bx2 system and consumes less than 32GB of RAM. Figures 3, 4 and 5 
clearly illustrate structure present in the BSEM images which is below the resolution of the 
corresponding micro-CT image. Visual comparison of the aligned images gives a measure 
of the quality of the micro-CT image and a preliminary indication of whether network 
models generated from the micro-CT data will be able to accurately simulate fluid 
transport within the sample. Currently under development are quantitative methods for 
combining information from the BSEM image with the 3D micro-CT image-analysis. 

Micro-CT imaging of contrast-liquid flooded core samples currently appears to be the only 
method for obtaining accurate fluid partitioning information. The registration method, with 
a modified distance-metric, can be used to align flooded-core micro-CT 3D images with 
the corresponding dry-core micro-CT images. The run-time to achieve alignment is 
typically less than 2 hours on 64 CPUs of an Altix-3700-Bx2 system and consumes less 
than 64GB of RAM. With the availability of suitable computational resources, the 
registration method is capable of processing large numbers of sample images. The 
flooded/dry alignment method allows for the possibility of conducting out-of-apparatus 
flooding experiments over indefinitely long time periods. During the experiment, the core 
may be placed back into the micro-CT apparatus (without the need to maintain constant 
orientation) for re-imaging in an arbitrary time sequence. All the resulting micro-CT 3D 
images can subsequently be aligned in a common frame of reference for analysis. Fluid 
distribution information, obtained in such a manner, has the potential to greatly enhance 
the discrimination capabilities of micro-CT and, in particular, to provide key validation and 
calibration data for multiphase flow simulations. 

The author’s have implemented automated calculations for most of the registration method 
parameters. A crucial parameter for achieving successful registration and convenient 
runtime is the maximum down-sample factor. Specifying too large a factor will cause the 
registration to fail to find the best match and too small a factor will cause the runtime for 
Step 2 (see Appendix) to become inconveniently large. There are automated methods for 
choosing a suitable maximum down-sample factor, however, the authors are yet to 
implement them. For the flooded/dry registration, the attenuation ranges of the dry-pore 
regions in each image must be specified, but these ranges can be be easily found during 
visual inspection of a conveniently sized portion of the micro-CT data. 
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APPENDIX: REGISTRATION ALGORITHM DETAILS 
The next two subsections give a more detailed description of the steps of the registration 
algorithm (a generalised version of the Jenkinson and Smith 2001 method for registering 
3D brain-images) along with a discussion of the parallelisation strategy. 

Algorithm Steps 
1. Pre-process images. The reconstructed tomographic 3D images are pre-processed to 

identify any voxels which are not contained with the core-sample region. These voxels 
are assigned a mask-attenuation value. Voxels with mask-attenuation value do not 
contribute to the evaluation of the distance-metric. Lower resolution BSEM images 
generally contain distortion which is removed during pre-processing. All BSEM 
images are then combined via 2D registration into a mosaic. Pixels in the BSEM image 
which do not lie within the sample region are also assigned a mask-attenuation value. 
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2. Exhaustive search at lowest resolution. The fixed-image and the moving-image are 
down-sampled to a lowest resolution by a factor d (the maximum down-sample factor). 
The lowest resolution is determined by the size of the features present in the images. 
Typically, d=16 in each dimension so that a 2048×2048×2048 voxel image is down-
sampled to generate a 128×128×128 voxel image. A search of the parameter space is 
conducted by evaluating the distance-metric at points which form a regular grid in the 
transformation parameter space. The translational step length is that of a down-sampled 
voxel side, and the rotational step-size is 2 degrees. In this step, the rotational DOF are 
restricted to the Z-axis as BSEM images are generated from thin-sections taken 
(approximately) from the XY-plane, and the micro-CT images are generated from 
samples which have their cylindrical axis aligned with the Z-axis. The scaling 
parameter is held constant at 1, as the tomogram voxel side lengths and BSEM pixel 
side lengths are generally known to within ±3% and this error can be ignored at the 
lowest resolution. Keep the Nd sets of transformation parameters, which give the Nd 
lowest values of the distance-metric, to pass to the next step as starting solutions for the 
iterative optimization. 

3. Check if finished. If d<1 go to Step 7. 
4. Perform local mathematical optimizations. Create new fixed and moving images by 

down-sampling by original images by a factor of d. For each of the N2d best 
transformation parameters from the previous step, perform a local optimization with the 
solution from the previous step as the starting point.  

5. Update down-sample factor. d=d/2. 
6. Go to Step 3. 
7. Finished. The best transformation parameters from the previous step are the final 

solution giving the optimal alignment of the original fixed and moving images. 
 
Parallel Implementation 
In order for the above global-minimization method to be computationally feasible, there 
are two parallelization strategies which are used when implementing the above steps in 
software on high-performance Non Uniform Memory Access (NUMA) architectures. The 
first is a task-parallelism strategy where individual tasks are performed independently on 
computational-units. The second strategy is a data-parallelism approach where each 
computational-unit contains only a subset of the discrete-image pair data. Task-parallelism 
is of great advantage when calculating the distance-metric values in Step 2. At low 
resolutions each computational-unit can evaluate the distance-metric for a subset of the 
transformation parameter grid points independently of other computational-units. 
Similarly, task-parallelism can be used to advantage in Step 4 for the lower resolution 
images, where each computational-unit can perform a subset of the iterative local 
optimizations, independently of other computational-units. For the higher-resolution 
images, the data-parallel strategy is preferred. In this strategy, each computational unit only 
contains a subset of the discrete-image data. Step 4 is then performed using a Master-
Worker division of labour. The master computational-unit controls the iterative 
optimization algorithm while worker computational-unit calculates a portion of the total 
distance-metric result based on the subset of image data held in its local-RAM. 


