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ABSTRACT 
We present the results of a comparative study of three third party pore-scale reconstruction 
techniques and their pore-network extraction techniques, applied to a clay-rich sandstone 
reservoir. With each technique one 3D model of the rock was constructed on the basis of a 
micro-CT or a backscattered scanning electron microscopy image. Subsequently, a pore-
network model was extracted from the 3D model. Although each pore-scale reconstruction 
and pore-network extraction technique is different, they should give similar results for 
single phase and multi-phase flow properties when applied on the same rock.  
We determined porosity and absolute permeability values for each of the 3D models by 
means of Lattice-Boltzmann simulations and the results were compared against laboratory 
measurements. Primary drainage relative permeability and capillary pressure were 
determined using a multi-phase flow simulation on the pore-network model of the 3D rock 
model, and these were compared against laboratory experiments. Porosity was matched 
within 10%, while the absolute permeability of the 3D model was matched with laboratory 
measurements for two out of three methods. The quality of the networks was tested by 
simulating first drainage capillary pressure and relative permeability, and although not all 
multi-phase parameters are predicted well, the results are promising. 
  
INTRODUCTION  
To predict the performance of a reservoir, in particular when multiple phases are involved 
(water, gas, oil), one needs saturation dependent properties such as relative permeability 
and capillary pressure. In general, these properties are experimentally determined by 
flooding water and oil through small sized (4 cm × Ø 2.8 cm) rock samples taken from a 
core of the reservoir. The procedure is rather time consuming and expensive, since it 
involves cleaning, standard core analysis (determination of porosity and brine 
permeability), ageing (restoration of the wettability) and finally, special core analysis 
experiments (determination of capillary pressure and relative permeability). The whole 
procedure easily exceeds three months. Pore network modeling may potentially add 
significant value, as it can extend a small experimental dataset on the basis of 2D or 3D 
images on a much shorter timescale. If successful, it makes it easier to study the sensitivity 
of parameters such as porosity, permeability and wettability (clay content) on relative 
permeability and capillary pressure. Furthermore, it helps in understanding fundamental 
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flow processes at the microscopic level and ultimately in quantifying these microscopic 
effects on a macroscopic (core plug) level.  

The concept of pore network modeling is depicted in Figure 1. A 3D model of the 
pore space can be obtained using X-ray microcomputed tomography  (Arns et al., 2005), 
using process-based methods (Bakke and Øren, 1997) or using statistical methods (Okabe 
and Blunt, 2004; Wu et al., 2006) (Fig. 1 (a)).  

Porosity is calculated from the 
ratio of ‘void’ voxels1 and total voxels, 
as long as a proper threshold between 
void and matrix is chosen. The 
absolute (single phase) permeability is 
calculated using Lattice Boltzmann 
simulations (Jin et al., 2004) on the 
voxelized binary image. 

Saturation dependent proper-
ties, such as relative permeability and 
capillary pressure, can in principle be 
calculated by solving the Navier-Stokes 
equation (Adler et al., 1990) or by performing Lattice-Boltzmann simulations (Keehm and 
Mukerji, 2004) directly on the 3D pore space. Although these numerical methods give very 
accurate results on fluid flow in complex porous media, they are computationally very 
demanding, and model sizes are often not large enough to capture a representative 
elementary volume (REV) (Keehm and Mukerji, 2004). A REV is the minimum volume 
above which a measured quantity on the network does not significantly change. It was 
demonstrated by Keehm and Mukerji (2004) that for permeability, the REV should be 
larger than 10 autocorrelation lengths, and that for relative permeability the REV should be 
larger than 20 autocorrelation lengths. The autocorrelation length, a, or two-point 
correlation function length, is a characteristic length scale of the porous rock. It gives the 
correlation of the structural elements representing the pore space and can therefore be used 
to compare 3D models with the reservoir rock. Let I(x) be an indicator function that has the 
following properties 
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1 A voxel is a 3D representation of a pixel, having a width, length and depth equal to the image resolution 

Figure 1: (a) 3D image of a sandstone along with (b) a 
topologically equivalent network representation. 



SCA2008-36 3/12
 

and gives the probability of finding two end points of a ‘ruler’ with length u within the 
same phase. Apart from the fact that the model needs to be large enough in size, we do not 
want to lose too much detail of the pore structure by coarsening the voxels. Keehm and 
Mukerji (2004) showed that the error made in absolute permeability and relative 
permeability remains reasonably small when the grid spacing d is smaller than d ≤ a/10. 
Here, a is the correlation length which can be calculated from fitting the two-point 
correlation function with an exponential function M(u) (Keehm and Mukerji, 2004): 
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Larger models can be simulated if the pore space is simplified by representing pore 

bodies as ‘balls’ and pore constrictions – or pore throats – as ‘tubes’, see Fig. 1 (b). Both 
‘balls’ and ‘tubes’ can have an angular shape, allowing the presence of oil and water to be 
modeled in a realistic manner. The resulting ‘pore network model’ can be solved for 
capillary pressure and relative permeability by applying certain rules for pore filling events 
(Øren et al., 1998). It is assumed that the flow is dominated by capillary forces, meaning 
that viscous forces are insignificant. The capillary number Nc, should then be smaller than 
10-5, 

,10 5−<=
σ
µuNc  (4) 

 
where µ is the dynamic viscosity in Pa s, u is the Darcy flow velocity in m/s and σ is the 
interfacial tension in N/m. This condition is generally met in actual reservoir water floods. 

In many cases, new concepts of pore-scale reconstruction techniques are tested 
either on artificial systems, such as bead packs, or on clean sandstones such as 
Fontainebleau or Bentheim. Most (sandstone) reservoir rocks however show different 
minerals and often contents of clay. The purpose of this communication is to test three 
pore-scale reconstruction methodologies on a clay-rich sandstone and make a comparison 
of the simulated rock properties with experimental results.  
 
MATERIALS AND METHODS 
Three third party pore-scale reconstruction techniques were tested on a clay-rich sandstone: 
micro-CT, so called pore architecture models (PAMs) and process based reconstruction. 
The core plugs came from two locations ‘1’ and ‘3’, 40 ft apart, but core properties were 
almost similar in terms of porosity and permeability. Multiple (twin) plugs were drilled at 
each location. Two plugs were used in laboratory experiments (index ‘A’ and ‘B’), and 
trim ends were used for thin section imaging and for Backscattered Scanning Electro 
Microscopy imaging (BSEM). To capture a large enough image with high enough 
resolution, 4×4 mosaic BSEM images were taken, see Figure 2. A twin plug from location 
‘3’ was provided to the micro-CT third party, the BSEM image from location ‘3’ was 
provided to the process-based reconstruction third party and a BSEM image from location 
‘1’ was provided to the PAMs third party. 
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Figure 2: BSEM image of sandstone rock from position ‘1’. Actual width of the image is approximately 4 
mm. 

Each third party provided a 3D reconstructed (voxelized) model of the rock as well 
as a network model that was made using their own network extraction algorithms.  
We calculated absolute permeability and two-point correlation function of the 3D 
voxelized models using the same software (Numerical Rocks, Trondheim, Norway) so that 
the quality of the pore scale reconstruction technique itself could be analyzed. We used the 
statistical properties of the BSEM images and results from the laboratory experiments as a 
benchmark. In addition, we calculated certain properties of the network models (absolute 
permeability, first drainage capillary pressure and first drainage water relative 
permeability) using the same pore network simulator (PoreSim, Numerical Rocks, 
Trondheim, Norway) and compared these with results from laboratory experiments.  
 
Laboratory experiments 
Samples were drilled from a sandstone reservoir core using reservoir brine. Homogeneity 
of the samples was checked beforehand by taking CT-scans of the core. The samples were 
cleaned using cycles of toluene, azeotropic mixture of chloroform, methanol and water, 
and subsequently dried in a vacuum oven at 95 ºC. Standard core analysis was performed 
to obtain porosity and brine permeability, see Table 1. Viscosity and density of the 
reservoir crude and brine were measured at 20 ºC and 70 ºC, which were the temperatures 
at which laboratory experiments were carried out. 

Vacuum brine-filled samples were desaturated with dead crude to initial water 
saturation using an automated centrifuge (Beckman, L8-60M/P Ultracentrifuge) in multi-
speed mode, providing drainage oil/water 
capillary pressure curves as well as the 
water relative permeability (Hassler and 
Brunner, 1945; Hagoort, 1980). In addition, 
the experiments were matched with 
numerical simulations using Shell’s in-
house reservoir simulator (MoReS). 

sample # porosity (-) permeability (mD)
1A 
1B 
3A 
3B 

0.242 
0.242 
0.242 
0.242 

140 
162 
139 
149 

Table 1: Basic core properties 
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Mercury-air drainage capillary pressure curves were determined on end pieces of the 
samples. 

BSEM images were obtained from polished and impregnated core plug end-pieces, 
see Figure 2. We determined the autocorrelation function and the porosity from these 
images. In addition, we measured clay content of the samples from image analysis of the 
BSEM images, from point counting of thin section images and from XRD (X-Ray 
Diffraction) analysis. This gave clay contents of 11.8%, 13.7% and 7.8% for sample #1 and 
9.8%, 18.3% and 8.0% for sample #3. The point-counting data had only 100 points and 
was less reliable. A clay content of 10% for both samples seems to be appropriate. 

The following sections describe the concept of three third-party methodologies that 
were used to model the 3D pore space. 
 
X-Ray microcomputed tomography (micro-CT) 
X-Ray tomography is used by Australian National University (ANU, Canberra, Australia) 
to make 3D images of an object on the basis of differences in attenuation of the X-ray 
radiation. Images are obtained using a high-resolution (2 µm) and large-field X-ray µCT 
set-up (Sakellariou et al., 2003). The CT scanner has a cone beam geometry, which means 
that the resolution is limited by the size of the X-ray source, which is around 2 µm. Images 
are captured using a 16 bit X-ray detector, 2048×2048 pixels in size. Tomograms are 
acquired using filtered Brehmsstrahlung2 with the X-ray source set to a voltage of 80 kV 
and a current of 200 µA. 

One ‘image’ of the sample gives the linear attenuation along the line of sight 
between the source and the detector. To obtain a 3D image, the sample is rotated 360º in 
steps. The 3D image is obtained by deconvolution of the raw images. This gives the linear 
attenuation of each voxel. In order to discriminate between minerals (clay, quartz, 
carbonate), it is necessary to apply a series of filters (Sheppard et al., 2004). Networks 
were extracted using the algorithms as described in Sheppard et al. (2005). These steps are 
illustrated in Figure 3. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: From left to right: 2D filtered µ-CT image slice, segmented image and pore network model. 

 
                                                 
2 Brehmsstrahlung is continuous X-ray radiation that originates when electrons are decelerated in the electric 
field of a nucleus. 



SCA2008-36 6/12
 

Pore Architecture Modeling 
Pore Architecture Modeling is a reconstruction method developed by Heriot-Watt 
University (Edinburgh, United Kingdom) that creates 3D models of porous rock from 2D 
thin-section images, and subsequently extracts from these models the complete 
geometry/topology of the pore network, see Figure 4. 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: PAMs applied on binary form of BSEM image. 

The method uses Markov Chain Monte Carlo (MCMC) simulation. It considers 
spatial structure information (derived from 2D thin section data in the x, y and z planes) 
that identifies all the transition probabilities between the voids and solids of the medium 
for a given local training lattice stencil. The input data is taken from image analysis, but the 
approach differs in one very important respect from published two-point (or multipoint) 
correlation methods (see e.g. Okabe and Blunt, 2004). The method involves a complicated 
multiple-voxel interaction scheme (a high-order neighbourhood system) to generate 
individual realisations that have structure characteristics matching the input data (Wu et al., 
2006). It is a non-iterative single-scan method, which is very efficient compared with 
traditional multi-point statistics methods. This MCMC reconstruction approach and the 
models it generates are referred to as ‘pore architecture models’, or PAMs. Networks were 
extracted using the approach from Jiang et al. (2007). 
 
Process Based Reconstruction 
Process based reconstruction is a technique developed by Numerical Rocks (Trondheim, 
Norway; Bakke and Øren, 1997). It explicitly mimics the rock forming processes 
sedimentation, compaction and diagenesis. Sedimentation is modeled by depositing 
spherical or ellipsoidal grains into the model box at random position or at global minimum 
energy positions. Compaction (e.g. due to overburden pressure) is modeled by grain 
relocation in a specified direction. Various diagenetic processes are modeled, such as 
cementation by quartz or carbonates, clay formation and feldspar dissolution. Input 
parameters to the modeling algorithms are extracted from quantitative and qualitative 
analysis of BSEM images and/or integration of other data (e.g. X-ray diffraction, point 
counting). Note that geological processes are not modeled in time, but that the resulting 
model is a realistic representation of the final result of these processes, see Figure 5. 
Networks were extracted using the method of Bakke and Øren (1997). 

voxelized model 2D cross-section modelbinarized BSEM image

100 mµ100 mµ
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Figure 5: BSEM image of sample from location ‘3’ (left). Result of process based reconstruction (right). 
Quartz grains are yellow, feldspar grains are pink, clay is brown and pore space is light blue. 
 
RESULTS 
The results of the three pore scale reconstruction methodologies are depicted in Figures 6-
9. In contrast to PAMs, the micro-CT method and process-based method take into account 
the abundance of clay in the reconstruction step. This is important to account for 
microporosity in the clay and thus to enable modeling clay bound water. The properties of 
the 3D voxelized models are summarized in Table 2. 
Table 2: Properties of the voxelized 3D models. 

method imaged 
from # 

size 
(# voxels) 

resolution (µm) clay (%) porosity 
(-) 

permeability (mD) 

micro-CT 
PAMs 

process based 

3 
1 
1 

4003 
5003 

10003 

2.8 
4 
3 

15 
N/A 
10.5 

0.27 3 
0.26 

0.23 3 

455 
122 
218 

 
Porosity and permeability of the voxelized image 
The micro-CT model overestimates the permeability by a factor of 3. The other two 
methods give absolute permeabilities within 20% (PAMs) and 40% (process based). The 
porosity measured on the BSEM image was used as input for the process based method and 
for the PAMs method and should be close to the experimentally measured value. Due to 
small scale heterogeneities 2D porosity values may differ from 3D porosities. 
 
Clay content 
Both samples showed 10% of clay abundance. The µ-CT data overestimated the clay 
content with 5% at 15%; PAMs did not consider clays explicitly. The process based 
reconstruction model had 10.5% of clay. 
 

                                                 
3 includes 50% microporosity 
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Two point correlation function 
The two-point correlation function was calculated on the BSEM image and compared to 
the two-point correlation function on the 3D models. For the latter, we calculated the 
averaged two-point correlation function of the x-, y- and z direction. For the micro-CT and 
process based reconstruction technique the agreement is quite good, see Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Autocorrelation functions for micro-CT reconstruction and process based reconstruction (left) and 
for PAMS (right) compared to that from BSEM image. 
 
For the PAMs, the agreement is poor (Figure 8). For the first two, the autocorrelation 
length is 100 µm and for the latter it is 50 µm, indicating that for accurate absolute 
permeability calculations, model sizes of at least 1000 µm and 500 µm are needed. This 
condition is met for all techniques. To be able to make accurate relative permeability 
simulations, the models should be at least twice as large (Keehm and Mukerji, 2004), a 
condition that is not met in all cases. 
 
Network permeability 
Networks were in all cases extracted from the voxelized images by the third parties 
themselves, see Table 3 for the network properties. The average number of pore throats 
that are connected to each pore body is called the coordination number or connection 
number. It is an important number as it influences the behaviour of network models 
significantly. 
 
Table 3: Properties of the pore networks 

method # pores # throats coordination number 
(mean/max) 

porosity (-) permeability (mD) 

micro-CT 
PAMs 
process based 

53 942 
311 122 
154 951 

103 529 
421 648 
296 922 

3.8/57 
2.70/25 
3.89/19 

0.23 3 

0.26 
0.23 

261 
107 
44.6 
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The network from µ-CT and process based reconstruction give a similar coordination 
number (3.8 and 3.9) which is much higher than the 2.7 from PAMs. Network porosity and 
network absolute permeability were determined using the same pore network simulator 
(PoreSim, Numerical Rocks, Trondheim). Absolute permeability of the network model 
should closely match the absolute permeability of the 3D model. The micro-CT and PAMs 
matched the permeability within a factor of 1.7 and 1.1 respectively. The process-based 
model overestimated the absolute permeability of the 3D model with a factor of 4.8 4. 
 
First drainage capillary pressure and relative permeability 
Primary drainage capillary pressure, Pc, and relative permeability, kr, was obtained from 
calculations on the networks. For details of the pore network simulator that was used for all 
flow simulations, the reader is referred to Bakke and Øren (1997).  

PAMs and the process-based reconstruction methods provide network models that 
show similar behavior, see Figure 7 and Figure 9. The entry pressure, i.e. the pressure at 
which oil first enters the system is matched within 200 Pa. This number is important for 
determining the oil-water contact from pressure measurements in the borehole (which give 
the free water level at which Pc = 0).  The micro CT method underestimates the entry 
pressure slightly with 500 Pa, see Figure 7. All curves show a flatter plateau region 
compared to the experimental Pc, indicating that the pore network has either less 
connectivity than the rock, or that the distribution of pore throat radii is narrower in the 
network. The connate water saturation, Swc, is closely connected to the abundance of clay.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Primary drainage (oil-water) capillary pressure (left) and relative permeability (right) as function of 
water saturation for micro-CT network simulations. For capillary pressure, simulations are compared against 
normalized mercury-air data and oil-water centrifuge data on twin plugs. Relative permeability simulations 
are compared against oil-water centrifuge data. 

 
 

                                                 
4 For other models made using process based reconstruction on the same sandstone (not shown here), the 
differences between voxelized and network permeability were less, but considerable. 
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Figure 8: Primary drainage (oil-water) capillary pressure (left) and relative permeability (right) as function of 
water saturation for PAMS network simulations. 

 
For the micro CT a clay microporosity of 50% was assumed and we obtained Swc = 

0.23. For the process based model Swc = 0.17, which agrees with the experiment for which 
Swc = 0.17. For PAMs, Swc is virtually equal to zero. This difference is caused by the ways 
clays are treated. In PAMs, clays are regarded as part of the matrix, whereas in process 
based reconstruction and micro-CT, clay is modeled as a separate phase and clay-bound 
water is modeled explicitly.  
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 9: Primary drainage (oil-water) capillary pressure (left) and relative permeability (right) as function of 
water saturation for process based network simulations. 

The maximum Pc that can be obtained from a network model is related to the resolution d, 
and it is estimated using  
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which is valid for purely cylindrical tubes. Here, θ is the contact angle, which was between 
0-10 in the primary drainage simulations where the rock was assumed to be water-wet. The 
interfacial tension was measured at 12 mN/m. The experimental results indicate that this 
clay-rich sandstone rock has structures below the image resolution of 2-4 micrometers and 
therefore cannot be predicted per definition. 

The comparison between simulation and experiment shows good agreement for the 
water relative permeability curve for micro-CT (Figure 7), PAMs (Figure 8) and process 
based reconstruction (Figure 9), despite a poor reconstruction of the shape of the capillary 
pressure curve. 
 
DISCUSSION AND CONCLUSION  
We have tested three pore-scale reconstruction methodologies, µ-CT, PAMs and process 
based reconstruction, on a clay-rich sandstone reservoir rock. 

The µ-CT approach gave 3D voxelized models for which the porosity was slightly 
overestimated, assuming a clay microporosity of 50%. There was good agreement of the 
two-point correlation function. The absolute permeability was overestimated by a factor of 
three. The network permeability was within a factor of two compared to the voxelized 
permeability. The network model gave a good prediction of connate water saturation, 
however, the entry pressure and curve shape factor of the Pc curve were poorly predicted. 
The simulated water relative permeability curve was within the experimental error bars. 

The PAMs method gave a poor match with the two-point correlation function. 
Remarkably, the porosity, permeability of the voxelized image and permeability of the 
network model are in good agreement with the experimental results. Primary drainage 
capillary pressure simulations on the network showed a good prediction of entry pressure, 
but there was a lack of agreement for the connate water saturation and for the shape of the 
Pc curve. First drainage relative permeability was matched well with experimental results. 

The process-based reconstruction method gave a good match with the two-point 
correlation function, porosity and absolute permeability of the voxelized model. The 
network model permeability was more than a factor of 4 smaller than the permeability of 
the voxelized image. The primary drainage capillary pressure simulations matched in terms 
of entry pressure and connate water saturation, but lacked precision on the curve shape. 
The water relative permeability curve was matched within the error bar of the experimental 
results. 
  We have demonstrated that pore-scale reconstruction techniques applied to this 
clay-rich reservoir rock can be predictive in single-phase properties, but that it cannot 
predict all aspects related to (primary drainage) multi-phase properties. We want to stress 
that the conclusions drawn in this communication are based on observations for a specific 
rock sample, and should under no circumstances be generalized to other rock types. 
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