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ABSTRACT 
A simple representation of a porous rock is a bundle of straight tubes. If the tubes, or pores, 
have sharp corners, more than one phase can form stable configurations inside the pore. 
This model has been valuable in studying drainage and imbibition processes with multiple 
phases involved. In this paper we analyze the magnetic signal from two phases in tubes 
(i.e. pores) with triangular cross sectional area. The NMR signal from a fluid-filled porous 
rock is in general a complicated function of pore geometry, surface relaxation and 
properties of the fluids. The magnetic signal from a single pore can always be written as an 
infinite sum over exponential functions. At certain conditions, the magnetic signal 
simplifies greatly and follows a monoexponential curve. The composite magnetic signal 
from all the pores in the rock can then be expressed as a sum of exponential functions 
where there is one function for each pore size. This special case is called the Fast Diffusion 
Limit (FDL). The logarithm of the magnetic signal is then inversely proportional to the 
pore radius making it possible to find a pore-size distribution. We investigate (numerically) 
how the NMR signal for 2 immiscible phases depends on surface relaxivity, contact angle, 
and pore size. The fluid configuration is given by the Mayer-Stowe-Princen (MS-P) theory 
of immiscible displacement in angular geometries. From the numerical experiments, a 
correlation is developed for the magnetic decay of two immiscible phases inside a 
triangular tube. We test the correlation against the FDL approximation and find that the 
correlation gives a better representation of the magnetic decay. This can be due to the 
effects of corners and angles. These effects are incorporated in the correlation. 
 
INTRODUCTION 
In the context of wettability characterization NMR measurements are becoming very 
interesting because of the surface sensitive nature of NMR. Compared to conventional 
wettability measurements, NMR is faster and in addition it is non-invasive and can be 
performed in-situ. Previous work has been made to characterize the wettability by 
including a triangular pore model in the interpretation of the NMR measurements, Al-
Mahrooqi et al. (2006). In pore modelling work, angular pores are used to model mixed-
wet conditions, Øren et al. (1998), Helland and Skjæveland (2004a) and Helland and 
Skjæveland (2004b). When combining pore modelling with NMR simulations, some 
assumptions have been made that need further investigation. The magnetic signal from one 
phase in a single pore is given as a sum of exponential functions; see Brownstein and Tarr 
(1979) for details, 
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When the pore is within the FDL, the average time for a molecule to diffuse across the 
pore τD = a2/D is much shorter than the average time for a molecule to relax τρ = a/ρ. We 
get that τD /τρ  = ρa/D = γ <<1. The effect across the pore is that the magnetization is 
uniform and the magnetic decay is uniform and monoexponential and given by,  

( ) ( ) ( )pore pore 20 expM t M t T= − , (2) 

where 
022 111 TTT B += . (3) 

In NMR interpretation, the FDL assumption is often valid and the magnetic decay caused 
by the surface relaxation 1/T2S is monoexponential and given by  

( )ρSVTT S =≡ 02 . (4) 
This assumption is based on calculations for a single phase in simple geometries such as 
circles, spheres, plates, squares, Brownstein and Tarr (1979), and recently we have 
published a solution for an equilateral triangle, Finjord et al. (2006). These geometries all 
have a certain radial regularity and symmetry. We wanted to see what happens when this 
symmetry is no longer present, for instance when the wetting phase placed in the corners of 
the triangle has contact with the pore wall on two sides of the pore and is constrained by 
the arched oil-water interface. We also wanted to explore what happens if the FDL 
parameter γ is larger than 1, i.e. outside the FDL interval. Does Eq. 3 still hold or has the 
decay become multiexponential for a single pore? From the results we wanted to find a 
correlation between surface relaxation T0 and surface relaxivity ρ, contact angle θ and the 
fluid distribution. See Fig. 1 for image of triangular pore and Table 1 for relevant 
definitions. 
 
In the case of two or more phases inside the pore, no analytical solution has been 
published, so the magnetic relaxation decay problem needs to be solved numerically. We 
will use Random Walk for obtaining the numerical solution, see Finjord et al. (2006) for 
details on the Random Walk algorithm in an equilateral, triangular pore. We use a 
triangular grid with 301 x 301 points for the triangle and 5·105 walkers for each phase. The 
geometry of the fluid phases is calculated using the theory of Mayer-Stowe-Princen for 
immiscible fluid in triangular pores, Mason and Morrow (1991). We simulated cases for 6 
different pore sizes. The size of each pore was determined by choosing the appropriate 
ratio nw of the length of the wetting wall aw and the length of the pore a. In addition the 
choice of the diffusion parameter γ determined the pore size. The resulting decay curves 
for each phase were normalized and fitted to a sum of two exponential functions, 

( ) ( ) ( ) ( )0 0 0 1
,

exp 1 exp
o w
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α =

= − + − −∑ ,  (5)  

where I0α,, T0α, and T1α are correlated with relaxivity, contact angle and fluid distribution. 
The result is compared with the original decay curves, which also was compared with the 
original decay curve in the FDL regime. 
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RESULTS 
Fitting the decay curves from the oil and the water to a biexponential sum gives the curves 
for I0α, T0α and T1α,. The intensities I0α appear to be only weakly dependent on the contact 
angles θ and the correlation for the intensities becomes a function of contact length aα 
along the pore wall, diffusion coefficient Dα and surface relaxivity ρα. See Fig. 2 and 
Eqs. 10 and 13. 
 
We observe in Fig. 3 an example of how the relaxation times T0α and T1α depend on contact 
angle θ, relaxivity ρ and fluid geometry. We find that the relaxation time for the non-
wetting phase decreases and the corresponding relaxation time for the wetting phase 
increases as the wetting angle increases. The correlations for T0α and T1α are given in 
Eqs. 8, 9, 12, and 13 and are a sum of the relaxation times for the fast and the slow 
diffusion regime for both water and oil seen in Table 2. 
 
Comparing the magnetic decay from the simulations with the magnetic decay calculated 
from T2S = V/Sρ, showed that this assumption becomes inaccurate as the relaxivity 
increases and at low contact angles, see Fig. 4 for an example. We observe from Fig. 4 that 
the fit is overall in accordance with the simulated results. This favours the use of the 
presented correlation. The resulting equation can be used for modelling NMR decay for 
two phases in an equilateral triangular pore by assuming a pore size distribution P(Rn) and 
generate magnetic decay curves based on the NMR parameters: ρo, ρw, Do, Dw, T2B,w,  T2B,o, 
and the wetting parameters φ and aw. Changing the wetting parameters changes the decay 
curves correspondingly. We get that 

( ) ( ) ( )∑
=

=
m

n
nn tMRPtM

1
, 
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where Mn is Mpore for a given pore size Rn. and Mpore is given by  
( ) ( ) ( ) ( )[ ]∑
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With the obtained fitting parameters for wetting (w) and non-wetting (o) phases, we get, 
wwwww DrrT 2

0 += ρ , (8) 

wwwww DrrT 2
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( ) ( )[ ]wwwwwww DaDaI ρρ ⋅+⋅−= 0024.00019.01 2
0 , (10) 
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0 001.049 −+= πρ , (11) 

ooooo DrrT 2
1 051.05.0 ⋅+⋅= ρ , (12) 

( )( )( ) 685.0252.1 3.6
0 ++= −

oooo DaI ρ , (13) 
where ro and rw are given by Eq. 19. This correlation is only valid when two phases are 
present in the pore. See Helland and Skjæveland (2004a) for details on capillary entry 
pressure and Finjord et al. (2006) for magnetic decay for one phase in triangular pore. 
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DISCUSSION AND CONCLUSIONS 
When interpreting the NMR decay curves and the T2 distribution, it is common to assume 
monoexponential decay for each pore. Recently, there has been an increased interest in 
angular pore shapes, where it is possible to model coexisting two or three phases in the 
same pore. We find that the FDL-assumption for these angular pores is inaccurate, 
especially at low contact angles or high surface relaxivity. This is probably caused by the 
inaccessibility of the pore wall close to the fluid-fluid meniscus. The observed low surface 
area could interfere with calculations of the pore size distributions or surface relaxivity. In 
addition the magnetic decay becomes multiexponential earlier for these irregular fluid 
geometries. This might lead to the signal from the higher intensities being interpreted as 
smaller pores or bound fluid.  
 
For added accuracy in modelling one can use a biexponential sum for the surface 
relaxation in these angular pores. We have found a biexponential correlation for the 
magnetic decay for two phases in a triangular pore. The correlation is valid for primary 
drainage for contact angles in the range 0–55 degrees, relative pore sizes ranging from 1–
50, and relative surface relaxivity of 1–10 when two phases are present. The correlation 
function can be used as a biexponential sum or it is an option to use a monoexponential 
decay curve with the corresponding relaxation times T0α. 
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NOMENCLATURE 
a = Length of side of triangle 
aα  = Length of fluid-pore contact 
Dα  = Diffusion coefficient 
I  = Intensity 
M  = Magnetization 
P(Rn) = Pore size distribution  
r = Radius of curvature 
rα  = Calculated fluid radius = Vα/Sα  
R  = Inscribed radius of pore 
Sα  = Length of fluid-pore contact 
t  = Time 
Tiα  = Decay time for fluid 
T2 = Total decay time of pore 
T2B  = Bulk decay time of fluid 

T2S  = Surface decay time of fluid 
V  = Fluid volume 
γ  = Rρ/D, diffusion regime 

   parameter 
θ  = Contact angle 
ρ  = Surface relaxivity 
τD = Average diffusion time 
τρ = Average relaxation time 

Subscripts 
i  = Relaxation mode, i = 0, 1 
α  = o for non-wetting phase, 

   w for wetting phase 

 



SCA2008-51 5/6
 

 

REFERENCES 

Al-Mahrooqi, S.H., Grattoni, C.A., Muggeridge, A.H. and Jing, X.D. “Pore-scale 
Modelling of NMR Relaxation for the Characterization of Wettability”, Journal of 
Petroleum Science and Engineering Vol. 52 (1-4): p.172-186 (2006)  
 
Brownstein, K. and Tarr, C.: “Importance of classical diffusion in NMR studies of water in 
biological cells”, Phys. Rev. A 19, 2446–2453 (1979).”; “Spin-lattice relaxation in a system 
governed by diffusion”. J. Mag. Reson. 26, 17–24 (1977). 

Finjord, J., Hiorth, A., a Lad, U.H., and Skjaeveland, S.M.: ``NMR for Equilateral 
Triangular Geometry Under Conditions of Surface Relaxivity - Analytical and Random 
Walk Solution,'' Transport in Porous Media”, 69, pp 33-53 (2006).  

Helland, J.O. and Skjæveland, S.M.: “Physically based capillary pressure correlation for 
mixed wet reservoir from a bundle of tubes model”, paper SPE 89428 presented at the  
2004a SPE/DOE Symposium on Improved Oil Recovery, Tulsa, April 17–21. 
 
Helland, J.O. and Skjæveland, S.M.: “Three-phase, mixed-wet capillary pressure curves 
from a bundle-of-triangular-tubes model,” paper presented at the 2004b International 
Symposium on Reservoir Wettability, Houston, May 16–18. 
 
Mason, G. and Morrow, N.: “Capillary behaviour of a perfectly wetting liquid in irregular 
triangular tubes,” J. Coll. Int. Sci. 141, 262–274 (1991). 
 
Øren, P.E., Bakke, S., and Arntzen, O.J.: “Extending predictive capabilities to network 
models,” SPE Journal (Dec. 1998) 324–336. 
 
TABLES 
Table 1: Governing equations for the fluid configurations. 

a) Wetting phase in corners of pore 
( )2 cos 6wa r θ π= +  (14)  

( ) 43 2 θfaV ww =  (15)  

ww aS 6=  (16)  
b) Non-wetting phase in the centre of pore  

( ) ( )( )4343 22 θfaaV wo −=  (17)  

wo aaS 63 −=  (18)  
Definitions for wetting and non-wetting phase.  

ααα SVr ≡  (19)  

αααα ργ Dr≡  (20)  
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Where:  

( ) ( ) ( ) ( ) 2cos 3 cos sin cos
3 6

f π πθ θ θ θ θ θ⎛ ⎞ ⎛ ⎞⎡ ⎤= − + − +⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
 

(22)  

 
Table 2: Table from Finjord et al. (2006) giving the analytical solution for magnetic decay in a triangular 
pore. 

 Fast Diffusion Limit: γ << 1 Slow Diffusion Limit: γ >> 1 
T0 ( )ρ2R  ( )22 49 πDR  
T1 ( )222 49 iDR π  ( )( )222 149 +iDR π  

 
FIGURES 
F 

Figure 2: Intensity  for non-wetting phase. 
Simulated data (Markers), Correlation data 
(Line). 
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Figure 3: Relaxation time for wetting phase. 
Simulated data (Markers), Correlation data 
(Lines). 
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Figure 4: Magnetic decay for wetting phase. 
Simulated data (Thick line), Correlation data 
(Thin line), FDL data (Broken line). 
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Figure 1: Fluid configuration for the triangular 
pore.  
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