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ABSTRACT 
Digital rocks, an emerging technology driven by rapid advances in pore scale 3-D 
imaging and computing, is showing promise to reduce cycle time of laboratory 
measurements. In order to evaluate this new technology, we have developed a framework 
that recognizes both the uncertainty in the input parameters in the numerical 
computations and in the measured laboratory data.  
 
3-D images of the rock at sufficient resolution for pore connectivity are first obtained. 
We then systematically study the uncertainty of the inputs in the numerical computations 
and use Experimental Design to develop a probability range of computed outputs. Next, 
we create an uncertainty range for the laboratory measurements, accounting for 
measurement errors and techniques. Where there is insufficient information to develop a 
suitable range, we use acceptable error criteria specified by the user to develop a range. 
The computed and measured ranges are then compared to determine the utility of digital 
rocks technology.  
 
We demonstrate the framework using a simple example for single-phase measurements, 
primary drainage capillary pressure, and elastic properties. The elements in this workflow 
can be extended for other measurements and optimized by using additional information to 
reduce uncertainties. 
 
INTRODUCTION 
Pore scale numerical modeling has been utilized for two decades, but it is only recently 
that the technology became viable for real industry applications due to the improvements 
in imaging technology, computational capabilities, and data storage capacity.  
 
One of the essentials in the evolution of any new technology, validation, is listed among 
the primary goals of past and current studies (for example, Caubit et al. [1]). Our primary 
objective is to move from a deterministic comparison of digital computing to 
experimental data with a framework that acknowledges the uncertainties in both 
computation and measurements. This builds on a framework established for experimental 
data by Kamath et al. [2].  
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WORKFLOW 
Figure 1 summarizes the typical validation process, which begins with the acquisition of 
3D micro-CT scans, followed by image processing and interpretation (segmentation), 
numerical computation of properties, and analysis of results. Following is an explanation 
of each step. 
 

  
Figure 1. General Validation Workflow 

 

Step 1: 3-D micro-CT scans: Resolution and REV 
Pore scale modeling of fluid flow properties requires a representation of the pore 
structure at enough pixel resolution such that the main connected porosity is resolved 
(μm scale for most of the porous rocks of interest). We accomplish this step by acquiring 
a 3D image of a mini-plug sample (4-8 mm diameter) using an X-ray micro-tomography 
scanner. A tomogram is a stack of 2-D images in gray scale, where the intensity 
represents the X-ray attenuation of the material (proportional to the density). Images are 
typically noisy, so the stated pixel resolution maybe overshadowed by noise effects [3]. 
Different scanner setups (X-ray source, camera pixels, magnification system) produce 
different data set volumes, with typical values: 8-bit or 16-bit 20003 pixels and about 2 
μm/pixel. 
 
One necessary condition to determine the minimum diameter of the mini-plug sample is 
that it is large enough to allow a meaningful average over the microscopic heterogeneities 
at the pore scale. This is called a Representative Elementary Volume (REV). We estimate 
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the REV size by computing the decay length of statistical spatial correlations for each of 
the phases: the two-point correlation function and the linear path function. The two-point 
correlation function is defined as the probability of finding two pixels in the same phase 
at a given distance. The linear path function is defined as the probability of having a 
linear segment of a given length completely within one phase. Generally, we prefer to 
have at least 10 times the largest correlation length for our sample diameter. Another 
usage of the correlation functions is to validate consistency in the assigned pixel size 
between different sources of images. For example, with this tool we have found few 
instances in which the stated X-ray micro-CT pixel size was overestimated when 
compared to BSEM images. 

Step 2:  Segmentation 
This step consists of assigning a label or phase to each pixel in the 3-D image such that 
pixels in the same group share characteristics. Clastics could be ideally represented by 
three components: grain, pore and clay, which can be segmented based on pixel intensity: 
grain being light, pore being dark and clay being intermediate gray. However, in practice 
we find that the gray phase is a combination of clay, image resolution limitations, and 
noise. 
 
Segmentation has been identified as a crucial process in image analysis [4] and its 
success is related not only to the micro-tomography resolution, but also to the ability to 
discern and apply appropriate phase classification rules to images with poor signal-to-
noise ratio. We use a three-phase based segmentation algorithm that overcome the noise 
challenge without losing resolution while obtaining pore, grain and intermediate phases. 
Unfortunately, the presence of pores at scale below the image resolution makes the 
differentiation of phases ambiguous [1, 5, 6]. To help in the segmentation we use higher 
resolution 2-D imaging like BSEM (Back-scattered Scanning Electron Microscopy), 
mineralogy imaging like QEMSCAN® (Quantitative Evaluation of Minerals by 
SCANning electron microscopy), and additional support from QXRD (Quantitative X-
Ray Diffraction), and MICP (Mercury Injection Capillary Pressure) to narrow the 
uncertainty band in the amount and distribution of gray phase. Then, we proceed with 
selecting different segmentation realizations to quantify the effect of the remaining 
uncertainty on the numerical results. One important uncertainty is the amount of porosity 
assigned to the segmented grey (intermediate) phase due to the possible additional 
contribution of image resolution. 

Step 3:  Numerical Simulation  
The validation exercise practiced on this technology is practically concerned with 
comparing calculated values against experimental properties, ideally from neighboring 
samples. Because of the non-uniqueness of image interpretation and criteria involved, we 
use Experimental Design to optimize the number of numerical simulations to evaluate an 
often-large array of inputs [7] with the additional advantage of setting the stage to 
understand the influence of inputs (factors) on the response. In Experimental Design, a 
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factor is defined as a controlled independent variable; this variable is assigned levels or 
‘treatment’ by the design. These factors are identified in Tables 1 and 2.   

Table 1. Factors in lattice-based calculations 
Lattice Properties Factor (s) 

Porosity Segmentation, Gray Phase porosity 

Permeability 
Segmentation 

Relaxation parameter 
(fixed to 1.5) 

Formation Factor Segmentation, Gray Phase Porosity 

Drainage Capillary pressure Segmentation, Gray Phase Porosity 

Elastic Properties 
Segmentation 

Shear/Bulk moduli 
Grain-grain contact 

NMR Segmentation, Gray Phase Porosity 
Mineral surface relaxivity  

Table 2. Factors in Pore network calculations (E-core software) 

Pore Network Properties Factor(s) 

Porosity Segmentation, Gray Phase Porosity 

Permeability Segmentation, Gray Porosity  

Formation Factor Segmentation, Gray Phase Porosity 

Drainage Pc, Kr, RI 

Segmentation, Gray Phase Porosity 
Min receding angle 
Max receding angle 
Interfacial tension 

Dip Angle 

Imbibition Pc, Kr, RI 
Fraction oil wet = 0 

Segmentation, Gray Phase Porosity 
Min receding angle 
Max receding angle 
Interfacial tension 

Dip Angle 
Min WW advancing angle 
Max WW advancing angle 

Imbibition Pc, Kr, RI 
Fraction oil wet > 0 

Segmentation, Gray Phase Porosity 
Min receding angle 
Max receding angle 
Interfacial tension 

Dip Angle 
Min advancing angle 
Max advancing angle 

Fraction oil wet system 
Distribution of oil wet pores 

Hurst Exponent 
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Table 3 lists the methods used to compute the properties reported in this study, along with 
the simulation software developer. We perform numerical simulations on the micro-CT 
original lattice (when calculation is enabled) and on a pore-network simplified 
representation. Lattice-based calculations are done on large 3-D grids (~10003 pixels), 
and require significant memory and CPU-time, whereas pore-network simulations 
provide faster results, but could potentially provide less accurate results in samples with 
significant contribution of gray area or volumes below REV. For the case of two-fluid 
displacement, we use e-Core software v1.4.5 [8, 9, 10] for the pore-network extraction 
and simulations. The premise of a pore-network model is that a complex pore structure 
can be represented by an equivalent network of interconnected pores with the same 
topological structure, connectivity, and pore/pore-throat size distributions. Several 
algorithms to create an equivalent pore-network from a micro-CT 3-D image are 
described by Dong et al. [11]. 
 

Table 3. Method used in computation of properties 

Properties Lattice Pore 
Network Method 

Porosity √ √ Pore Network1 

Absolute Permeability √ √ Lattice Boltzmann1 
Pore Network1 

Formation Factor √ √ Random Walk 
Pore Network1 

NMR √  Random Walk 

Elastic Properties √  Finite Element2 

Drainage Capillary Pressure √ √ 
Maximal Inscribed Sphere  
Lattice-Gas 
Pore Network1 

Imbibition Capillary Pressure √ Pore Network1 
Drainage/Imbibition Relative Permeability √ Pore Network1 
Drainage/Imbibition Resistivity Index √ Pore Network1 

 

Step 4: Analysis 
(a) For each property, we calculate the computed range [11]. 

 
        (1) 
 

Where,   is the mean;  is the standard deviation; the constant m is assigned 
according to the confidence level of the range.  
 

(b) Range for the experimental data is developed using the process described in an 
earlier paper [2], in which we record experimental values measured for neighboring                                                         

1 E-Core, Numerical Rocks; 2 Australia National University 
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samples (geological variability) using different measurements techniques if available 
(process uncertainty). Process uncertainty could become significant in two-phase 
measurements.  
 

(c) Where there are no suitable criteria to develop an experimental range, the user can 
input an acceptable error band.  
 

(d) The computations are considered to have utility if the computed range is either 
within the range of the experimental data or within the acceptable error band 
specified by the user.  

 
 
WORKFLOW DEMONSTRATION 
In this section, we provide a very simple demonstration of the workflow. The uncertainty 
bands should be considered as an example, and not as an optimized output. There are 
techniques, such as analysis of sub-volumes and trends that could potentially reduce 
uncertainty. Table 4 lists the mean values of experimental measurements analyzed in this 
example, ranges for experimental measurements are estimated using values reported for 
neighboring samples allocated to different tests in the Special Core Analysis program. 
The four steps are outlined below. 
 

Table 4. Properties (mean) of sample # 1 analyzed in this study 
Porosity, % 22.9 
Permeability, mD 990 
Formation Factor 13.705 
Swir, %  6.9 
Elastic Bulk, K (GPa) 13.94 
Elastic Shear, G (GPa) 9.81 
 
Step 1: The 3-D micro-CT image of the 5mm diameter mini-plug had 1600x1600x1900 
pixels, with a resolution of 2.6 μm/pixel. The estimated correlation length for this rock is 
about 100 μm (Figure 2), therefore following the criteria described earlier, volumes 
larger than 3803 pixels would have sufficient REV to perform lattice and pore network 
modeling. 
 



SCA2011-28 7/12 

 

 
 

Figure 2: Two-point correlation and lineal path funtion for each phase. We estimate a correlation 
length for this rock of about 100um. 

 
Step 2: We use the three-phase segmentation approach described earlier for all the 
simulations; an additional fourth-phase is considered for pixels at the grain-grain contact 
regions for the elastic simulations. We study two sources of uncertainty: (1) uncertainty 
due to image interpretation and resolution captured by simulations on large volumes with 
different segmentations, and (2) Uncertainty due to sample variability captured by 
simulations on several sub-volumes from one single segmentation realization. We look at 
the first source of uncertainty in most of the simulations performed in this study; Figure 3 
shows the 2 factors in the experimental design: three segmentation realizations in one 
single large volume of 11003 pixels and three values considered for the gray phase in the 
simulation (μφ). For elastic properties, we analyzed the uncertainty due to sample 
variability, and conducted simulations on five sub-volumes below REV size (3003 
pixels); the size was constrained by limitations in the simulation tool. 
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Figure 3. Segmentation and gray phase porosity considered in the Experimental Design. 

 
 
Step 3: For the analysis of the numerical simulation results, we identified segmentation 
and gray phase porosity as inputs on a 3-level experimental design [7] and could afford 
Full Factorial design (32). Full Factorial design takes all possible combinations (Figure 
3). If the number of combinations in a full factorial design becomes too high to be 
feasible, fractional factorial design is the preferred choice.  
Step 4: Figure 4 illustrates the key elements of this analysis using side-by-side box plots 
for all groups; solid symbols and lines indicate the distribution average, minimum, and 
maximum values while the gray box is the 95% confidence around the mean. This 
information gives some criteria to evaluate the utility of most of the simulation results. A 
desired situation occur when the simulation 95% range is within the experimental 95% 
range; in the case shown in Figure 4 this criteria is mostly not met. Notice that in this 
uncertainty analysis all variability is accounted for as error, while other possible analysis 
could consider extracting first some meaningful trends or correlations, such that the 
remaining errors and corresponding uncertainty analysis in the simulations could be 
further reduced. We could also apply a criterion of user input acceptable error. For 
example, if a 5% error in porosity is acceptable, the porosity computations can be 
considered to have utility with 95% confidence.  
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Figure 4.  Boxplots for distribution of experimental and numerical values: gray box denote 
confidence around the mean (solid square) and cap bars indicate low and max values. 
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We draw attention to the following observations for this particular example: 
 
1. Initial water saturation had a single source of experimental measurement for that 

particular depth. Thus it does not have distribution around the mean (Figure 4.d). A 
more rigorous analysis could place an uncertainty around this value if error or range 
of values is defined by preliminary rock type grouping.  
 

2. In this example, we have good REV for all simulations (except elastic). In addition, 
there is a comparatively small contribution of gray area so that both lattice and pore-
network approaches produce similar results.  
 

3. With exception of elastic properties, experimental data show a narrower band around 
the confidence interval than computed values and the 95% confidence interval in the 
computed property overlaps the measurement uncertainty range. These contrasting 
observations between the first three properties in Figure 4 (porosity, permeability and 
formation factor) and elastic properties could be caused by the following: 
 

a. Different design of experiments: Presence of different segmentation 
realizations for all three first properties (Figure 3) explains the wide 
uncertainty band around the mean computed values (Figures 4.a, 4.b, and 4.c). 
In the case of elastic properties, we considered one segmentation realization 
(which includes grain-grain contact phase) and assigned one set of values to 
the parameter (Table 5) which might not be most suitable for this rock. The 
variance in computed values displayed in Figures 4.e and 4.f is due to sample 
variability since we did not investigate the effect of our choice of input 
parameters.  

 
Table 5. Input used in Elastic Properties Calculations  

Modulus, Gpa K G 
Pore 2.2 0 
Clay 30 15 
Grain 37 44 
Contacts 3 2 

 
b. Uncertainty in the experimental measurements: uncertainty in the 

experimental measurements of the first three properties seems to be lesser 
than that displayed by elastic properties measurements for this case. 

 
Finally, another important aspect of performing structured sensitivity studies is that we 
could look at the impact of each input on computed variables by performing analysis of 
variance (ANOVA). For instance, both microporosity and segmentation affect porosity 
and irreducible water saturation, whereas permeability is only affected by segmentation 
realization due to the inherent assumption of non-flow in gray section of the image. 
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Building on this type of analysis, we could quantify the contribution of each source of 
uncertainty for better understanding and focus of our work.  
  
SUMMARY 
We have described a workflow that can be used to evaluate the utility of digital rock 
technology. This framework recognizes that the computations have several input 
parameters that are uncertain and that the measurements have significant imprecision. We 
demonstrated the workflow using a very simple example. It is possible to optimize the 
calculations and to extend the workflow to more complex cases, and this will be the 
subject of later papers. 
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