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ABSTRACT 

As oil and gas production from conventional reservoirs is declining and oil price is going 
up, unconventional mudstone reservoirs (“shale-gas”) are becoming more important. 
However, while their characterization is of utmost importance for production planning, 
these low permeability rocks are very challenging to characterize due to their complex 
nano-scale pores and mineral structure.  3D imaging is a critical tool in the visualization, 
analysis and modeling of these type of reservoirs.   

In this study, FIB-SEM (Focused Ion Beam - Scanning Electron Microscopy) 3D 
imaging at 5nm pixel resolution was used to study porosity, connectivity, and to model 
permeability of a mudstone core sample extracted from a production well in North 
America.  With 3D reconstruction, extraordinary detail of the pore space in both the 
mineral and organic matter phases can be visualized and analyzed.  Advanced image 
analysis algorithms were used to extract volumes of the different phases and to compare 
these with the physical laboratory experiments of porosity and permeability.  Special 
focus was placed on the impact of pore space in the organic matter.  These pores tend to 
be larger than the other pore types.   The impact of segmentation procedure on porosity 
calculation was systematically studied.  

Segmented FIB-SEM images are used as the input to the Stokes flow solver to simulate 
viscous fluid flow through the rock.  The simulation results can be compared with 
physical laboratory experiments.  

In addition to analysis of mudstone samples, the workflow proposed by this study is 
potentially applicable to a wide range of core sample and more general porous material 
analysis.    
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1. Introduction 

Oil and gas production from conventional reservoirs is declining and oil price is rising.  
Unconventional mudstone reservoirs, sometimes called “shale-gas” reservoirs are 
becoming more important. In addition, the nuclear power plant failure in Japan caused by 
the earthquake and subsequent tsunami is making nuclear power related decisions more 
difficult and other energy sources, including natural gas confined in shale rock, even 
more attractive. 

Mudstone reservoir rocks are very challenging to characterize due to their complex nano-
scale porosity and mineral structure.  3D imaging from X-ray and SEM at very high 
resolution is becoming more important in the visualization and characterization of these 
reservoirs.   

Typical analysis techniques for shale-gas reservoir rocks include: total organic carbon 
(TOC), X-ray diffraction, absorbed/canister gas, vitrinite reflectance, detailed core and 
thin section descriptions, porosity, permeability measurements, fluid saturation, and 
optical and electron microscopy [8]  . These sample-based results are combined with full 
well-log suites, including high resolution density and resistivity logs and borehole images, 
to fully characterize these formations. Porosity, fluid saturation, and permeability derived 
from core can be tied to log response; however, several studies have shown that the 
results obtained from different core analysis laboratories can vary significantly, reflecting 
differences in proprietary analytical protocols, differences in definitions of fundamental 
rock and fluid properties, or the millimeter-scale variability common in mudstones that 
makes it problematic to select multiple samples with identical attributes.  
 
Extensive observations on 2D SEM images have been performed [5]  on broad ion milled 
samples. These studies reveal the presence of porosity in mineral matrix, and in organic 
matter. The development of porosity in organic matter is not yet well understood but is 
most likely related in part to organic matter maturity and types. 
 
In this study, three dimensional focused ion beam - scanning electron microscopy (FIB-
SEM) [4]  imaging was used to study porosity, connectivity, and permeability of a 
mudstone core sample extracted from a production well in North America at 5nm 
resolution. The third dimension revealed large amount of new information [10]   

With 3D reconstruction, extraordinary detail of the pore space in both the mineral and 
organic matter phases can be visualized [14]  .  Advanced image analysis algorithms are 
used to extract volumes of the different phases and to compare these with the physical 
laboratory experiment results of porosity and permeability.  Special emphasis was placed 
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on the impact of pore space in the organic matter.  These pores tend to be larger and 
better connected than the other pore types. The impact of segmentation procedure on 
calculation of porosity was systematically studied.  

Geometry or image based simulation approaches can be used to model the permeability 
of the sample. In the geometry based approach, surface geometries corresponding to pore 
space are explicitly reconstructed. A volumetric mesh representing the pore space is built 
for a computational fluid dynamics simulation based on Navier-Stokes equations. While 
this approach is conceptually feasible [14]  , it is computationally prohibitive to solve 
flow through millions of pores at micro or nano scale. In this paper, a nova image based 
simulation approach is presented. Binarized FIB-SEM images masking the pore space are 
the input to a Stokes flow solver.  The simulation results can be compared with each 
other as well as physical laboratory experiments. The impact of connectivity on 
petrophysical properties will be investigated. 

In addition to analysis of mudstone samples, the workflow proposed by this study is 
potentially applicable to a wide range of core sample and more general porous material 
analysis [11]  [13]  .    

2. Image acquisition & processing 

Figure 1 shows one of the rock samples under study. Thin sections (Figure 1a) are 
extracted from the core sample of a North American mudstone reservoir. A close up on 
the yellow box area is shown in Figure 2b using light microscope. It is clear that porosity 
cannot be detected. A further close up on the yellow box is shown in Figure 2c using 
SEM, which reveals the pores, organic matter and mineral matrix at nano scale.  

 

 

 

 

 

Figure 1. A sample shale gas rock. (a). Optical photograph of the whole thin section. (b). 
Close up of yellow box in (a) with light microscope under plain light. (c). Close up of the 
yellow box in (b) with SEM. 

If we combine the SEM scanning column with a Ga-Focused Ion-Beam column, we are 
able to iteratively mill away thin serial slices and take SEM pictures of each slice. This 

(a) 

(b) 

(b) (c)

Mineral

Organic 
Matter 

Pores 1cm 



SCA2011-30 4/12
 

 

results in a stack of 2D SEM images. These images can be used to reconstruct a digital 
3D volume which contains mineral matrix, organic matter, and pores information as 
different intensity ranges.  In our case, a sample 9.895 micron by 8.645 micron by 5.42 
micron in size is studied. This sample is represented digitally with 4 billion voxels, which 
is a significant amount of data.  To correct the noise and stage drifting, a median noise 
reduction filter and a least square based automatic alignment procedure are employed [14]   

Figure 2 shows the reconstructed 3D volume.  Image is enhanced with noise reduction 
and drift correction, and rendered using interactive volume rendering technology 
accelerated by a graphics processing unit [6]  . 

 

 

 

 

 

 

 
Figure 2. (a). 3D rendering of reconstructed shale rock volume. Scale is in nanometers. (b). A 
close-up view of the area highlighted by the red box in Figure 2a. 

3. Image segmentation: mineral, organic matter and porosity volumes 
definition 

3.1. Total organic matter network 

The first step in the image segmentation process is separating the organic matter network 
from the mineral matrix. Then the non-percolating portion is removed. This porous 
network, within organic matter, dictates the main oil and gas flow orientation around the 
mineral matrix. 

Figure 3 illustrates the procedure that we used to segment the organic matter network. 
Starting from a median filtered 3D image data (Figure 3a), a simple threshold is first 
performed to mask out voxels belonging to the higher intensity mineral matrix (Figure 
3b). Then an algorithm examines all voxels that do not belong to the mineral matrix, to 
remove those that are not in continuity.  Small clusters of organic matter fully enclosed 
within the mineral matrix, as well as small isolated pores in the mineral matrix, are 
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removed because they are not contributing to the permeability (Figure 3c). At this stage 
we have a blue mask of mineral matrix and everything non-percolating. If we invert the 
mask (changing everything black to blue), we obtain a mask of percolating organic matter, 
which we can logically multiply with the original data to get an image with only 
percolating organic matter.  

Table 1 summarized the measured volume percentages. Total non-mineral material 
volume percentages, based on Figure 3b, is 24.2%. This includes total pore volume 
(mineral pore and organic matter pore) and organic matter volume.  

The percolating organic matter volume percentage is 24.1%. Non percolating organic  
matter only accounts for 0.1% of the total volume, which leads to the conclusion that the 
organic matter network is well connected.   

An important assumption introduced in this procedure is that there are no nanoscale pore 
throats with size smaller than 5nm. This assumption is imposed by the FIB-SEM image 
acquisition resolution limit.  

 

 

 

 

 
Figure 3. Segmentation of organic matter network. (a) Median filtered data; (b) Simple intensity 
threshold between 120-255 to mask out mineral matrix; (c). Remove organic matter that is not part 
of a percolating network (Note this step is made more dramatic to show the difference); (d). Invert 
the mask to identify the percolating organic matter. 

3.2. Pore volume percentage 

Segmentation of the pore network is probably one of the most important yet the most 
challenging step in a 3D imaging study. In Figure 4a, a close-up of one slice of the 
original data corresponding to Figure 3a is shown. We can see the dark areas representing 
pore space. There are also a large number of isolated, small, dark pixels (yellow arrows in 
Figure 4a).  We are not sure whether these are imaging artifacts or they are actual pores. 
In this study, we assume the pores are at least 2-3 voxels (10-15 nm) in size. 

Even for bigger pores, ambiguities exist. We create a line probe crossing two obvious 
pores, and plotted intensity value in Figure 4b labeled as curve 1. Four valleys, 

(a) (b) (c) (d) 500nm 
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corresponding to the four pores with different darkness and different size, are identified 
and labeled with blue arrows. Three different segmentation strategies, top hat [12]   
(Figure 4c), threshold between 0-50 (Figure 4d) and threshold between 0-53 (Figure 4c) 
all reveal some correct pore space. While Figure 4e identified all four valleys, as labeled 
by blue arrows, it over estimates significantly the top valley (marked A), while picking 
up a lot of background noise (marked B).  

 
Table 1. Petrophysical parameters  
calculated in this project. 
 

Volume percentage Values 
1.Total non-mineral 24.2 
2.Percolating 
organic matter and 
porosity 

24.1 

3.Total porosity 6.25 
4.Percolating 
porosity 

5.3 

 

 
Figure 4 (Above right). Different pore segmentation strategies. (a) Close-up of one slice of the 
original data (white box in Figure 3a). (b) A profile of intensity values along the line probe 
defined in Figure 4a. (c) Top hat segmentation, overlain on Figure 4a. (d) Threshold segmentation 
using intensity range between 0 and 50. (e) Threshold segmentation using intensity range between 
0 and 53. 

We systematically studied the effect of different thresholds on the pore space, using the 
whole dataset, as well as each octant of the original data after it is divided into 8 equal 
sub-volumes. All results are plotted in Figure 5. The range of the threshold being studied 
is from 10 to 100, though we know only range 45-65 gives reasonable results.  

For the whole data set (black curve with square symbols), we see porosity changed from 
about 4% to about 13% when threshold increases from 45 to 65. Similar dramatic jumps 
are observed on the octants. Not surprisingly, porosity measurement is very sensitive to 
the threshold value.  

Given the same threshold, for example, 65, we can see different octants showing very 
different porosity, from 7% (Octa4) to 19% (Octa2). This shows significant anisotropy 
within the sample. 
Due to the lack of consistency with threshold approach, we introduced top hat 
segmentation [12]  , and performed a similar study.  

(a) 

(b) 

(c) 

(d) 

(e) 

Line probe 
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A 

B 
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Top hat filter has several steps, as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 Figure 5. Thresholding and pore space volume percentage. Top hat results (thick black curve with 
circle symbol) is plotted as a reference. (For best clarity, please refer the color pictures in 
conference proceeding CD). 

A threshold is still necessary at the last step, however, it will be able to pick up peak (or 
valley) based on a local criteria. 

 

 

 

Figure 6. 1D illustration of top hat procedure. (a) Closing. (b). Original result minus Figure 6a. (c). 
Threshold on Figure 6b. 

Figure 7 shows sensitivity of porosity measurement based on top hat threshold.  Top hat 
threshold variation from 45-65 causes porosity variation from 7% to 3.5%, which is 
smaller than the porosity variation corresponding to simple threshold. Similarly, for 
different octants, porosity varies from 3.5% to 6.5% at top hat threshold value 45. 

While Top hat is established as a more reliable approach, we took advantage of both 
approaches by combining the results of a low simple threshold (0-50) and top hat. This 
gives the most accurate segmentation results, with porosity calculated at 6.25% (Table 1). 

(a) (b) (c) 

Volume percentage 

Threshold
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Within the porosity in organic matter, most of it (5.3% of total volume) is percolating.  
Figure 8 shows a snapshot of one slice of the segmentation results. 

 

 

 

 

 

 

 

 

 

 Figure 7. Top hat thresholding (X-axis) and pore space volume percentage (Y-axis). Simple 
threshold results (thick black curve with square symbol) is plotted as a reference. (For best clarity, 
please refer the color pictures in conference proceeding CD). 

4. Permeability 

4.1 New Stokes permeability solver and its validation 

A new flow solver, Avizo XLab, was developed based on Avizo [1]  visualization and 
data analysis framework. This flow solver solves 3D Stokes equation using the image 
segmentation results, as shown in Figure 9a. Fluid flow first enters a divergence channel 
(marked "inflow" in figure 9a), before it hits the porous material. Likely, the flow exiting 
the material first enters a convergence channel (marked "outflow" in figure 9a) before it 
is released. The inflow and outflow zone are added to accommodate the complex porous 
shape of the sample faces where the fluid goes in and out, to increase numerical stability. 

The segmented image (often referred to as labels) gives a staggered grid. An artificial 
compressibility scheme [2]   is employed to solve pressure (at the center of the grid) and 
velocity (at the boundary of the grid), as shown in Figure 8b.  After the flow field is 
resolved, Darcy's law is used to derive permeability [9]  .  This new flow solver is 
validated against a few basic geometries, with reasonably accurate results summarized in 
Table 2. Note the first two experiments are measured on pixels. 

Volume Percentage 

Threshold 
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Figure 8. 2D slice of the final segmentation results. 
 

4.2. Pore space characterization 

The permeability simulation is performed along three axes. Figure 10 shows the 
simulation setup, pressure solution and velocity solution in the X direction. 

The permeability simulation results are summarized in Table 3. The sample is permeable 
in all three directions. 

 

 

 

 

Figure 9: (a). 2D illustrations of the simulation setup. (b). 2D illustration of physical properties 
solved and their locations in the staggered grid. 

Two permeabilities are calculated for each direction, one for the network of percolating 
organic matter (labeled as total pore perm in Table 3), and one for all percolating pores 
(labeled organic matter perm in Table 3). Total pore perm is defined as the permeability 
measured on all percolating pores, with corresponding porosity measured in Table 1.4. 
Organic matter perm is the permeability measured by assuming all organic matter is void, 
with corresponding volume percentage measured in Table 1.2. Organic matter perm may 
be important when all organic matter is dissolved. The organic matter perm ranges 
between 100-200 microdarcies, while the total pore perm ranges from 200 to 900 
nanodarcies.  This is in the range of some analysis laboratory measurements of these 
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rocks.  Note all permeability simulations are done under unit pressure drop and unit 
viscosity.  

Table 2. Permeability validation on the new Avizo Xlab Stokes flow solver (D stands for darcy, which is 
approximately 10-12 m2 [9]  ) 

Case Theory Theory 
value 

Xlab  
value 

Square Cylinder,  
Side length b=25 pixel 

K=0.422b2/12 [7]   21.979 
pixel2 

21.91 
pixel2 

Round cylinder 
Radius r=25 pixel 

K=r2/8 [7]   78.125 
pixel2 

78.439 
pixel2 

MicroCT scan of glass packaging 
with spherical particles diameter d= 
100-120um, material porosity 
ε=36.5, 400x400x400  

Kozeny-Carman equation[3]  :  6.7-9.7 
um2 

(6.6-9.6 
D) 

7.8um2

(7.7 D) 

 
 

 

 

 

 
Figure 10. Permeability simulation in X direction. (a). Two orthogonal slices in XY and XZ 
direction showing simulation setup for the pore network. (b). Two orthogonal slices in XY and XZ 
directions showing pressure distribution. (c). Illuminated streamlines, colored by velocity 
magnitude, showing the velocity solution. 

We believe the permeability simulation results are underestimates of reality, due to at 
least two reasons.  First of all, the imaging resolution (5nm), though accurately capturing 
all of the pores, might not be enough to capture capillary pore throats below 10-15nm. 
The insufficient resolution is not significant for porosity estimation as nano-scale throats 
are only a tiny fraction of total porosity. However, for permeability estimates, insufficient 
resolution becomes an issue as these nano-scale pore-throats may actually be the major 
percolating pathways.  The impact is greater for the permeability model based on the 
porosity as compared to the permeability model based on the network represented by the 
organic matter volume where the flow channels are much bigger (as we assumed all 
organic matter occupied space are voids). 

(a) (b) (c)
Flow direction 

X Z 

Y 



SCA2011-30 11/12
 

 

Table 3. Permeability results 
 Percolat-

ing 
Total pore 
perm (nD) 

Organic matter 
network perm (nD) 

Shortest 
path (µm) 

Shortest 
path/thickness 

Longest 
path (µm) 

X Yes 828 156,000 11.29 1.141 14.18 
Y Yes 936 106,400 9.77 1.13 12.48 
Z Yes 280 224,400 5.84 1.08 9.49 

 

Better resolution scans to understand the pore throat size, as well as the effort to model 
these throats, are underway. 

The second factor is molecular diffusion, which can happen in pore space, organic matter, 
and mineral matrix. This is currently being developed, hence is not part of the simulation 
model used in this paper.  

Along with permeability measures, a number of important porosity connectivity 
characteristics are calculated and shown in Table 3, including the shortest and longest 
permeable paths along each dimension. The ratio of shortest path to the length of the 
sample is an indicator of tortuosity. 

Figure 11 shows the length of permeable path distribution in the whole sample along the 
three different directions. The length is shorter (blue) close to the entry where the 
calculation begins. As the algorithm traverses through the porous network, the path 
becomes longer. Some paths branch, while others hit dead-ends. However, in all three 
directions, many paths are identified that traverse through the rock, as indicated by the 
reddish color. 

5. Conclusions and future work 

FIB-SEM imaging was used to capture rock structure at the nano-scale. A toolbox of 
image processing, visualization, modeling and analysis software [1]  was able to extract 
large amount of qualitative and quantitative information, based on which petrophysical 
parameters such as porosity, connectivity, and permeability can be calculated.  

Special attention was paid to the image segmentation process. Image segmentation 
parameters can have a significant impact on the porosity calculation and permeability 
simulation results. Top hat segmentation along with threshold segmentation was shown to 
be more reliable. 

Validation of these results with physical core laboratory experiments is underway, along 
with efforts of applying these results to shale reservoir modeling. 
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Figure 11. Permeable path distribution. (a). Along X direction; (b). Along Y direction; (c). Along 
Z direction. Redish color represents longer path. 
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