Zhang Zubo¹, Luo Manli¹, LiuQingjie¹, Lu Weifeng¹, Fan Xiliang² ¹Research Institute of Petroleum Exploration & Development, Petrochina; ²China University of Petroleum, (Beijing)

This paper was prepared for presentation at the International Symposium of the Society of Core Analysts held in Austin, Texas, USA 18-21 September, 2011

ABSTRACT

 CO_2 is the main source of greenhouse emission, and the environment problem caused by greenhouse effect has drawn worldwide attention. Meanwhile the method of waterflooding has been used in most oilfields in China. The CO_2 -injection to the water-flooded oilfields will not only store CO_2 , but also enhance the oil recovery. In this article, core flood tests with refined oil were conducted to investigate the CO_2 displacement characteristic in water-flooded oil reservoir under different formation pressure and oil saturation, and the CO_2 storage capacity was calculated. The tests result shows that the CO_2 injection can enhance the oil recovery about 15% OOIP under experimental conditions. When injecting CO_2 after waterflooding, the CO_2 storage capacity is increased as the formation pressure increase. The core flood tests also indicate that when the initial oil saturation of reservoir prior CO_2 injection is higher, the oil recovery will be higher when injecting the same PV of CO_2 , and the CO_2 storage capacity is getting larger.

INTRODUCTION

 CO_2 is the main source of greenhouse emission, and the environment problem caused by greenhouse effect has drawn worldwide attention [1]. A great number of studies deal with CO_2 storage, including CO_2 EOR and CO_2 storage in saline or seawater aquifers, but few researches talk about CO_2 storage in water-flooded oilfields. Waterflooding is widely used in China and many oilfields are in high water cut stage, which has reached the limit of waterflooding from an economy perspective. Comparing with saline aquifers, there are completed injection-production infrastructures in waterflooding oilfields, and the reservoir conditions are better understood. Injecting CO_2 into the reservoirs can enhance oil recovery significantly (10% to 15%) [2, 3], It is beneficial for the situation of China

particularly. Formation pressure, oil saturation and minimum miscibility pressure (MMP) are the main parameters to determine the CO_2 displacement efficiency and CO_2 storage capacity [1]. In this study, core flood tests have been conducted to evaluate the feasibility of CO_2 -EOR after waterflooding under reservoir conditions. The formulae have also been derived to calculate the CO_2 storage capacity under different formation pressure and oil saturation.

EXPERIMENT

Core Sample and Fluids

The Chuan1 sandstone outcrops from SiChuan in China were used in the experiment, its petrophysical parameters are listed in Table 1. The refined oil (Caltex White Oil Phamra) was used, it was degassed by vacuum and its viscosity is 4.7 cP at 60 degC. The brine was NaCl solution with the salinity of 20.000 ppm. The purity of injecting CO_2 was 99.93%.

Sample	Porosity	PV	Length	Area	K _{air}	Test type
No.	%	cm ³	cm	cm ²	mD	
C1-B14	12.8	20.903	29.73	5.50	30.0	Use in different pressure test
C1-B14	11.8	19.301	29.73	5.50	28.4	Repeat use in different pressure test
C1-B51	13.2	20.794	29.50	5.32	30.5	Use in different pressure test
C1-B07	12.2	20.202	29.95	5.54	22.4	Repeat use in different saturation

Table 1. Petrophysical Parameters of Core Samples and Test Type

Experiment Set-up and Procedure

Figure 1. Schematic of CO₂ Flooding Test

The experimental schematic is shown in Figure 1. A Hassler type coreholder was used, it was set in a horizontal position. Production of oil/brine/CO₂ was measured by volumetric method, the experimental temperature was 60 degC and the effective overburden pressure was 3MPa. Injection rates for water and CO₂ were 1.0ml/min and 0.5ml/min respectively. The key steps of the coreflood experiment are as follows: first the cores were saturated with brine, and irreducible water saturation was established by oil displacement in rates 0.1ml/min to 2.0ml/min. Subsequently, water flooding was conducted until water cut in the core reached 99.9%. Finally CO₂ was injected in 3-3.5PV. Estimated saturation accuracy is better than 2%.

RESULTS AND DISCUSSION

CO₂-Injection Experiment after Waterflooding under Different Formation Pressure One can see from Figure 2 that injection pressure keeps increasing at early stage during both waterflooding and CO₂ flooding process, except that 20MPa back pressure during waterflooding. After breakthrough, the pressure decreased and was stable in the late stage. When injecting CO₂ after waterflooding, the amount of produced oil was little before CO₂ breakthrough. After that, oil recovery was increasing gradually, and simultaneously, gas/oil ratio increased promptly. CO₂-EOR is increased as the back pressure increase.

Sample	Initial water	CO ₂	Waterflood		Final Displacement	CO ₂	Back
No.	saturation	Injected	Efficiency	CO ₂ EOK	Efficiency	Saturation	Pressure
	%	PV	%OOIP	%OOIP	%OOIP	%	MPa
C1-B14	59.1	3.12	38.6	15.2	53.8	25.2	10
C1-B14	56.4	3.13	41.3	15.4	56.7	27.4	15
C1-B51	58.8	3.35	42.3	17.7	60.0	30.5	20

Table 2. CO₂ Displacement Efficiency at Different Back Pressure

Figure2. Oil Recovery and Differential Pressure as Function of Volume Injected

Table 2 shows that CO_2 storage capacity increases accompanied by water and oil production. The higher the back pressure is, the higher the saturation of CO_2 is, and the higher the oil recovery and produced liquid recovery of CO_2 flooding will be. The CO_2 -injection PV were similar in the three experiments, so it can be concluded that the utilization efficiency of CO_2 will be high when the back pressure is high.

CO2-Injection Experiment after Waterflooding at Different Oil Saturation

Table 3 shows that for the first experiment, the displacement efficiency by complete waterflooding was 33.6%, and the total recovery of following CO_2 flooding was 45.6% OIIP. No waterflooding process was carried out for the second experiment, and the displacement efficiency of CO_2 flooding under irreducible water saturation condition was 68.4% OIIP, which was obviously higher than that of the first experiment. When injecting the same PV of CO_2 , the higher the oil saturation before CO_2 flooding is, the higher the final displacement efficiency is, as well as the larger the amount of CO_2 trapped and the higher the CO_2 saturation.

Test Sequence	Sample No.	\mathbf{S}_{wi}	S _o Before CO ₂ Flooding	CO ₂ -Injection PV	Total Efficiency	CO ₂ Saturation
~~~~		%	%	PV	%OOIP	%
1	C1-B07	21.2	50.0	3.79	45.6	27.0
3	C1-B07	21.8	67.5	3.49	62.6	29.7
2	C1-B07	16.9	83.1	3.43	68.4	56.8

Table 3. CO₂ Displacement Efficiency at Different Oil Saturation

# **CALCULATION OF CO2 STORAGE CAPACITY**

Hitchon (1996) proposed that there were three  $CO_2$  storage mechanisms in the aquifers: hydrodynamic, dissolution and mineral trapping [4]. This applies to the mechanism of  $CO_2$  storage in water-flooded oilfields. Mineral trapping requires a substantial long period of time, which has little contribution to achieve  $CO_2$  storage in a short time. If the mineralization reaction between  $CO_2$  and rock or ions in the brine is not considered, the  $CO_2$  storage capacity is the sum of hydrodynamic and dissolved trapping. In the coreflood experiment after waterflooding,  $CO_2$  replaces the displaced liquid to occupy the volume in the core.  $CO_2$  is trapped in the core as gas or supercritical state, and the amount of this part is called Trapped Storage Capacity. There might be some  $CO_2$ dissolved into the remaining oil and water after  $CO_2$  flooding, and the dissolved amount is also one part of  $CO_2$  storage capacity which is called Dissolved Storage Capacity. The  $CO_2$  solubility in the oil was determined by flash separation experiment, as well as volume factor of oil. In addition, the solubility and volume factor of  $CO_2$  in the brine was calculated by the theoretical formula given by Duan Zhenhao[6]. Total  $CO_2$  Storage Capacity is the sum of trapped and dissolved storage capacity and can be calculated by the formula (1):

$$M_{CO2(P,T)} = \rho_{CO2(P,T)} V_0 B_0 + \rho_{CO2(P,T)} V_w B_w + V_{ro} R_{oCO2} + V_{rw} R_{wCO2}$$
(1)

Where,  $\rho_{CO2(P,T)}$  is CO₂ density, g/cm³; V_o,V_w is displaced oil and water volume, ml; B_o, B_w is oil and water volume factor, defined as the change of liquid volume caused by the difference of the temperature and pressure in and out of the core. R_{oCO2}, R_{wCO2} is CO₂ solubility in oil and water, g/cm³, V_{ro}, V_{rw} is the remaining oil and water volume, ml.

Table 4. CO₂ Storage Capacity after Waterflooding under Different Pressure

Sample No.	Back Pressure	CO2 Saturation	Trapped Storage Capacity	Dissolved Amount in Water	Dissolved Amount in Oil	Total Storage Capacity	Storage Capacity
	MPa	%	g	g	g	g	g/cm ³
C1-B14	10	25.21	2.991	0.182	1.539	4.712	0.225
C1-B14	15	27.36	6.292	0.140	1.831	8.263	0.409
C1-B51	20	30.54	8.226	0.183	2.519	10.928	0.526

Table 5. CO₂ Storage Capacity after Waterflooding at Different Oil Saturation

Sample	Oil	CO ₂	Trapped	Dissolved	Dissolved	Total	Storage
No.	Saturation	Saturation	Storage	Amount	Amount	Storage	Capacity
			Capacity	in Water	in Oil	Capacity	
	%	%	g	g	g	g	g/cm ³
C1-B07	50.0	27.0	3.342	0.323	2.360	6.025	0.298
C1-B07	67.5	29.7	3.413	0.251	2.342	6.007	0.320
C1-B07	83.1	56.8	6.449	0.150	1.438	8.037	0.434

Table 4 shows that the trapped storage capacity is the main part of the total storage capacity in the core. Under three back pressure conditions, the  $CO_2$  trapped storage capacity is 63.5%, 76.2% and 75.3% of the total storage capacity respectively, while the amount of  $CO_2$  dissolved in the remaining oil and water is little. So the displacement efficiency is the main factor to determine the  $CO_2$  storage capacity.

The oil saturation is different in the reservoir at a different waterfooding stage, and the  $CO_2$  storage capacity and recovery are affected by the initial oil saturation before  $CO_2$ 

injection. The CO₂ storage capacity after CO₂ flooding at different oil saturation stage is given in Table 5. The result shows that the higher the oil saturation is, the higher the remaining CO₂ saturation is, and the larger the amount of trapped CO₂ is. The trapped storage capacity is 55.5%, 56.8% and 80.2% of the total storage capacity, which occupies a majority of the total amount. The amount of CO₂ dissolved in the remaining oil ranks the second, and the amount of CO₂ dissolved in the remaining water is the smallest part of the total. It can be concluded that the CO₂ displacement efficiency and remaining oil saturation are the main factors to determine CO₂ storage capacity.

# CONCLUSIONS

When injecting about 3PV CO₂ after waterflooding, CO₂ can effectively improve oil recovery by about 15% OOIP. The higher the formation pressure is, the higher the oil recovery is, and the larger the CO₂ storage capacity will be. The higher the initial oil saturation before CO₂ flooding is, the higher the oil recovery and the total liquid recovery is, and the larger the CO₂ storage capacity will be when injecting the same PV of CO₂. The displacement efficiency of CO₂ flooding is the main factor to determine capacity of CO₂ storage capacity. Water-flooded oil reservoirs are the ideal place for CO₂ storage. It is thus beneficial in improving oil recovery, storing CO₂ and relieving the greenhouse effect.

# ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from the National Basic Research Program of China titled with Fundamental research of carbon dioxide emission reduction, geological storage and utilizations (FCGU) 2011CB707300.

# REFERENCES

[1] Liu Y., J. Liu, Q. Huang, et al. "Polymer and CO₂ Flooding Technology". *Beijing: Sinpec Press*, 2001, 102-112.

[2] Kovscek A., Y. Wang, "Geologic storage of carbon dioxide and enhanced oil recovery". *Energy Conversion and Management*, 2005,46:1920-1940.

[3] Mark Q., M. Islam, "CO₂ Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage With Horizontal Wells". *SPE 59327*,2000

[4]Bachu S., W. Gunter, E. Perkins, "Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping". *Sherwood Park, Alberta, Canada: Geoscience Publishing*, 1996

[5]Duan Z., R. Sun, "An improved model calculating CO₂ solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar". *Chemical Geology*, 2003, 193:257-271.