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ABSTRACT 
Estimates of bulk mineralogy and the relationships in their distribution relative to other 
grains and pores were done with SEM-based data acquisition and image analysis 
software. Minerals are identified by their EDS spectra, with varying degrees of tolerance 
allowed in the assignment to account for compositional variability and acquisition 
conditions. The bulk mineralogy results are robust when compared with conventional 
XRD-generated values. Image processing and analysis generated mineral- specific grain-
size distributions and nearest neighbor information. The key result is the identification of 
the mineralogy that is adjacent to pore space. Clay minerals are easily distinguished from 
other aluminosilicates and are often the predominant mineralogy lining the pore walls. A 
series of low-salinity waterflood tests on sandstones with uniform total clay mineral 
contents showed increased oil production in samples with higher clay mineral 
concentrations adjacent to the pores. 
 
INTRODUCTION 
The question of how minerals are distributed in porous media, especially those adjacent 
to the pores, has interested researchers for many years. Descriptions of mineral diagenesis 
and formation damage abound in the literature and have helped to develop an 
understanding of the importance of a more detailed and quantitative characterization of 
the distribution of minerals. This information is particularly critical since fluid-rock 
interactions, whether they are diagenetic reactions that alter the pore geometry or 
processes that affect multiphase fluid flow, (e.g. wettability) are obviously restricted to 
the fluid-rock interface. The role of pore wall chemistry is critical in multiphase flow in 
porous media, and their petrophysical characterization, perhaps none so more than their 
NMR response [1]. 
 
Traditional assessment of mineralogy normally yields a result of bulk properties. Yet any 
cursory investigation of a rock under a microscope reveals a non-uniform distribution of 
minerals, a result of original depositional processes and post-depositional diagenetic 
reactions. The development of quantitative spatial information lagged until suitable 
image processing algorithms were created [2]. Image processing of petrographic thin 
sections was suitable for the relationships amongst grains, but automated mineral 
identification was much more challenging. The development of mineral identification 
procedures based on scanning electron microscope (SEM) images provided a more 
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certain method for discriminating amongst different minerals by taking advantage of the 
compositional information available in these images. Back-scattered X-rays (BSE) or 
Energy Dispersive X-ray spectra (EDS) respond to compositional differences in the 
minerals. A number of approaches have been proposed for applying EDS elemental 
information to mineral identification and quantification [3-5]. This study was based on 
matching complete elemental spectra to a set of end-member compositions [6]. 
 
METHODS 
Standard samples were prepared for 2-D SEM imaging by filling the pore space with 
low-viscosity epoxy, polishing the sample surface and coating with carbon. Images were 
collected with a JEOL 8200 microprobe under software control for data acquisition 
(MLA, FEI Company). MLA has a number of approaches to collect data for 
mineralogical analysis. The method chosen for this study used a combination of BSE that 
distinguished minerals from void (epoxy-filled) and then directed the instrument to 
collect EDS spectra at multiple points on the minerals. Since segmentation of minerals 
based on BSE images only was quite difficult because of compositional similarities, the 
strategy was to collect an EDS spectrum at each non-void point on a high-resolution grid. 
Several EDS spectra were collected for each major phase in order to provide some 
robustness in identifying the unknown spectra. Each EDS point was assigned to an end-
member phase by comparison of the full spectra against the standards, with final 
grouping taking place during the data analysis stage. Once a set of standards and 
grouping classes was established for one sample, the process was repeated for the 
remaining samples in the suite. 
 
RESULTS 
Mineral maps were generated for several sandstone suites used in EOR-related laboratory 
tests. Modal mineralogy from the SEM-based measurements was compared with values 
generated by X-Ray powder diffraction (XRD) analysis that used Rietveld modeling 
techniques. The XRD values were treated as the baseline for any comparisons, though 
they too were subject to uncertainty and imprecise phase identification. One area where 
the SEM-based analysis had an advantage was the identification and quantification of 
trace minerals, where an individual grain was counted by the SEM even when it fell 
below the standard XRD detection level of 0.5 wt%.  
 
Sandstone set A was characterized by a complex mineralogy and pore system that offered 
many challenges in mineral identification. The SEM-based mineralogy overstated the 
presence of the clay minerals, illite and glauconite, while underestimating quartz. Siderite 
and the small amounts of feldspar in these samples generally matched the values 
generated by XRD. This was the first set studied and it was determined later that the grid 
size for individual EDS analysis of the BSE image was much too coarse for these 
samples. Compositional similarities amongst the various clay minerals and feldspars 
made classification of individual points difficult. In this early example too many 
standards were defined, which resulted in the need to group more phases into the final 
end-member mineralogy. Subsequent studies used fewer standards and allowed the 
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pattern recognition algorithms in the classification software more flexibility in assigning 
final mineralogy. The images were also collected at a lower magnification than 
subsequent runs, which resulted in considerable overlap of grains within a single voxel 
that complicated the collected spectra.  
 
Sandstone set B was composed of feldspar-rich sand with several clay minerals and 
zeolites present. SEM-based and XRD estimates of quartz were very close (Figure 1a). 
The SEM-based estimates of different feldspars, K-feldspar and Na-plagioclase, showed 
trends with the XRD values, though not a 1:1 relationship. The combination into a total 
feldspar abundance, however, did compare favorably (Figure 1b). The clay minerals 
included illite and chlorite, with several samples containing up to 10 wt % of the zeolite, 
laumontite. The SEM-based total clay mineral abundance was for the most part 
comparable with estimates from XRD (Figure 1c).  
 
Sandstone set C was compositionally simpler, with quartz, feldspars and illite as the 
dominant minerals. The comparison with XRD values was similar to those in set B 
(Figure 1). While the total clay mineral content for these samples was relatively low 
compared to other samples, the distribution of these clay minerals was distinctive. The 
mineral maps illustrated the most of the illite was located on the surfaces of the grain-
pore interface (Figure 2). The images also suggested that the illite was predominantly 
distributed on the surfaces of larger pores. The image was generated with a high-
resolution grid of 2 micron step sizes between EDS points and at higher magnification 
than the sample A suite. A test of grid resolution showed that larger step sizes generated 
comparable bulk mineralogy estimates, but with a loss of mineral map resolution. The 
accompanying back-scattered image showed the limited contrast in phase composition 
and highlighted the challenges in the segmentation of individual grains by BSE only. 
 
The general agreement between XRD and SEM mineral estimates was due in part to high 
quality XRD results, large number of SEM sample points (>10,000) and accurate phase 
identification with the EDS spectra. Even so, mineral families required grouping in order 
to reach this level of agreement. 
 
While descriptions of clay mineral distribution on the surfaces of grains are common, the 
proportion of clay mineral available for reaction, or conversely the proportion of pore 
wall surfaces coated with sensitive clay minerals has not been quantified on a regular 
basis. The nearest-neighbor relationship between the identified phases, including the 
porosity, was extracted from the mineral maps.  
 
Set A was used in a low-salinity waterflood experiment where the amount of incremental 
oil produced upon the introduction of a tertiary low-salinity flood was recorded. These 
samples showed considerable variability in the effectiveness of the low-salinity process. 
Previous work suggested that total clay mineralogy could be a predictor of low-salinity 
effectiveness [7], but for these samples there was no obvious correlation (Figure 3a). 
When the proportion of pore surface in contact with total clay minerals was compared 
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against the incremental change in water saturation due to low-salinity related production 
a more positive correlation was revealed (Figure 3b). The composition of the pore walls, 
(i.e. minerals adjacent to the pore space) was dominated by quartz, glauconite, and 
siderite with small amounts of other phases (Table 1).  
 
Set B also showed a positive correlation between the change in original oil in place due to 
tertiary low-salinity waterflood and the portion of the pore surface associated with clay 
minerals. Set C also showed significant oil production following low-salinity water 
imbibition despite the low values of total clay mineral content. As apparent in the mineral 
maps, the relatively small amount of illite dominated the pore wall surfaces.  
 
CONCLUSION 
SEM-based mineral maps have the potential to replicate the mineralogy values obtained 
from conventional XRD methods on bulk samples, while also providing insights into the 
distribution of minerals, particularly those adjacent to the pores. The SEM-based methods 
still require development to improve their reproducibility, but the several micron 
resolution provides the opportunity for high-resolution images. High magnification 
images coupled with high-resolution EDS grids resulted in significantly higher quality 
mineral maps, justifying the increased time required for data acquisition. The 
composition of the grain-pore interface undoubtedly is an important factor in 
understanding mechanisms of enhanced oil recovery processes.   
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Table 1. Mineral composition adjacent to porosity. 

Sample Quartz Glauconite Siderite 
A-1 9.9 55.4 34.6 
A-2 12.8 52.1 35.0 
A-3 20.9 27.9 50.9 
A-4 53.6 45.1 0.1 
A-5 14.6 42.6 42.6 
A-6 9.4 57.3 33.2 
A-7 39.1 30.2 30.7 
A-8 59.8 39.7 0.2 
A-9 17.8 38.2 43.8 

A-10 45.5 53.3 0.6 
A-11 9.9 55.4 34.6 
A-12 21.3 41.0 37.4 
A-13 35.6 42.7 21.6 
A-14 12.8 52.1 35.0 
A-15 39.9 36.3 23.6 
A-16 13.3 43.8 42.8 
A-17 32.6 48.2 18.8 
A-18 35.6 42.7 21.6 

 
 

 
 
 
 
 
 
Figure 1 (a-c). Comparison of 
mineralogy estimates from 
standard XRD and SEM-based 
methods for (a) quartz, (b) total 
feldspars and (c) total clay 
minerals. The comparison 
includes samples from sandstone 
sets B (filled circles) and C 
(pluses) 
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Figure 2. Mineral map of illite-coated pore walls for sandstone C sample(left) and the initial BSE image 
(right) used to segment grains (shades of gray) from pores (black). 
 
 

 


