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ABSTRACT 
 
Digital Rock Technology has experienced tremendous progress in the last decade with an 
increasing number of companies providing imaging hardware and software as well as 
delivering computational services. This technology is also commonly referred to as a 
transformational technology in different fronts and yet, because focus has been heavily 
placed in validating the technology, there are limited publications demonstrating its 
business value besides replacing experimental data. We have learned that validation, 
especially the deterministic approach, wanes the exploration of further use of this 
technology, and hence, we shifted our original mission of validation towards value 
demonstration. In this paper, we give our initial report after looking at potential uses of 
this technology. 

 
We provide examples in which we use this technology to understand and reduce 
uncertainty in existing experimental data using an uncertainty-based framework that 
acknowledges the uncertainty in both computation and measurements. The workflow 
enables capturing the source of uncertainty in the experimental data, improves screening, 
understanding and interpretation of the experimental data. Another example highlights 
the use of the imaging technology in resolving drilling & completion issues in 
unconsolidated sands, where the distributions of effective pore diameters overcome 
limitations imposed by Mercury Injection data. 

 
The digital rock world is coming, but its form and how it will emerge is still unclear. 
Hopefully, these two examples provide a foretaste among the many potential uses of this 
technology in a fast approaching future. 
 
INTRODUCTION 
 The capability of describing the pore space at the minimum contributing scale to flow, as 
well as the computing capacity to model processes through these structures looks 
promising to understand different phenomena in each of the sciences connected by these 
systems. We present two examples that explore applications of this technology to existent 
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experimental data to improve our understanding and surpass the challenges imposed by 
the limitations in experimental or interpretation techniques currently available. 

 
IMPROVING UNDERSTANDING AND INTERPRETATION OF 
EXPERIMENTAL DATA 
One of the challenges during the analysis of experimental data is to separate effects of 
rock properties from the consequences brought by choice of experimental setup (process 
uncertainty) as well as experimental artifacts. In some instances, it is common to obtain 
wide range of results for samples with similar properties. The value of network models 
resides in their ability to relate macroscopic behavior directly to the underlying 
physics[1]. We describe the use of pore network modeling in understanding and 
identifying outliers in drainage and imbibition data for gas (CO2) storage; in this type of 
projects injectivity and residual gas are chief concerns.  

 
To understand experimental data, we focus on samples that despite having similar 
properties (i.e. available pore space to flow and connectivity) exhibit differences in the 
flow properties, which lead to a wide range of injectivity and residual trapped saturations. 
For this specific case, we concentrate in experimental data corresponding to cores with 
properties ranges corresponding to FZI (Flow Zone Indicator) larger than 1.50; similarly 
we selected two samples from same zones and FZI ranges for simulation. The workflow 
to compute values from 3-D micro CT – images using experimental design is described 
elsewhere [2]. In this work, we concentrate in the results from images and their use in the 
analysis of experimental data.  
 
Image Analysis 
The selection of an optimum resolution for the image is guided by the information 
supplied by Back-scatter SEM and QEMSCAM images; layers of clay coating of 4-6 
microns were appreciated with 2-3 pixels in QEMSCAN 2D images in Figure 1 
(resolution is 2 micron/pixel), hence images with resolution of 2.0 microns/pixel or 
smaller are recommended. For this analysis, we used micro-CT 3D images using a 
synchrotron source (LBNL1) with 1.8 microns/pixel resolution. This range of resolution 
is enough to capture main percolation paths for porosity and compute transport properties. 
Also, dimension of simulation volumes were almost as twice the minimum linear size 
required (2-3 mm) to be considered statistically representative volume as estimated from 
the decay curve in the porosity variogram. Because of the amount of clay and their 
distribution, the segmentation of these images is not trivial. Figure 2 shows the 
segmented back-scatter SEM images for sample 1 (left) and 2 (right).  
 

                                                        
1
 Advanced Light Source (ALS), third generation synchrotron at Lawrence Berkeley National Laboratory, 

Berkeley, California.  
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Figure 1: QEMSCAM image (resolution 2m/pixel) 

 

 
 

Figure 2: Back-scatter SEM images after segmentation for (a) Sample 1 (Pore 17.5%, Clay: 19.8%) and sample 
2 (pore 17.4% and clay 13.6%) 

 
This information provided by SEM, together with the QEMSCAN®, is used to narrow 
the uncertainty in the segmentation process, especially in samples with large amount of 
clay and sub-resolution pores. This increase in confidence in the phase identification is 
also discussed by Knackstedt et al.[3].  Figure 3 shows an example (sample 1) of a slide 
of 3D micro CT before (left) and after (right) segmentation. To narrow the uncertainty in 
the segmentation process we integrate total porosity values (total) from neighboring 
samples with information such as intergranular porosity (pore) and clay volume (V) 
supplied by QEMSCAN® images and segmented back-scatter SEM images (Figure 2). 
The combined analysis provides a range of best estimate for clay phase 
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microporosity,  


̅̅ ̅). In this case, we obtained computed micro-porosity between 50 and 
75% for sample 1 and between 57% and 90% for sample 2.   
 
 

 
Figure 3: Example of segmentation process. Sample 1(left) Micro-CT and (right) segmented image 

 
As a next step, we verify whether the pore network model2, extracted from segmented 
images, captures the rock structure features by comparing experimental and numerical 
data. Figure 4 compares J-functions corresponding to experimental measurements 
(Mercury Intrusion - black solid line) and computed using the pore network model. Same 
figure also showed experimental measurements in samples corresponding to target Flow 
Zone Indicator range (FZI ≥ 1.5). In both cases, estimated curves show good agreement 
with the experimental data. The agreement of results with experimental data indicates 
that the segmented images are capturing main features contributing to the flow in these 
samples. 

                                                        
2
 E-Core, Numerical Rocks. Version 1.5.2 (2012). 
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Figure 4: Experimental and Numerical Drainage J-function for Sample 1 (right) and 2  (left) 

   
Injectivity and Drainage Relative Permeability 
Our recommendation in any SCAL program [4] is a 50-50 resource split between tests to 
capture geological variability (conducting simple tests on many samples) and process 
uncertainty (conducting specific tests on a sub-set of samples). In order to capture 
injectivity parameters, we measured drainage relative permeability performing standard 
gas-brine unsteady-state to capture effect of rock variability while process uncertainty 
was gauged by varying rates, changing type of tests and displacing fluids (nitrogen, 
decane, and CO2).  

 
During the design of these tests, we should be targeting injection rates and pressure 
difference such that experimental capillary numbers match those reached during field 
operations. On the other hand, because capillary effects can significantly influence 
measurements especially low-rate drainage displacement [5], injection rates for these 
tests are typically high. An example of applying a range of rates to satisfy both conditions 
is shown in Figure 5; Steady state tests were performed at high rates for both (N2/Brine 
and CO2/Brine) systems, two Unsteady states were performed at low capillary number 
and endpoint tests were performed at ranges between both requirements.Table 1 shows 
details and capillary number reached during the experiments 

 
Because all these tests are reported for samples with similar rock properties, the wide 
range of curves and endpoints, Swir and (Krg(Swir)) are, consequently, results of fluids and 
methodology used, target injection rates and/or experimental artifacts [6,7]. While the 
Brine relative permeability exhibited different mobility for different fluid system, the 



SCA2012-18  6/12 

largest uncertainty is towards the low water saturation range. Unsteady state test, 
performed a low capillary number and hence likely to be dominated by heterogeneities, 
experimental artifacts or limitations imposed by maximum capillary pressure, exhibit 
high residual water saturation and low gas relative permeability endpoints. Figure 5 also 
shows values estimated using pore network modeling in images of samples 1 and 2; The 
simulation data, not subject to experimental limitations previously mentioned, shows 
higher gas saturations and endpoints than values reached in endpoint experiments, which 
are suspected to be dominated by either capillary end effects or artifacts.     

 
Figure 5: Experimental and Numerical Drainage relative permeability (legend in Table 1) 

 
Table 1: Details of drainage relative permeability shown in Fig. 6 

Sample System Method Log [Nc] Symbol 

1 CO2/Brine Coreflood Endpoint Between -7.2  and -5.6   

 

2 CO2/Brine Coreflood Endpoint Between -8.0 and -7.3 

3 CO2/Brine Coreflood Endpoint Between -6.2 and -5.9 

4 CO2/Brine Coreflood Endpoint Between -8.2  and - 5.9 

5 CO2/Brine Coreflood Endpoint Between -8.2 and -5.9 
2 CO2/Brine Unsteady State  -8.2 ▬▬ 

3 CO2/Brine Unsteady State -6.9 ▬▬ 

6 N2/Brine Unsteady State -7.8 ▬▬ 

7 CO2/Brine Steady State (fg=1) -6.2 ▬ ▬ 

8 N2/Brine Steady State (fg=1) -6.7   ▬ ▬ 

Image 1 Numerical Modeling  ● 

Image 2 Numerical Modeling ● 

 
To better understand the impact of these ranges on injectivity, we borrow the concept of 
total mobility. Injectivity depends strongly on the mobility of the two-phase flow region 
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([8, 9]) and total mobility plots are very useful when comparing different sets of relative 
permeability, especially the average mobility in the Buckley-Leverett region [9]. The left 
plot in Figure 6 shows the corresponding total mobility using viscosities at field 
conditions while the right chart compares the total mobility evaluated at average 
saturation in the Buckley-Leverett region vs. experimental capillary number; this plot 
illustrates the cascading effect of the uncertainty in relative permeability parameters in 
injectivity and it warrants much closer inspection of the experimental data. 
 

 

Figure 6: Total Mobility plot computed used field viscosity (left) and Total Mobility evaluated at average 
saturation in the Buckley-Leverett region vs. Capillary number reached during experiment 

 
A closer inspection of the experimental data requires numerical modeling of the 
experiments. Relative permeability estimated from pore network provides us with a 
potential best estimate for multiple variable regression input in the history match of 
experiments, especially when we suspect that experiment did not reach the minimum 
water saturation. Multivariable analysis is used for the parameters used in the LET 
function [10] defining relative permeability in the history matching of pressure and 
production history during coreflood. Figure 7 shows the raw experimental data (black) 
from CO2/Brine Steady State test, symbols are drainage relative permeability estimated 
from pore network simulation on sample 2 (which is a sub-sample of the core used in this 
experiment). The red lines represent the final relative permeability after using the pore 
network relative permeability as the first guess in the Parameter Estimation 3 . The 
experimental and final Steady State data are in close agreement, and the final curve 
extends the gas relative permeability to lower water saturations and higher gas relative 
permeability endpoints.  

                                                        
3
 Sendra Version 1.10, User Guide, Reslab Integration AS, Nov 2007 
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Figure 7: Raw  experimental data (black dashed line) and output (red) drainage relative permeability after using 

multiple variable regression to match experimental CO2/Brine coreflood at reservoir conditions 
 

Residual Gas Saturation 
In the case of residual gas, we use Countercurrent Imbibition (CCI) to gauge geological 
variability while process uncertainty is captured by performing Unsteady- and Steady-
state imbibition with different displaced fluids. Figure 8 shows that trapped (residual) 
non-wetting phase values from pore network simulations are in agreement with the range 
of values shown in experimental data, especially with the values obtained from 
Countercurrent imbibition tests (CCI). This is expected because both CCI and numerical 
simulation are in the low capillary number regime in which capillary forces are dominant. 
In the case of residual CO2, we did not have experimental values available in these sands 
to compare numerical results. It is our expectation that comparison of numerical results 
with experimental results could provide an opportunity to understand and calibrate 
calculations for the effects of higher capillary numbers and wettability of Brine/CO2 
systems in experimental measurements as well as the identification of outliers.  
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Figure 8: Experimental and Numerical Trapped Residual Non-wetting saturation 

 
 

DRILLING AND COMPLETION IN UNCONSOLIDATED SANDS 
Formation rock attributes are considered as a key factor in optimizing reservoir drilling 
fluids with capabilities to limit fluid losses and minimize solid plugging effectively. For 
the purposes of determining the sizes of bridging material, Mercury Intrusion capillary 
pressure (MICP) provides information on the diameter of the largest connected pore 
space. However, the major disadvantage of using MICP is that it may not detect the 
largest pores in some reservoir formations; for this specific example, onset Hg injection 
pressures resulted in truncation of the pore throat radius at 100 microns which excluded 
larger pore throats that fill up at lower injection pressures (approximately 0.4  to 1 psi). 

   
Other methods that are commonly used to characterize pore structure are Scanning 
Electron Microscopy (SEM) and thin-section analysis; SEM focus in very small fraction 
of the rock and, hence, it is not practical for finding the largest pores and thin sections 
have the disadvantage that it offers only a 2D view of a 3D structure[11]. In addition, 
increased pore space could be artificially created due to the separation of grains during 
preparation of 2D section while polishing unconsolidated rocks   We used to x-ray CT 3D 
images of cores plugs (1.5 inch in diameter) to estimate the pore size distribution of large 
pores. With a resolution of 28 m/pixel we have the advantage of covering a larger 
volume, thus benefiting the statistics of the larger pores within the sample. We pre-
filtered the 3D image by applying a Gaussian filter of sigma value of 2 pixels, which will 
tend to smooth out small features such as small pores, small pore throats, and some pore 
irregularities. Then, single threshold is applied to the image to highlight the larger pores. 
Figure 10 shows one out of a set of 2000 slices detailing pore contours in yellow. 
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Figure 9: Micro-CT image of sample with cementation issues 

 
We used two methods to estimate the size distribution of these large pores; 
 
1. Local thickness based method: this method estimate the local thickness at each point 

together with the diameter of the greatest sphere fitting within the pore structure 
contains the reference point. This is a two step process and involves the computation 
of the Euclidean distance map followed by Maximal Inscribed Sphere map [12]. A 
histogram from values in the second step gives us a pore size distribution. 
 

2. The second method estimates the Feret’s diameter of individual pores; Feret’s 
diameter is defined as the longest distance between two points along the pore 
boundary [13]. 
 

Figure 10 compares pore size distribution applying both methods. In both methods, 
especially in the Feret’s diameter analysis, it is necessary to include pre-filter Gaussian 
step to highlight and separate larger pores. For this analysis, we observed pores larger 
than 200-300 microns diameter. Absence of this information would result in selecting 
bridging particles sizes too small to adequately protect the formation; as a result, this 
information proved to be extremely useful during selection of the right drilling fluid 
formulation.  
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Figure 10: Local thickness and Feret’s diameter distributions for the estimation of large pore sizes in sample 

shown in figure 10. 
 

 
CONCLUSIONS 
 The segmentation process of images benefits from using additional information, 

especially for samples with large amount of clay and sub-resolution features such as 
these samples.  

 Results from simulation on pore network model could be used to identify rate effects 
and experimental artifacts suspected in experimental data, assisting the reduction of 
the uncertainty in the properties measured and metrics affected by these properties. 

 Micro-CT images provide useful information to assist with proper selection of 
drilling fluids, especially in cases where MICP data is not able to provide the 
information on the larger pore throats that fill at very low injection pressures. 
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