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ABSTRACT 

Tight-gas sandstones exhibit large petrophysical variability due to complex pore structure 

resulting from diagenesis. Consequently, conventional rock classification schemes that rely 

solely on hydraulic radius to rank tight-gas sandstones are inadequate to capture all 

petrophysical variations. New methods for describing complex pore systems are necessary 

for more reliable petrophysical rock typing. We compare two distribution functions, 

namely Gaussian and Thomeer’s derivative, to assess their reliability to model pore-size 

distributions analytically from mercury injection capillary pressure data. Our comparative 

study shows that Gaussian density functions are effective to describe the pore system and 

provide analytical representations to calculate macroscopic petrophysical properties. Based 

on the study, we introduce a bimodal Gaussian density function to characterize pore-size 

distributions in terms of incremental pore volume fraction versus logarithmic pore-throat 

radius. This quantitative pore-system description underlies a new petrophysical rock typing 

method which defines petrophysical orthogonality between two pore systems using all 

relevant pore-system attributes based on the “bundle of capillary tubes” model. We test the 

new method with both routine and special core laboratory data acquired in a key-study well 

in the Bossier tight-gas sand field located in the East Texas Basin. The field case confirms 

that the new rock classification scheme properly captures petrophysical trends and 

variability. 

 

INTRODUCTION 
Rock typing is routinely performed with porosity and permeability data (Corbett and Potter, 

2004) and mercury injection capillary pressure curves (MICP) (Pittman, 1992). G.E. 

Archie (1950) noted that petrophysical rock typing should be based on the associated pore-

size distribution, which links the rock’s static and dynamic petrophysical properties. 

Different forms of pore-size distribution from various data sources have been documented 

and compared in previous publications (Basan et al., 1997). In this paper, pore-size 

distribution refers to incremental pore volume fraction versus logarithmic pore-throat 

radius, which is typically calculated from MICP curves using derivation method 

(Lenormand, 2003; Peters, 2012). Several authors (Clerke, 2009; Gao et al., 2011) 

documented their experience on using multiple Thomeer’s hyperbolas (1960) to fit MICP 
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curves when describing complex carbonate rock pore systems. This procedure implicitly 

invokes the derivative of Thomeer’s hyperbolas (referred to as Thomeer’s derivative) as 

the pore-size distribution function. Xu and Torres-Verdín (2013a) introduced a bimodal 

Gaussian density function to characterize pore-size distributions from MICP data, which 

gives rise to six attributes of interpretable petrophysical meaning. An important remaining 

piece of work is to combine all relevant attributes to define the petrophysical dissimilarity 

(conceptualized as petrophysical orthogonality) between pore systems for petrophysically 

consistent rock classification. 

 

In this paper, we first compare the reliability of Gaussian and Thomeer’s derivative in 

describing complex pore systems.  We then use bimodal Gaussian density functions to 

quantify complex pore systems in terms of pore volume, pore connectivity, and pore-size 

uniformity. Six attributes for each density function are estimated and interpreted for 

petrophysical meaning and subsequently integrated to assess petrophysical orthogonality 

between two pore systems. We introduce a new petrophysical rock typing method by 

clustering the orthogonality matrices after fitting MICP data, which provides good ranking 

of reservoir quality and enforces petrophysical consistency among all static and dynamic 

petrophysical properties. The new classification method is verified with field data acquired 

in the Bossier tight-gas sand reservoir located in the East Texas Basin. 

 

METHODS 
Bimodal Gaussian Pore-Size Distribution. Pore-throat size is often quantified on a 

logarithmic scale due to its wide variability across several orders of magnitude. Therefore, 

all Gaussian density functions in this paper treat the distribution of pore-throat size on a 

logarithmic scale (i.e., log-normal distribution). A bimodal Gaussian density function is 

expressed as  
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where R is pore-throat radius in μm, w1 and w2 are weighting coefficients for each 

Gaussian mode, logμ1 and logμ2 are the mean values of logarithmic pore-throat radius, and 

logσ1 and logσ2 are the corresponding standard deviations of logarithmic pore-throat radius. 

The petrophysical interpretation of these attributes is summarized as follows: 

 

Pore Volume: w1 and w2 are fractions of pore volume connected by large and small 

logarithmic pore-throat radius modes, respectively; w1 correlates with residual non-

wetting phase saturation during imbibition, while w2 correlates with irreducible 

wetting-phase saturation during drainage (Mohanty and Salter, 1982). 

Pore Connectivity: logμ1 and logμ2 are mean values of large and small logarithmic 

pore-throat radius modes, respectively; large values indicate better pore 

connectivity as well as permeability. 

Pore-Size Uniformity: logσ1 and logσ2 are standard deviations of large and small 

logarithmic pore-throat radius modes, which describe the uniformity of “capillary 
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tube sizes” (Childs and Collis-George, 1950). A larger value of standard deviation 

of pore-throat radius indicates possibly lower sorting of tube sizes, therefore higher 

tortuosity of the pore network. 

 

Xu and Torres-Verdín (2013a) introduced both differentiation and inversion methods to 

calculate bimodal Gaussian density functions from MICP data. The inversion method is 

preferred because it generates stable and smooth pore-size distribution functions. 

 
Comparison with Thomeer’s Derivative. Thomeer’s hyperbola is expressed as 
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where Shg is mercury saturation and Sw is the corresponding wetting phase saturation at 

capillary pressure Pc, G is pore geometrical factor reflecting the distribution of pore throats 

and their associated pore volume, and Pd is the extrapolated displacement or entry pressure. 

The derivative of Thomeer’s hyperbola is used implicitly as pore-size distribution function, 

given by 
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Figure 1 shows an example of fitting MICP data using Gaussian and Thomeer’s derivative 

as pore-size distribution functions. Although both functions fit the MICP curve, the 

parameters in the Gaussian density function relate more directly and intuitively to pore-

system attributes than the parameters included in Thomeer’s derivative. Noteworthy is that 

Thomeer’s model has the advantage to define a threshold pressure. This can also be 

achieved by introducing a cut-off in pore-throat size in the Gaussian model. 

 

Petrophysical Rock Classification with Pore-System Orthogonality. Xu and Torres-

Verdín (2013b) quantified the petrophysical orthogonality between two pore systems as  
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where ORT1,2 quantifies orthogonality between two unimodal Gaussian pore-size 

distributions. A positive orthogonality indicates that pore system No. 1 has better reservoir 

quality than pore system No. 2. Under this mathematical formulation, petrophysical 

orthogonality has the following properties: 

(i)  the orthogonality between two identical pore systems is zero; 

(ii) 1, 3 1, 2 2, 3ORT ORT ORT  ,                                         (5) 

where subscripts 1, 2, and 3 represent three pore systems. After fitting all MICP curves 

(total number = N) with Eq. (1), we calculate the petrophysical orthogonality between each 

core sample pair using Eq. (4) for both large and small pore-size modes, which are 

described in the form of NxN matrices. Diagonal elements of orthogonality matrices are all 

zero according to (i). The matrices rank all core samples in terms of reservoir quality, 

whereby they become suitable for petrophysical rock classification. We apply the 

dissimilarity matrix clustering technique (Hahsler and Hornik, 2011) to orthogonality 

matrices and classify MICP core samples into rock types with descending reservoir quality. 
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FIELD CASE 
We test the new method with a set of core data from the Bossier tight-gas sand formation, 

Upper Jurassic Cotton Valley Group in the East Texas Basin. Comprehensive core data 

from a key-study well was acquired for high-resolution petrophysical reservoir description 

(Rushing et al., 2008). Routine core porosity and permeability measurements were 

performed on more than 100 core plugs, which exhibit low porosity ranging from 2 to 10 

p.u. and low permeability ranging from 0.001 to 1 mD. In addition, high-pressure MICP (0 

– 60,000 psi) and NMR measurements were also measured on 20 preserved core plugs 

covering different depositional facies from a continuous full-diameter whole core. 
 

Figures 2a and 2b show the MICP curves the MICP-derived pore-size distributions ranked 

with rock types classified with the clustering orthogonality matrices. All rock types exhibit 

a dominant Gaussian pore-size distribution and a tail of small Gaussian pore-size 

distribution. We use the classification results obtained with clustering orthogonality 

matrices to color-code the porosity-permeability crossplot (Fig. 2c). Clear porosity-

permeability trends are observed for all rock types. Figures 2d-2g show the core NMR T2 

spectra grouped by rock types and Fig. 2h shows the crossplot of permeability and T2LM 

color-coded by rock types. Generally, T2 peak locations move leftward (lower T2) as the 

rock type number increases (overall reservoir quality decreases). The consistent description 

of rock types with different data confirms that the defined pore-system orthogonality 

provide a reliable petrophysical ranking criterion. 

 

CONCLUSIONS 
We introduced a bimodal Gaussian density function to describe complex pore systems 

analytically in terms of pore volume, pore connectivity, and pore-size uniformity. A new 

concept, referred to as pore-system orthogonality, was introduced to quantify petrophysical 

dissimilarity between two pore systems, which takes into account all relevant pore-system 

attributes, including pore volume, pore connectivity, and pore-size uniformity. Rock 

classification via clustering orthogonality matrices enables consistent reservoir quality 

ranking in all petrophysical data domains, including porosity-permeability trends, pore-size 

distribution, mercury injection capillary pressure, and core NMR T2 spectra. A test of the 

new method on twenty core samples from the Bossier tight-gas sandstones, East Texas, 

verified the reliability of the petrophysical ranking method.  
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Figure 1: Comparison of using a Gaussian density function and Thomeer’s derivative to model pore-size 

distributions from MICP data. Right panel: MICP modeling; Left panel: pore-size distribution modeling. 

   

    
Figure 2: Ranking of rock types in different data forms with pore-system orthogonality. 
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