
 

 SCA2013-083  1/6 
 

PERFECT CROSS FLOW MODEL FOR COUNTER-

CURRENT SPONTANEOUS IMBIBITION 

Rasoul Arabjamaloei
1
, Douglas W. Ruth

1
, Jonathan Bartley

2
, Geoffrey Mason

3
, 

Norman R. Morrow
3
 

1
University of Manitoba, 

2
Transport in Porous Media Laboratory, 

3
University of Wyoming 

 This paper was prepared for presentation at the International Symposium of the Society of Core 

Analysts held in Napa Valley, California, USA, 16-19 September, 2013 

ABSTRACT 

In the present work, counter-current spontaneous imbibition is modeled in a bundle of tubes 

with perfect cross flow. The developed formulation was solved analytically with an 

iteration based method for a sample tube bundle and the results were compared with 

numerical simulation results of the governing equations of counter-current spontaneous 

imbibition using core and fluid properties analogous to the tube bundle model. It was 

observed that the proposed model is an exact analog of the modified Darcy Law. The tube 

bundle model provides a powerful tool with which to study and model porous media 

because it allows detailed prediction of flow behavior.  

Particular attention was paid to the behavior of fluids at the imbibition face during a 

spontaneous counter-current imbibition process. The porous medium is assumed to be 

homogeneous and the fluids are assumed to be incompressible and immiscible in present 

study.  The paper concludes that the neither tube bundle models nor numerical simulation 

provide information on the imbibition face saturation condition and further experimental 

work is necessary.  

INTRODUCTION 

A porous medium consists of different sized pores connected by means of different sized 

throats in a three dimensional structure. Displacement of fluids in this medium is a complex 

process which has been investigated using pore-network models; however, the pore 

structure of a sample often can be simplified by using an equivalent but less complex model 

(tube bundle models). Pore-network models are developed with essentially the same 

geometry as real porous media; tube bundle models use a much greater level of abstraction. 

Pore-network models are more sophisticated and more complex than tube bundle models 

and have higher flexibility to match the real porous medium. Blunt et al [3] presented a 

review of the physics and characteristics of pore-network models. Three dimensional pore-

network models have been developed extensively since 1949 by many researchers [2]. 

The first tube bundle models did not introduce any interaction between the fluids flowing in 

neighboring tubes [9], which makes the models very simple but fails to predict the behavior 

of real porous media [7]. The deficiency of these simple models is more sensible in the case 

of complex two and three phase displacement processes. The interacting capillary bundle 

model was first described by Dong et al [4]. Another paper ([5]) by Dong et al. goes into 

details about the influence of viscosity and flow rate on a displacement process in tube 

bundle models. As shown by Ruth and Bartley [7], based on both theory and comparison 

with simulations, the “perfect cross flow (PCF)” model, as they term it, leads directly to the 
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usual modified Darcy’s law used extensively in analyzing multi-phase flow in porous 

media. Wang et al. [9], used triangular tubes instead of cylindrical in interacting uniform 

and serial type tube bundle models.  

In the present study, a two-dimensional cylindrical tube bundle model was used to develop 

an analytical model for counter-current spontaneous imbibition (COUCSI) and the effect of 

the imbibition face boundary condition was investigated. 

DEVELOPMENT OF THE PERFECT CROSS FLOW MODEL 

Figure 1 shows the perfect cross flow model for the case under consideration. As shown in 

previous works, the wetting fluid (water in this case) advances fastest in the smallest tube, 

although a detailed analysis shows that most of the flow occurs in the larger tubes. The 

small tubes provide the driving force but the large tubes provide the least resistance.  

It is generally believed that the non-wetting fluid will exit the sample through the largest 

tube. This assumption is equivalent to assuming essentially complete wetting of the open 

face in the COUCSI process in a natural porous medium. However, it has been observed in 

experiments that the open face saturation is closer to 50 % than 100% [6]. Arabjamaloei 

and Shadizadeh studied the inlet condition for COUCSI and proposed a method for 

determining its value [1]. Their prediction is that the imbibition face saturation corresponds 

to the value that minimizes the mobility variable defined as 
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Where Pc is the capillary pressure, µ is the viscosity, k is absolute permeability, Sw is 

wetting phase saturation. The subscripts w and nw denote the wetting and non-wetting 

phases respectively.These conflicting results are the reason that the effect of the imbibition 

face boundary condition was studied using the developed tube bundle model. 

Formulation of the process 

The wetting and non-wetting phase relative permeability expressions for a cylindrical tube 

bundle model (TBM) are presented by Wang et al. [9]. The basic development of the 

interacting capillary bundle model is given [7]. A similar approach was used to develop the 

formulations for COUCSI in TBM. (The development procedure will not be presented here 

because of space limitations). Three governing equations can be developed for TBM 

considering PCF as below (The largest tube which contributes to imbibition is denoted by 

the subscript I, and NT is the total number of tubes): 
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Here x is the spatial coordinate, and δ is the tube diameter, A is the cross sectional area, σ is 

the interfacial tension between two fluids, and θ is the contact angle.  fn is the ratio of the 

length of imbibed water in a tube over the length of water in the smallest tube (for smallest 

tube n=1). The (n) is the index for a tube. Moreover, the variables Mw and λw are defined as 

bellow:  
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During the process wetting phase enters the system from smaller tubes and the non-wetting 

phase exits the system through the larger tubes. If the behavior of the fronts in the tubes is 

self-similar, then the ratios of any two distances must be constant with time. It follows that 

fn is constant with time. As a consequence, the equations are algebraic and non-linear, but 

susceptible to solution by iteration. Once the fractions have been determined, Equation 2 

may be used to determine 1x (and subsequently the remaining nx ). 

Solution of the Developed Model 

The analytical solution for the above formulation can be obtained by guessing f2 and then 

by using equations 3 and 4 the fn values for each tube can be calculated. Regarding the 

backward calculation of Sw at different distances which starts at the front, by assuming a 

value for f2, we would obtain different wetting phase saturations at the imbibition face. 

Therefore, given a saturation at the imbibition face, the corresponding value of f2 may be 

obtained by an iterative approach. The numerical simulation of the COUCSI in a real 

porous medium by using continuity and Darcy’s equations are given in many papers and 

will not be presented here ([8]).  

Investigation of the effect of boundary condition  

As mentioned above, the open face boundary condition is still a question without a 

conclusive answer. Arabjamaloei and Shadizadeh (2010) proposed that the wetting phase 

saturation at the inlet is the one which minimizes the mobility variable. This condition leads 

to nonzero capillary pressure at the inlet. In this paper the effect of inlet water saturation on 

the process was investigated. Using the sample data in this paper the minimum value of 

mobility variable corresponds to a wetting phase saturation at the inlet of about 0.8. 
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CASE STUDY 

In this section the tube bundle model is compared with numerical simulation. A tube bundle 

consisting of 101 tubes with uniform distribution of tube sizes was chosen such that the 

smallest tube diameter was 1 μm and the largest was 10.1 μm with a linear increase in the 

diameter with tube number. The rest of the sample data are given in Table 1. By using 

different values for f2, the effect of inlet boundary condition was investigated. The 

simulator uses the Darcy law, is based on the finite volume method and is one-dimensional. 

DISCUSSION OF RESULTS 

Figure 3 represents the effect of the value of f2 on the saturation distribution obtained with 

TBM. In this figure, Sw is the sum of the areas of tubes occupied by water divided by the 

sum of the areas of all the tubes. As it is observed in Fig. 3, the chosen value of f2 has a 

major effect on saturation distribution and the inlet saturation. Figure 4 represents the 

results of numerical simulation of the sample of porous medium and the equivalent tube 

bundle model for the case of f2=0.993. As expected, both results are in agreement. This 

shows that the developed tube bundle model is an exact analogy of Darcy’s Law. An 

interesting feature of Figure 3 is that, by increasing the value of f2 above to 0.9935 (the 

dashed line in the figure), a plateau or a constant saturation zone is predicted by the tube 

bundle model. This means that water would move in all tubes except the widest one. It is 

impossible to obtain a constant saturation zone in simulation of COUCSI when using 

numerical methods which are based on Darcy’s law, because a constant saturation zone in 

the numerical simulation means the flow rate is zero.  Such a restriction does not apply for 

flow in a tube bundle model.  
In conclusion, we have two solution methods that agree with each other over a wide 

saturation range; the TBM provides additional model which can’t be simulated using 

numerical simulation (i.e. the constant saturation zone). However, neither of the solution 

methods lead to any prediction of the saturation at the inlet face, and in fact they allow 

essentially 100% water saturation at the inlet. But 100% wetting phase saturation is not 

supported experimentally. This finding emphasizes that future progress and understanding 

of COUCSI will depend on determining what the wetting phase saturation at the boundary 

is and what controls it.  This in turn calls for experimentation to determine this saturation 

condition. 
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Table 1. Data for the case study 

Parameter Value Parameter Value 

Permeability 5.795 μm
2
 Cross sectional area 0.01095 μm

2
 

Oil viscosity 1 cp Water viscosity 1 cp 

Interfacial tension (σ) 6 mN/m Contact angle (θ) 0 

Porosity 1 Sample length 50 cm 

 
Figure 1. Schematic of Tube Bundle Model 

 
Figure 2. Relative permeability and capillary pressure functions for tube bundle model 
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Figure 3. Water saturation distribution corresponding to different guess values for f2 (Sw shows the average 

cross sectional wetting phase saturation and fn is the ratio of x over xn) 

  
Figure 4. Comparison of water saturation distribution obtained by numerical simulation and tube bundle 

model 

 
Figure 5. Wetting phase flow rate for the curves in figure 4 
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