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ABSTRACT

We simulate three-phase capillary-controlled displacement using a multiphase variational
level set method which is extended to account for the presence of a static solid phase and
arbitrary, uniform contact angles. Motion of gas/oil/water triple lines is captured very
well with the method, whereas oil layers require high resolution to be modelled
accurately. We validate the method and apply it to simulate gas invasion and
simultaneous water- and gas-invasions after primary drainage on small, water-wet
sandstone geometry. The three-phase gas/oil and oil/water capillary pressure curves are
relatively similar to the corresponding two-phase curves, but they show some differences
that can be explained by pore-scale mechanisms. During gas invasion into oil and water,
existing water layers in pore corners affect the gas/oil capillary entry pressures in parts of
the sandstone geometry, whereas narrow water-filled throats prohibit invasion of gas
which instead displaces oil in other locations. During water invasion in the three-phase
case, water snap-off occurs frequently on gas/oil interfaces due to growth of water cusps
at gas/oil/solid contact lines. This mechanism is observed to occur at a higher oil/water
capillary pressure than the standard two-phase snap-off events in which cusps are absent.

INTRODUCTION

Three-phase enhanced oil recovery methods, such as depressurization, gas drainage and
water-alternate-gas (WAG) injection, require reliable models for three-phase capillary
pressure and relative permeability, hysteresis and phase trapping. However, measuring
three-phase capillary pressure is extremely time-consuming and challenging [16], and
few three-phase hysteresis data exist. Therefore, the common practice is to describe
three-phase capillary pressure and relative permeability in terms of correlations that are
based on much more readily available two-phase data. However, several studies show
that this approach may not describe the three-phase flow properties with sufficient
accuracy [7, 13]. Most three-phase hysteresis models are developed for relative
permeability, but reservoir-simulation results of WAG injection depend on the hysteresis
model used [11]. Further, three-phase trapping models [5] should account for the large
variations of residual gas and oil saturations observed in core-scale water floods [2].

Pore-scale modelling can be applied to determine consistent flow properties, including
hysteresis and phase-trapping behaviour, by simulating the fluid distribution directly in
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porous rocks. Among existing computational approaches [1, 4, 10, 15], network
modelling [1] is currently the most developed method for three-phase flow and previous
studies identify oil layers and multiple displacement events as key mechanisms that
control residual oil [1]. Since network models represent the porous structure as connected
pore elements of idealized shapes, high-resolution numerical simulations performed
directly on 3D rock images should result in a more realistic three-fluid distribution and
oil-layer structure. Thus far, only 2D lattice-Boltzmann models [15] have been used to
simulate three-phase flow in arbitrary pore geometries to our knowledge.

The Level Set (LS) method [9] describes fluid interfaces implicitly as the zero contours
of a scalar function and can handle changes of interface topology in a natural manner.
The Variational Level Set (VLS) method proposed by Zhao ef al. [17] is an extension of
the LS method for modelling the motion of three fluids and is capable of describing the
evolution of triple junctions in three-fluid systems very well. Other variational methods
for triple-junction motion are proposed more recently [3, 12]. However, none of these
methods incorporate a solid phase. Recently, we extended the conventional LS method
[10] to allow for nonzero contact angles on the solid surface [4]. In this work, we present
a similar extension of the VLS method [17] which enables us to simulate three-fluid
displacements in porous media with arbitrary, yet uniform wettability. As a first step, we
validate the method on idealized geometries and then simulate three-phase capillary
pressure curves for gas invasion and simultaneous water- and gas-invasion (SWAG)
processes directly on a 3D segmented image subset of sandstone geometry.

MULTIPHASE FLUID-SOLID VLS METHOD
We shall develop a numerical method which simulates capillary-controlled three-phase
displacements at the pore scale. Thus, at equilibrium, the interfaces satisfy Young-
Laplace equation in the pore space and Young’s equation at the pore/solid boundary:
P,=0,C; (1) and o0,c080,=0,—-0,, Iij=go,ow,gw. (2)
In these equations, C, are fluid/fluid interface curvatures, o, and o are fluid/fluid and
fluid/solid interfacial tensions, and 6, are contact angles. From equation (2) it follows that
the contact angles and interfacial tensions in a three-phase system are related by [13]
O, c086,, =0, cos6,+0,, co80, . (3)
We adopt van Dijke and Sorbie’s linear relationships [13], which satisfy equation (3) and
describe cosf,, and cos@,, as functions of cosd, , to determine the three-phase contact

ow?

angles used in this work.

The LS method [9] is a sub-grid-scale interface tracking method which describes fluid
interfaces implicitly as the zero contours of a scalar function ¢(7c) Thus, ¢ < 0inside the
fluid, ¢ > 0 outside, and ¢ =0 on the interfaces. The unit normal vector and curvature is

given asn, = V¢/ |V ¢| andk, =V -n,, respectively. The ¢ -fields evolve according to
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bV VO + Vi V=0, 4)
where ¥, and V.

adv

are normal and advective velocity components. Prodanovi¢ and Bryant
[10] applied the LS method to simulate two-phase, zero contact angle, capillary-
controlled displacement on 3D porous structures, assuming V, =C, —x and V,, = 0.
The solid surfaces are represented by the zero contours of a static LS function i .
Jettestuen et al. [4] included arbitrary contact angles by allowing ¢ to intersect the solid
phase. The intersection angle £ is related to the fluid/fluid and pore/solid LS contours
through the scalar product of their unit normal vectors:

fy-h,=cosfi & V¢-Vt//—cosﬂ|v¢||Vty|=0. %)
The contact angle is @ =180° — £ . This method introduces different velocities of ¢ in the
pore and solid. At equilibrium, C, =« in pore and equation (5) is satisfied in solid.

Contrary to the LS method, the VLS method by Zhao et al. [17] specifies one LS function
¢, per fluid. Each fluid is also equipped with a phase pressure p, and a “surface” tension

7,. We extend the method to account for a solid phase by also assigning a solid/fluid
intersection angle S, to each fluid such that the zero contours of ¢, can intersect the solid.
We choose to measure £, on the interior side of its fluid, see Figure 1. The pore-space
domains occupied by the different fluids are given by

Q ={eQ:¢(x)<0 andy(¥)>0}, i=g,o0,w. (6)
Figure 1 illustrates these regions and the parameters introduced in the VLS method.
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Figure 1: Illustration of the VLS method and its parameters in a simple pore/solid geometry. Figure (a)
shows that overlap and/or vacuum regions generally occur if different LS functions move with independent
velocities. Figure (b) illustrates the effect of including the no-vacuum/overlap constraint and shows an
equilibrium configuration in which Young-Laplace equation is satisfied in the pore space, whereas the
contact angles form at the interfaces intersecting the pore walls.
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Volume and area quantities are easily calculated by means of Heaviside step
functions H(...)and delta functions &(...) within the LS framework [9]. Thus, the total

energy of the system, which constitutes the sum of bulk fluid, fluid/fluid and solid/fluid
interfacial energy, is given by

E=Y ij wdv+ Y le.5 Vo, |H(y)dv
i=g,0,w i=g,0,w (7)
+ > (7, =y, cos B, IH Sy |V ylav

i=g,0,w

The first two terms follow [17], but we add the last term to include the solid/fluid energy.
In this description, we express solid/fluid interfacial tensions in terms of the surface
tensions and intersection angles as

o,=y,—y;,cosf, i=g,0w. (8)
Depending on f,, the last term in equation (8) can be positive or negative, and the role of
the positive constant y_ is only to ensure o, > 0. The term involving y_ in equation (7)
vanishes during minimization of energy as it does not depend on the fluids.

Vacuum or overlap regions may form at the interfaces if the zero contours of ¢ move

with independent velocities, see Figure 1a. We follow [17] and introduce a constraint
which prevents these regions such that ¢, =0 of the three fluids stay closely aligned:

_J(,Zo:f] JdV 0. )

Thus, under action of the constraint, fluid/fluid interfaces appear as the zero contours of
the two fluids forming the interface, see Figure 1b. This gives rise to interfacial tensions
on the interfaces, which are defined as

;=77 i =go,ow,gw, (10)
and contact angles at the interface-solid intersections, which satisfy
(}/[+7/j)cosﬁy.zyjcosﬂj—y[cos ., for ij = go,ow,gw, (11)

in equilibrium. Equation (11) is equivalent to Young’s equation (2). Consequently,
equations (10) and (11) are consistent with equation (3). Applying the linear contact

angle relations [13], it follows that 5 = B,=180"-6,, and S, =180".

In equation (7), we replace o (l//) with H (w)/ Ax to extend contact angle formation into

solid, following [4]. Numerically, this describes the contact angle on the pore/solid
surface more accurately. The intersection angle must satisfy equation (5). Thus, we
propose to minimize the following functional to account for all features:

1(6,.0,.0.)- j[ S 8l 37500V 8l +—( S i)
i=g,0,w i=g,0,w j=g,0,w (12)

Vo V H
) Z”[|v‘§’-|’|v5|“’°sﬁl} L ws }W

i=g,0,w

ow’
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The first three terms on the right-hand side of equation (12) follow [17], whereas the last
term is responsible for forming the contact angle on the pore wall and extend it into solid.
Ais a Lagrange multiplier. Minimizing equation (12) amounts to calculating the Frechét
derivative of /" with respect to ¢,, and determining the solutions of /0¢, =0, i = g,0,w.

Following [17], we find that the evolution equations are given by

<¢,.>,+H<w)(p,.—y,.zq>|w|+{ zH<—¢,-)—1]|w|

Jj=g.0,w

(13)
+H(—V/)S(‘//)£(V¢i Vy —cos BV4|Vy|)=0, i=g.ow,

with boundary conditions on the computational domain given by 7-V¢ =0 for i=g,o,w.

In equation (13) we added a smooth sign function S(w) to ensure numerical stability [4].

The three evolution equations (13) are coupled only through the constraint and the
Lagrange multiplier 4 which is given by

z J.[ ZH(_¢j)_1J5(¢i)(H([//)(]/iKi _pilv¢i|+

i=g,0,w Q\ J=E-0,W

H(—W)S(W)g(COSﬁ’,»IWiIIV w|-V4, -Vw)jdV

3 j[ S H(- ¢j)—1]25(¢,,)|v¢i|drf

i=g,0,wQ\ j=g,0,w
It follows from the evolution equations (13) that an interface between fluid i
and j obtains equilibrium in the pore space if

(v V| =, ~7x)|V8)|. (15)
Vé|=|Vg,| and C; =K, =—x,

J

(14)

Because the interfacial tension is given by equation (10),

is satisfied on the interface, we recover Young-Laplace’s equation (1). Similarly,
equilibrium is reached along anij -interface intersecting the solid phase if

7 (Ve -V —cos BV 4|V = 7,(Ve, -V —cos B, [V, |[Vy)). (16)
Because V¢, = -V ¢, at the interface, and ﬁ¢j -1, = cos @, , we obtain equation (11).

The evolution equations (13) are solved by standard explicit numerical schemes for LS
methods [9, 4]. For non-wetting phase invasion we add, to the inlet face, a pore-space
layer occupied by invading phase, while for invasion of wetting or intermediate-wetting
phases, we instead add a porous plate saturated and wetted by the invading phase.

SIMULATION RESULTS

The input parameters for the VLS method are phase pressures p,, surface tensions y, and
intersection angles £, for all fluids. For a given set of three-phase interfacial tensions and

contact angles [13], we use equations (10) and (11) to determine the corresponding y,
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and f,. Table 1 shows the parameter combinations applied in this work. We use the VLS

method to simulate three-phase processes quasi-statically by changing the phase
pressures stepwise, and in each step, we solve equations (13) and (14) until equilibrium
states are reached and fluid saturations are calculated. The two-phase saturation history is
simulated with the contact-angle LS method [4] which describes interfaces by one LS

function and is thus less computationally expensive. We use voxel length Ax*™ =0.001
in all simulations. The results are plotted in terms of physical interface curvature
C.=PI"Ax"" (6" Ax),ij = go,ow, gw, where Ax is physical voxel length. We visualize

i cij ij
fluid interfaces inside the pore space as iso-surfaces@ =0 of ¢ =min(—¢.,y),i=g,0,w.

Physical parameters Model parameters

Case O_ow O-go O-gw eow ego egw Y w 7 o Y g ﬂ w ﬂo ﬂ g
(N/m) | (N/m) | (N/m) | (deg) | (deg) | (deg) | (N'm) | (N/m) | (N/m) | (deg) | (deg) | (deg)

1 0.02 | 0.0101 | 0.03 40 7.6 | 324 | 1.995 | 0.005 | 1.005 | 40 140 | 180

2 0.02 | 0.0101 | 0.03 20 7.9 16.3 | 1.995 | 0.005 | 1.005 | 20 160 | 180

3 0.02 | 0.005 | 0.023 40 49.7 | 36.2 1.9 0.1 0.4 40 140 | 180

Table 1: Parameters for the physical systems and corresponding model systems used in the simulations. All
simulations were carried out using Ax*” =0.001. The model interfacial tensions ( ;i +7;) are rescaled

such that all y, > Ax*™ [17]. The phase pressures given as input are increased correspondingly.

Validation. We validate the three-phase VLS method by comparing simulations against
analytical three-phase solutions in idealized 3D pore geometries. First, we consider gas
invasion into a straight tube with star-shaped cross-section initially occupied by oil in the
bulk portion and water in the corners, using Case 1 parameters (see Table 1). Results are
shown in Figure 2. Simulated gas-oil entry curvature agrees well with the analytical
curvature calculated by Mayer & Stowe-Princen (MS-P) method (e.g., [8]), and the
relative error is less than 5.9 %. Consistent with the three-phase extension of the MS-P
method [14], oil layers form between bulk gas and corner water. According to analytical

calculations [14], oil layers should exist up to C,, =0.37 um™. However, in the VLS

simulation, oil-layer displacements occur at smaller and different gas-oil curvatures, and
all layers are displaced at C,, =0.28 um™. A more accurate description of the oil-layer

existence requires higher grid resolution.
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Figure 2: Stable configurations of gas (green), oil (red) and water (blue) (a, b) during upward gas invasion
into a straight tube with constant star-shape cross-section, using Case 1 parameters and physical voxel
length Ax=1pum. Gas invasion is simulated at constant oil-water interface curvature C,, =024 pm™.

Figure (c) compares the simulated curvature-saturation curve against analytical three-phase results [14].
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(a) Cy, =0.327 pm’! (b) C,, =0.28 pm’! (©)

Figure 3: Fluid configurations of gas (green), oil (red) and water (blue) during gas invasion into a sphere-
pack pore throat, using physical voxel length Ax=1pum, Case 2 (a) and Case 3 (b) parameters. The pore
geometry (c) is initially occupied by bulk oil and water rings that are located around the sphere contacts.
Gas invasion is simulated at constant oil-water curvatures C,,, =0.5 pum™ (a) and c,, =032 pum™ (b).

Similar gas invasions are simulated in a pore throat formed by the space between four
spheres with half angle ¢ =32° and radius R =30 pm as shown in Figure 3, using Case 2
and 3 parameters. Two-phase oil-water entry curvatures are calculated by the contact-
angle LS method [4], and in Case 2, dimensionless oil-water entry curvature is
C,,R=9.0 while the analytical value obtained from two-phase MS-P/Purcell method
(Table 2 in [8]) 1s 9.4, which gives a relative error of 4.2%. The following gas invasions
are simulated with VLS method. In Case 2 (Figure 3a), oil layers exist in the last stable
configuration before gas invades the throat. Thus, the three-phase gas-oil entry curvature
is most likely not influenced by the water rings and is similar to the equivalent two-phase
curvature. We obtain entry curvature 9.51<C,,R <9.81, while two-phase MS-P/Purcell

method (with &, =10") gives 9.65. Thus, the relative error is smaller than 3.1%.

In Case 3 (Figure 3b), almost all oil layers have collapsed in the last stable configuration
before gas invasion, and gas/oil/water triple lines form. Consequently, the gas-oil entry
curvature depends on the water pressure. In this case, we obtain 7.8 <C, R <8.4, while

the two-phase MS-P/Purcell method gives 7.48, resulting in a relative error less than
10.9%. The larger deviation in this case might be due to the impact of the water rings. We
also applied the three-phase MS-P method [14] on an equivalent straight tube formed by
the space between four cylinders with radii R =30 pm and ¢ =32° and found only minor
differences when compared with the standard two-phase MS-P method (Table 1 in [8]).
However, the difference between two- and three-phase entry curvatures in sphere-pack
throats is not known and could show different behaviour than in cylindrical throats. The
MS-P/Purcell method is more accurate than the standard MS-P method in sphere-pack
throats, particularly for large contact angles, but it is valid for two phases only.

Sandstone pore structures. We extracted a small subset of size 60x60x70 voxels from a
freely available, segmented 3D image of Castlegate sandstone with voxel length Ax =5.6
pm. From two initial water saturations S, after primary drainage, we simulate water
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imbibition and three-phase gas- and SWAG-invasion processes on the extracted subset
using Case 2 parameters. The two-phase processes are simulated with contact-angle LS
method [4]. Three-phase gas invasion is simulated by increasing gas pressure stepwise
using bottom face as inlet, while the other phase pressures are constant. SWAG invasions
are performed similarly, except that gas and water pressures are increased stepwise at the
same time. The water pressure is increased by twice the gas-pressure increment.

Figure 4 presents the simulated results. For the SWAG process atS,;, =0.13, we plot in

Figure 4b only the branch of the gas-oil curve that corresponds to increasing gas
saturation in the displacement path shown in Figure 4a. Overall, the two- and three-phase
curvature curves are similar, which is as expected at water-wet conditions [6]. However,
some deviations in the gas-oil curvature curves occur at liquid saturations smaller than
0.7, see Figure 4b. The two-phase oil-water primary drainage curve is slightly higher than
the three-phase gas-oil curves despite 6, <6, . We explain this by the presence of water

films, which, depending on geometry and water pressure, can result in smaller gas-oil
entry curvatures [14]. However, at increased .S, ;, narrow throats can be occupied by
water, and gas displaces oil at other locations instead. This results in higher levels of the
gas-oil curvature curves, as shown in Figure 4b. In the SWAG processes, water snap-off
occurs as a result of water-cusp growth at the gas/oil/solid contact lines, which causes gas
and oil to retract to wider pore openings while water occupies the narrower throats. This
reduces the possible paths for gas/oil displacements. Further, growth of water layers
during SWAG processes may affect the gas/oil capillary entry curvature differently in
different locations. Overall, we observe higher gas/oil curvature curves for the SWAG
processes, as shown in Figure 4b. Figure 5 shows configurations during gas invasion

fromS,, =0.06. The gas configurations are similar to the oil configurations in primary

drainage. In the three-phase case, oil is isolated in places where water was isolated in
primary drainage. These images also show a narrow throat, initially occupied by oil with
a gas/oil interface present at its entrance, which gets invaded by water because water
cusps at the gas/oil/solid contact lines bridge across the throat. The gas invasion
from S, =0.13 (not shown) exhibit similar trends, but thicker water layers occur and a

few narrow constrictions occupied by oil at S, = 0.06 are instead occupied by water.

The two- and three-phase oil-water curvature-saturation curves are shown in Figure 4c.
They are relatively similar, which is in agreement with experimental work [6], but parts
of the three-phase curves for the SWAG processes are located at higher capillary levels.
This is due to three-phase water snap-off mechanisms which we observe to occur
frequently as a result of water-cusp growth at gas/oil/solid contact lines. Bridging of
water cusps across narrow throats occur at higher oil-water capillary pressures than the
snap-off events observed in the corresponding two-phase imbibition simulations. This is
because cusp heights can be larger than film thicknesses. Further, water cusps can also
affect the film thickness in their vicinity. Water-cusp volume also contributes to higher
water saturation than in the two-phase case where cusps are absent. Depending on
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geometry, this can also cause water to snap off oil in three-phase systems in the same
manner as in the two-phase case, but at higher capillary pressure due to thicker water
films in the cusp vicinity. Once the water snap-off mechanisms have separated the gas
and oil phase, the three-phase imbibition curve becomes lower than the two-phase curves

because a lower capillary pressure is required to displace the gas.
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Figure 4: Simulation results in a pore structure
extracted from a segmented three-dimensional
image of Castlegate sandstone: (a) Displacement
paths for gas invasion (G) and simultaneous water
and gas invasion (SWAG) processes from two
initial water saturations after two-phase oil/water
primary drainage; (b) Three-phase gas-oil
interface curvature as a function of total liquid
saturation together with the two-phase oil/water
primary drainage curve (PD); and (c) Three-phase
oil-water interface curvature as a function of water
saturation for the SWAG processes and the two-
phase oil/water imbibition curves after primary
drainage.
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Figure 5: Stable fluid configurations of gas (green), oil (red) and water (blue) in Castlegate sandstone
during gas invasion at constant oil-water capillary pressure from §S,,; = 0.06 after primary drainage.

Cgo =0.93x10° m
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(a) C,, =0.93x10°m’ (b) C,, =1.02x10° m” (¢) Cpp =1.19%x10° m
C,, =098x10°m" C,, =0.89x10°m" C,, =0.71x10°m"
Figure 6: Stable three-phase configurations of gas (green), oil (red) and water (blue) in Castlegate

sandstone for three combinations of gas-oil and oil-water capillary pressures during SWAG invasion from
S,; =0.06 after primary drainage.

(@) Cp, =0.66x10°m’! (b) C,, =0.75x10° m" (¢) C,, =0.75x10° m"
C,, =0.63x10°m" C,, =0.54x10°m" C,, =0.54x10°m"

(d) C,, =0.84x10°m" (¢) C,, =0.84x10° m” () C,, =0.84x10°m"
C,, =0.45x10°m” C,, =045x10°m" C,, =0.45x10°m”
Figure 7: Stable (a, ¢ and f) and unstable (b, d and e) three-phase configurations of gas (green), oil (red)
and water (blue) in Castlegate sandstone for three combinations of gas-oil and oil-water capillary pressure

during SWAG invasion from S,; =0.13 after primary drainage.

Figure 6 shows fluid configurations during the SWAG process fromS,, =0.06. Gas

displaces oil by piston-like invasion and Haines jumps as in the pure gas invasion
processes in Figure 5. Simultaneously, water layers grow and eventually snap-off occurs
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at the gas/oil interfaces, see for example the throats located in the lower front part of the
sample in Figure 6. Figure 7 shows configurations during the SWAG process
from S, =0.13. Figure 7a-b shows that a three-phase water snap-off event occurs in the

left part of the sample, while water snaps off oil in the right part. Figure 7c-d shows that
water layers grow near the main gas/oil menisci at the top, and eventually gas/oil/water
triple lines form. Figure 7d-e shows that water snaps off oil to the right, and in Figure 7e-
f, three-phase water snap-off occurs at the left gas/oil interface. These events divert oil to
the sides, while gas retracts downwards when water separates gas and oil completely.

CONCLUSION

We developed a three-dimensional, three-phase variational level set method for capillary-
controlled displacement which accounts for a static solid phase and all permissible sets of
three-phase contact angles and interfacial tensions. Simulations of three-phase capillary
entry pressures for gas invasion into idealized pore throats, initially occupied by oil and
water, agree excellently with analytical calculations based on (three-phase) MS-P
method. The VLS method captures very well the motion of gas/oil/water triple lines and
wetting-phase cusps at the triple lines, whereas oil-layer displacements in pore corners
require high resolution to be modelled accurately. The next step in the development is to
include volume preservation of isolated fluid clusters surrounded by one or more fluids.

We applied the VLS method on a small water-wet sandstone geometry to simulate gas-
and SWAG-invasions from different initial water saturations after primary drainage. The
obtained three-phase gas/oil and oil/water capillary pressure curves are comparable with
the corresponding two-phase curves, but deviations occur due to different pore-scale
displacement mechanisms. The level of three-phase gas/oil capillary pressure increases
slightly with initial water saturation because narrow throats occupied by water prohibit
invasion of gas which instead displaces oil in other locations. However, the presence of
water layers in pore corners may reduce the gas/oil capillary entry pressures in parts of
the sandstone as compared to the two-phase case. Differences between two- and three-
phase oil/water imbibition curves are caused by snap-off mechanisms. In the three-phase
case, water snap-off occurs frequently on gas/oil interfaces due to water-cusp growth at
gas/oil/solid contact lines. This mechanism is observed to occur at a higher oil/water
capillary pressure than the standard two-phase snap-off events in which cusps are absent.

Finally, the developed three-phase VLS method shows potential to boost interest and add
applicability areas to Digital Rock Physics Technology as it need not be limited to
investigating two-phase processes.
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