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ABSTRACT
Depositional structures such as laminae in sandstones reflect local changes in grain size,
shape, orientation and composition. Laminae can occur as a set of parallel or intersecting
structures, depending on the depositional processes. Further aided by diagenetic
modifications, pore structures and pore surface properties may vary to a large degree, in
their topology and geometry as well as physicochemical nature, within each lamina and
across a set of laminae. The combination of spatial arrangements and local properties
means that laminations can greatly influence the flow of multi-phase fluids. As an
example, it is well-known that sandstone laminae can trap a significant amount of
hydrocarbon in reservoirs. Most of the previous studies, however, treat each lamina as a
uniform continuum without taking into consideration the true grain-pore characteristics
associated with them (see [1] and references therein), whereas fewer others did but for
tabular lamina only [2].

To gain a fuller understanding of the aforementioned combinational effect on multi-phase
fluid flow and to obtain more appropriate estimates of effective properties for cross-
laminated reservoir rock samples, we are taking digital rock analysis approach by
reconstructing the pore structures of representative samples and then numerically
simulating fluid flow through the pore systems. Because a representative sample deems to
be much larger than a usual core plug, the reconstruction calls for multi-scale imaging
techniques (e.g. using industrial CT scanner, microCT, Scanning Electron Microscopy
(SEM)) to capture the spatial arrangements of the laminae and associated diverse pore
structures, and deterministic and stochastic integration techniques to fuse obtained images.
In integration, the lamina structures, which are captured in low-resolution 3D images,
need to be calibrated against those identified in high-resolution 2/3D images, in order to
reconstruct fine-scale grains and pores in those coarser structures. However, it is non-
trivial to identify those structures in a high-resolution image. In this report, we develop an
automated machine-learning procedure for image classification to perform this task. We
illustrate this procedure using an SEM image of a cross-laminated tight sandstone sample.
This work is an attempt to extend multi-scale data integration for digital rock analysis
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beyond what has been proposed for core plugs [3] to larger and structurally more
complex samples.

INTRODUCTION
The purpose of our work is to show how to use image analysis to distinguish sedimentary
structures, namely tabular and cross laminations from a high-resolution grey-scale SEM
image of a tight sandstone sample. We do so by image classification based on a range of
image features, each of which characterises a certain aspect of the grey-scale intensity
data of an image. For example, the mean and standard deviation of grey-scale values in a
selected window of an image measure the local variation and can be used to compare two
windows for their similarity, while the Sobel filter, treated as a feature here, identifies the
edges of the sub-regions. Other image features used in this work are mentioned in a later
section. A known fact of image classification for a natural porous material is that its true
physical characters are rarely related to image features through a simple and linear
relationship.

SEM has long been used successfully in petrographic analysis [4, 5]. It can image the
whole thin section of a typical size at a resolution down to a few hundred nanometres –
sufficient for resolving grains and pores for a tight sandstone sample. However,
classifying a high-resolution SEM image is not trivial because: 1) the composition of
grain-forming materials does not always allow adjacent pixel values to be distinguished
un-ambiguously and robustly; 2) an image may contain too much detailed information
that may distract and obscure the identification of large-scale patterns of concern; and 3)
a naive interactive classification often presumes a simple and linear relationship between
the image features and true classes.

Given an SEM image, simple image filtering techniques are capable of identifying
specific textual patterns of the image, but incapable of discovering a complex nonlinear
relationship between features and classes. Machine learning is an approach where hidden
relationships in a system can be discovered through learning from the data using
computer algorithms. It has been shown that many machine-learning algorithms can be
trained for a nonlinear system using a small set of samples to make correct predictions
where an unknown sample belongs to a certain part of the system. In what follows we
develop an automated procedure to classify the grey-scale values of a given SEM image
into classes corresponding to physical characters.

The Procedure
Figure 1 illustrates our classification procedure. Given an SEM image, sub-domain
samples are taken randomly first and then are classified or labelled into classes without
supervision, i.e. without knowing ‘true’ labels. This set of samples becomes a training
dataset on which the whole image is to be classified using a supervised algorithm that
makes use of class labels directly. Finally the success of the classification is evaluated.
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To use this procedure, the following need to be decided: 1) the resolution of the thinnest
lamina in the input image; 2) the sizes of sub-sampling templates; 3) the numbers of sub-
samples to take; and 4) features and algorithms for unsupervised and supervised
classifications, respectively.

As mentioned above, a high-
resolution SEM image, which
may be created by tiling images
taken on an array of
overlapping sub-domains in
turn, may not be suited for
identifying laminae because
there is too much sub-resolution
information that can be
distractive for classification.
Therefore, such sub-resolution information should be suppressed first. Multi-scale spatial
patterns in an image may be separated out using techniques such as curvelet
transformation [6] and suppressed selectively. Since only laminae are of interest, one may
even choose to simply coarsen an image by averaging pixels. An image may be scaled by
a factor to ensure that the thinnest lamina can be resolved sufficiently and therefore
appropriate templates can be defined.

Given an image, the dimensions of an appropriate template in a certain shape (e.g. square)
should be smaller than the thickness of the thinnest lamina and large enough so that the
coefficient of variation (Cv) of the mean values for all templates at the same size is small.
The mean value of each template is calculated as an arithmetic mean of the grey-scale
values in a template. To determine a suitable template, one can carry out a test by
positioning templates of a number of sizes at randomly selected sites, and then choose the
size that gives a local minimum of the Cv. Note that the Cv is expected to oscillate from
one template size to another due to the constraint that a template must be smaller than the
thicknesses of the thinnest lamina. The degree of that oscillation seems to be greater if the
resolution of the image is lower. To determine how many samples are required, a random
sampling can proceed by increasing the number of samples so that the Cv decreases to a
stable value.

At this point, one will obtain a set of samples and can label them by an unsupervised
algorithm such as K-means or an even simpler one as described in a following section.
These labelled templates form a labelled training dataset that is needed for classifying the
whole image using supervised algorithms. The number of classes could be chosen
heuristically. Since the results of a supervised classification depend on the labels of a
training dataset, it is important to label the templates using few generic image features,
such as the mean and standard deviation; they measure broad characters of interest and
are suitable for unsupervised classification.

Figure 1 A schematic diagram of a classification procedure for an
SEM image of a cross-laminated sandstone. Note that the last
image shows the pixel-wise difference of two classified images.
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There are many supervised classification algorithms available. A suitable algorithm must
be able to: 1) take multiple features; 2) discover the hidden nonlinear relationship
between features and the true resulting classes; and 3) distinguish weak differences in the
image reliably and robustly. Most of the supervised classification algorithms do meet the
first two requirements. The third requirement can only be met if one can choose features
that can characterise important subtle variations of the image.

This procedure can be automated if an a-priori estimate of the thinnest lamina of an
image can be determined.

A Demonstration Case
To demonstrate the procedure above, we implemented it in ImageJ
(http://imagej.nih.gov/ij/), using the ImageJ macro programming language and WEKA
plugin [7]. Then we carried out the classification on an SEM image that was obtained
from a thin section of a fine-grained tight Triassic red sandstone sample (Figure 2a) in
Southwest Scotland, UK.

The sample
contains visible
laminae of
climbing ripples at
the top, and tabular
laminae at the
bottom, and the
former are less
distinguishable
than the latter due
to mineral changes, a character often useful for classifying laminae [8, 9]. Because
information contents in the image are different for these two types of laminae, it is
important to recognise and distinguish them. Figure 2a shows the sample block, from
which an impregnated thin section (Figures 2b) was obtained, and subsequently scanned
using SEM (Figure 2c) where the yellow rectangle region was used in this demonstration.
Figure 2d shows grain and pore sizes of the sample and they are below 100 microns.

Following the
procedure above, we
first chose to rescale
the image, by local
averaging, into 3
different sizes
(Figure 3a): I -

900x1424, II -
450x712 and III -

Figure 2 (a) The sample block; (b) 1x1.5 inch impregnated thin section; (c) SEM
image (17328x26378 pixels, resolution≈1.1um); and (d) grains, pores and their
scales.

Figure 3 (a) the SEM image and a selected region on a lamina (b) I (c) II (d)
III. The heights of the yellow boxes are the thicknesses of that lamina after
rescaling, respectively.
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265x419 pixels, respectively. As shown in Figure 3b to 3d, the thinnest lamina is
approximately 20, 12 or 5 pixels, respectively.

For these three images, random
sampling was carried out using a
square template at a number of
template sizes. The minimum template
sizes were determined to be 13x13
12x12 and 9x9 pixels for I, II and III,
respectively, according to the Cv in
Figure 4a. III was over-scaled because
the template dimension was larger than
the thinnest lamina and therefore
excluded from the further analysis. The number of the samples is chosen to be 100. The
remaining two images, I and II are both suitable for further analysis but only II was
chosen in this demonstration. Figure 4 plots Cv versus the template size and the number
of samples.

One hundred templates of
12x12 pixels in size were
selected randomly and then
labelled into 3 groups using a
simpler scheme as shown in
Figure 5a. Figure 5b shows
100 labelled random samples
using a template of 12x12
pixels in size. Having had this
labelled training dataset, we
carried out the supervised classification using WEKA’s fast random forest algorithm. We
used the following 9 features: Gaussian Blur(GB), Sobel Filter(SF), Hessian(H),
Difference of Gaussians(DG), Membrane Projections(MP), Mean(M), Variance(V),
Entropy(E) and Neighbours(N) in the supervised classification. Figure 5c shows the
resulting classification for II. Note that the red label indicates denser and better sorted
laminae, the green colour indicates the lamina interfaces where mineral change emerges,
and the blue colour the coarser and poorly sorted laminae. It is evident that this procedure
can identify not only high contrast laminae, due to the change of mineralogy, but also
weakly contrasting laminae or within-lamina patterns, due to grain size and orientation
changes.

To explore the contribution of each
feature, in addition to M and V, to
the classification, we calculate the
similarity for each selected pair of
features for 6 combinations as

Figure 5 (a) A scheme for labelling randomly sampled templates
used in this work. (b) Samples labelled (c) WEKA classification
result.

Table 1 Comparison of Classification of Pixel-wise Matched
Classes (%).

Figure 4 (a) Coefficient of Variation (Cv) vs. Template
Size; (b) Cv and Run Time vs. the Number of Samples
for II.
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shown in Table 1. The similarity is calculated as the percentage of pixels being identical
(i.e. same classes) between a selected pair of classified images. Clearly the difference
between any pair is around 25-30% and this suggests that a better classification could be
achieved if using more than 3 or more suitable features.

CONCLUSIONS
We described a machine-learning procedure for classification of SEM images of cross-
laminated sandstones for digital rock analysis. This procedure can be automated to
achieve a robust classification and to address major issues that hinder the use of high-
resolution SEM images for calibrating low resolution images as needed in the multi-scale
image integration. We showed that the procedure can lead to a successful classification
for a tight-sand SEM image where lamina patterns can be reasonably distinguished on a
thin section. This work shows that the multi-scale data integration of digital rock analysis
could be extended to larger and structurally more complex samples.
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