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ABSTRACT

We proposed a workflow for porosity-permeability and porosity-formation factor
trends upscaling based on digital rock physics. The workflow consists of three important
parts that integrate information between coarse and fine scales. First, building blocks, i.e.,
unique rock fabrics presented in a reservoir rock sample, are extracted based on statistics
derived from a 3D coarse scale image. Next, one or several high resolution 3D fine scale
images of all building blocks are used to derive their fine scale permeability and
formation factor trends. Then the fine scale trends of each individual building block are
used to populate each voxel of the 3D coarse scale image with permeability and electrical
conductivity. This procedure takes into account the variation of conductivity and
permeability within a building block on the coarser scale and frees us from applying only
a single value in each building block. This procedure can be applied recursively to cover
the whole range, e.g. from nano-CT images up to the whole core CT-images.

The capability of the workflow is demonstrated first with artificially generated
rocks. The results suggest up to 50% error in permeability prediction when the workflow
is not integrated. Then, a study of a real reservoir rock with the proposed workflow opens
a new level of understanding of permeability from building blocks up to plug scale. The
accuracy of the workflow is confirmed with a laboratory measurement.

INTRODUCTION

It is well known that rocks in recently-discovered reservoirs inherit high degree of
heterogeneity and scale-dependence, examples include carbonate reservoirs. To
complicate matters further, the length scale that defines properties of the sample can span
several orders of magnitude, see Figure 1 for an illustrated example. A digital rock
physics-based workflow that can accurately upscale petrophysical properties from the
fundamental unit of rock samples to a desired scale, e.g. core and log scale, is one of the
important challenges in oil and gas industry. The obtained results should be able to apply
directly or in combination with reservoir simulations to assess sensitivity and robustness
of reservoirs.

Multi-scale effects on petrophysical properties have been studied by scientists and
engineers. Grader et al. [1] employed multi-scale imaging techniques to acquire images
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of carbonate rocks at various resolutions. High resolution images were used to compute
petrophysical properties, e.g. porosity, absolute and relative permeability. The work was
one of the first pioneer works to demonstrate the potential of digital rock physics. Serag
El Din et al. [2] performed measurements of carbonate samples ranged from small trims
to whole core samples. They observed differences in permeability and cementation
exponents measured on different scales. They concluded that whole cores provide more
representative measurements and decrease uncertainty in physical interpretation.
Skalinski et al. [3] integrated three scales of petrophysical data using measurements and
digital rock physics. The Darcy upscaling simulations were used to predict permeability
of large scale samples. Recently, Khalili et al. [4] proposed an upscaling approach for
permeability and formation factor using multi-scale x-ray CT imaging techniques, image
registration technique and digital rock physics. Relations between porosity and
permeability/formation factor were derived from a randomly selected size at various
locations within small scale samples.

MULTI-SCALE UPSCALING WORKFLOW

Earlier mentioned works (and references therein) formed an important basis for
petrophysical properties upscaling. However, remaining issues needed to be solved are:

1. Proper selection of sample size and locations
2. Realistic relation between scales, i.e. upscaling
3. Multi-scale solution of multi-scale phenomena.

In this work, we propose a workflow based on digital rock physics that properly upscales
petrophysical properties and solves the issues addressed above. The main idea is adopted
from the large eddy simulation (LES) concept in computational fluid dynamics (CFD).
That is, a cut-off in length scale is introduced. Phenomena larger than the cut-off length
are resolved explicitly while the phenomena smaller than the cut-off length are captured
by models. The proposed workflow can be described in three parts (see Figure 2):

1. Find building blocks. In this part, unique rock fabrics present in the rock sample
are extracted based on statistics derived from a larger scale, Figure 2(a) and (b).
At the smallest scale the statistics of pore morphology such as porosity, surface to
volume ratio and Minkowski’s measures may be used. On the other hand, at a
larger scale, statistics of CT number may be used. An example is given in Figure
1 (center) where two types (building blocks) of porous matrix are defined (i.e.
matrix B_1 and B_2). Note that this part can be considered as a digital image
analysis process to identify patterns based on rock morphology and/or rock
properties using a proper machine learning approach.

2. Extract petrophysical relation. After the building blocks are properly defined, a
high resolution 3D image of each building block is acquired. Dimension of
representative elementary volume (REV) of each 3D images is extracted based on
desired statistical properties. The dimension is used to select proper locations for
digital subdivision. Typically, 50 to 300 digital subdivisions are used to extract
relations between petrophysical properties (i.e. trends) such as porosity-
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permeability (and porosity-formation factor), Figure 2(c). The previous and
current step provide a proper selection of sample size and location.

3. Trends upscaling. In order to relate properties between scales, a connection must
be established. For example, the relation between CT intensity of the area/volume
that the high resolution image is taken and the CT intensity of the high resolution
image may be used to generate multi-scale relation, Figure 2(d). The exact
location may be identified using an image registration technique. Then, desired
petrophysical properties extracted from high resolution image are populated on
the large scale sample, Figure 2(a), based on their building blocks and multi-scale
relation. In contrast to conventional approaches where only single value is
assigned to each building block or segmented group, the workflow provides a
more realistic upscaling of petrophysical properties.

The workflow introduced above is not limited to upscaling between two scales. It can
be used recursively to cover the whole range from, e.g. nano-CT images up to whole core
CT-images.

Another important ingredient of the proposed workflow is to extract multi-scale
petrophysical properties by solving multi-scale governing equations (in analogy to the
LES approach). An example is the absolute permeability. At the smallest scale where
only impermeable material and pore space exist, see Figure 1(right), fluid flow is
resolved based on the Stokes equation (given low Reynolds (Re) number flow condition
in this example). In a rock with high Re number, the Navier-Stokes equations can be used
to resolved fluid flow. However, at a larger scale, e.g. the sample in Figure 1(center),
fluid flow takes place at multiple scales: at the so-called Darcy scale in porous matrices
and at the scale of image resolution in pore space. Here, the Brinkman–extended Darcy
(B-D) equation can be considered. The B-D equation resolves fluid flow in pore space
while the flow in porous matrix is modeled through the Darcy equation. In our work, we
use lattice Boltzmann (LB) scheme to solve the B-D as well as the Stokes equations. The
LB scheme is implemented on multiple graphic processing units (GPU) to shorten the
simulation time within the order of hours. See Toelke & Krafczyk [5] and Ginzburg [6]
for detailed discussion about the LB scheme and the GPU implementation.

The workflow can be different based on several factors, e.g. rock type and sample
scale. However, typical workflow starts with a three-dimensional image of a desired-
scale sample, e.g. core scale. Number, location and size of building blocks are derived
from the core sample. During this step, the sample is also segmented based the identified
building blocks. The variation within the building blocks may be defined based on, e.g.
locally-average CT number. Then, finer-scale (e.g. plug) three-dimensional images of the
identified building blocks are taken. Fine scale trends of petrophysical properties are
derived digitally from the finer-scale sample. Using an image registration technique and a
comparison between fine and large-scale image properties, the fine scale trends (from
plugs) are populated on the large scale sample (core).
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MULTI-SCALE ROCK PERMEABILITY
We artificially created two fine scale rock samples (i.e. simple digital models).

One with intersecting slit in 3D and another with pore body and pore throat structure. Part
of the samples are shown in Figure 3 (left) at the top and bottom, respectively. The
sample dimension is 1 x 1 x 1 [mm] in both cases. The pore size increases in all direction
resulted in channel size between 4 and 14 micron for the first sample (hereafter called
fine sample 1). Pore throat size increases between 7 and 22 micron while the pore body is
kept constant in the latter sample (hereafter called fine sample 2). Permeability trends of
both samples are simulated using the procedure described above. As expected,
permeability of the first sample increases slowly with porosity while the increase is more
rapid in the second sample. Power law fitting results in an exponent of 3.2 and 7.3 for the
first and second sample, respectively.

Next, we generated a large scale digital sample with a dimension of 25 [mm] in
all directions. Properties of the fine sample 1 and 2 are assigned to two group of voxels in
the large scale sample. The above fine scale samples are combined in series, parallel and
diagonal (see Figure 3 (right)). A variation of porosity (and hence permeability) is
populated based on the trends obtained from fine scale samples (Figure 3 (left)). Porosity
variation in the samples are illustrated in Figure 3 (left). In a natural rock sample, large-
scale variation of petrophysical properties within a building block is populated based on
finer-scale relations. As a result, the populated properties are based on, e.g. pore
morphology and/or pattern of rock fabrics. Another set of simulations is carried out using
the same geometry without variation of porosity (as in a traditional upscaling procedure).
Here, averaged permeabilities of the fine samples are used. The predicted permeability
from both cases are plotted in Figure 3 (right). It can be easily seen that the samples with
porosity variation have permeability lower than the samples without variation. The
permeability error ranges from 20% in the parallel setting to 29% and 42% in diagonal
and series settings, respectively.

CONCLUSION

 Building block concept provides a basis for characterizing heterogeneous
reservoir rocks.

 Proper selection of size and location of digital subdivisions accurately capture
relation between petrophysical properties.

 A realistic upscaling of petrophysical properties can be done by, first, correlating
images at different scales. Then, trends derived from the smaller scale images are
used to populate the petrophysical properties on the larger scale image based on
variation within building blocks.

 In order to obtain multi-scale petrophysical properties, multi-scale governing
equation must be employed.

 Applications of the workflow include, but not limited to:
o Generating trends (e.g. porosity-permeability) using fewer samples than

laboratory-based methods (in one of our cases, up to two order of
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magnitude fewer). It is recommended to use the workflow along with a
few laboratory results to increase level of confidence.

o The workflow can be used in combination with the well log to improve the
interpretation.

o The derived information can be used as an input and/or additional
information for reservoir simulations.
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Figure 1. Illustration of a rock sample with heterogeneous and multi-scale pore morphology. Scale
increases from left to right. A large scale rock sample with resolved pore space, impermeable material, and
porous matrices labeled A and B (left). Magnified area of porous matrix B consists of pore space which is
unresolved at the large scale and porous matrices labeled B_1 and B_2 (center). At high magnification, the
porous matrix B_2 is fully resolved. It consists of pore space and impermeable material (left).
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Figure 2. Schematic illustration of multi-scale petrophysical properties upscaling workflow. Building
blocks are extracted from sample A (a). Trends are generated for each building block based on their high
resolution images (b). Properties of all building blocks in sample A are populated using trends extracted
from high resolution images (c).

Figure 3: Fine scale porosity – permeability trend (relation) created by the digital subdivision process for
two artificial rocks (left). Upscale permeability of large scale artificial plugs generated by combining the
fine scale rocks (right). Porosity increase following the direction of the arrows.


