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ABSTRACT 

The lattice Boltzmann method (LBM) has been increasingly implemented for complicated fluid 

flow and transport phenomena. In this paper the LBM method is utilized to simulate the 

experimental results of counter current spontaneous imbibition. The single component multiphase 

Shan-Chen model was used to model the antiparticle forces. It was observed in the results that the 

developed model, although it simulated the shape of the front, it did not lead to bubble snap-off 

caused by capillary instability and the pressure at the dead end of the imbibition channel does not 

match with experimental results. 

1. INTRODUCTION  

The simplicity of application of the LBM for complicated geometries is one of the main reasons 

for the popularity of this method. Unlike the computational fluid dynamic (CFD) method, LBM is 

a mesoscopic approach which has some benefits of microscopic modeling with affordable 

computational expenses [4]. At the microscopic scale, fluid is formed by particles moving in all 

directions and constantly colliding and bouncing back from boundaries. Modeling the exact 

behavior of all the particles is practically impossible due to the huge number of particles and 

computational processor’s limitations. At the mesoscale however, instead of considering the 

individual particles, the LBM evolves particle distribution functions with a set of fixed velocities 

at discrete locations in space [5]. It has been shown that the macroscopic fluid properties (density 

and velocities) obtained by averaging the particle distribution satisfy the Navier–Stokes equations 

[1, 6].  

In classic fluid mechanics the behavior of a fluid is modeled by governing equations 

which are derived by applying conservation of mass, energy and momentum on an 

infinitesimal volume. These equations have the form of partial differential equations and 

might be solved analytically or numerically at discrete locations of space and time using 

initial and boundary conditions. Considering the advances in current CFD, one might ask 

what is the necessity of using a particle based method like lattice Boltzmann? Lattice 

Boltzmann is an alternative method for CFD with the benefit of lower computational 

expenses, simplicity of application for complex transport media, simple parallelization, 
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and automatic interface tracking. LBM has been successfully used in a variety of fluid 

flow in porous media [2] and multiphase flow problems [3, 11, 10, 12]. 

2. METHODOLOGY 

2.1 Model Geometry 

Unsal et al. performed co-current and counter-current experiments using a glass and rod 

model [15]. In their model two separate or three interconnected irregular shaped capillary 

channels were the transport medium.  Three types of fluids (Liquid paraffin, Isooctane 

and air) were used for two-phase displacement processes. The experimental set-up was 

such that the interface could be observed and the pressure at several points could be 

recorded. Figure 1 shows the rod and glass structure. In the present study, multiphase 

LBM model is used in an attempt to reproduce the results reported by Unsal et al. [15].  

 
Figure 1: The Glass and rod model forming a flow pass for spontaneous imbibition [15]. 

2.2 Lattice Boltzmann for Fluid Dynamics 

2.2.1 Single Phase, Single Component Fluid 

The general discretized form of the lattice Boltzmann equation derived by using the BGK 

approximation for a single component can be written as [17]: 

                        
          

       

 
 (1) 

Here         is the distribution function along the lattice direction i at location x and time 

t, ci’s are the velocity unit vectors, τ is the collision relaxation time and   
        is the 

equilibrium distribution function. This equation is applied in lattice space where the 

velocity directions are finite and predefined. Based on the number of space dimensions 

and the number of velocity directions, the common lattice spaces are D1Q2, D1Q3, 

D2Q9, D3Q15 and D3Q19, where D# is the number of space dimensions and Q# is the 

number of velocity directions. In the present study D3Q15 (three dimensional with 15 

velocity directions) is used. Figure 2 shows this lattice mode where number 1 is the 

central node.  
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Figure 2: A typical D3Q15 lattice. The velocity directions are from the central node (number 1) to the other 

14 nodes. 

In D3Q15 lattice space the velocity unit vectors are as follows: 

 

    
                                                                                                     
                                                                                                     
                                                                                                     

  

The equilibrium distribution function obtained by the BGK approximation is: 
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In this equation ρ is the lattice density, c is the lattice speed and wi are the weights 

associated with different lattice directions, given below:  
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The macroscopic hydrodynamic properties are obtained from the distribution functions 

as: 
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Here ρ(x, t) and u(x, t) are the lattice density and velocity vector at location x and time t. 

The kinematic viscosity is defined as: 
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2.2.2 Multiphase, Multicomponent Flow 

The LBM can be applied for systems consisting of more than one phase and one 

component. There are three major methods for multicomponent multiphase problems 

including the Shan-Chen pseudo potential model [11, 13], the free energy model [14], 

and the colour gradient model. In this research we used the Shan-Chen model. For the 

multiphase/multicomponent systems the parameter u
eq

 in equation 2 is modified as: 

  
           (7) 

Here    is the total velocity given by 

     
    

  

 

   

    
  

  

 

   

  (8) 

Further k is the index of fluids, Fk is the total interaction force which is the sum of three 

distinct forces: 

               (9) 

Here F1k is the fluid-fluid interaction, F2k is the fluid-solid interaction and F3k is the 

external force (such as gravity) [9]. 

The fluid-fluid particle interaction force at location x is defined as [7]: 

                       
       

        

 

     

 (10) 

In this equation      is the strength of fluid-fluid particles interaction force, φ is the 

effective density and the index s shows the total number of fluid components. The above 

equation in lattice form for D3Q15 is: 

                                     

  

   

 (11) 

Different forms of effective density have been used such as  

                
 

  
   (12) 

or 

             
  

 
  (13) 

Here φ0 and ρ0 are constants which are commonly set to 4 and 0 respectively. When the 

density ratio of the two components is high or when modeling multiphase systems, 

different equations of state must be combined with the above mentioned effective mass 

equations. This requirement will be explained further in the following sections. 

The fluid-solid particle interaction force in lattice form is defined as: 

                                    

  

   

 (13) 
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Here S(x+ei) is an indicator which is 1 for the solid and 0 for the fluid in the neighbour 

node and Gad,k is the interaction strength of the solid surface and fluid component k. 

The force associated with body forces (such as gravity) is defined as: 

               (13) 

where g is the body force per unit mass. 

2.2.3 Equations of state 

Equations of state (EOS) represent the relationship between the fluid pressure, 

temperature and density. If the particle interaction force is given by equation 10, the EOS 

of the system for D3Q15 lattice model becomes [16], 

  
 

 
           (14) 

The original Shan-Chen model works well in single phase and in multicomponent 

systems where the two components have the same density [16]. Yuana and Schaefer 

studied the possibility and the effect of using different equations of states in conjunction 

with the Shan-Chen model and reported that by using the Canahan-Starling (C-S) EOS 

high density ratios are achievable [16]. In this research we use the C-S EOS which is: 

     
                      

         
     (15) 

 Where 

            
     (16) 

                (17) 

Here a, b and R are set to 1, 4 and 1 respectively. To achieve phase separation using the 

above EOS the proper value of T should be used. Figure 3 shows the pressure density 

curve for different ratios of temperature (T) to the critical temperature (Tc). 

 
Figure 3: Pressure-density curves resulted by C-S equation of state. 
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If we zoom in on the density region of 0.001 to 0.1 we see that two different densities can 

coexist at the same pressure, a physical impossibility. 

 
Figure 4: Pressure-density curves resulted by C-S equation of state for the density range of 0.001-0.1. 

 

3. APPROACH WITH LBM 

In this research, the single component multiphase (SCMP) Shan-Chen model was used to 

simulate air-water systems. The capillary rise phenomena has been studied using the 

SCMP model and the results have been shown to be satisfactory [8]. To develop the 

desired LB model we should go through some steps to test the features of the model. 

These steps are a phase separation test, contact angle measurement, capillary rise and 

gravity check, and a bubble snap off analysis. 

3.1 Phase Separation 

To investigate phase separation, a density distribution of 0.07 plus a random number in 

the range of -0.001 and 0.001 was set as the initial density for a mesh of 200×200 lattice 

nodes. The attraction strength was set to -30 and the temperature was set to T=0.6Tc. 

Figure 5 shows the phase separation stages. 
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a) Time step=1 b) Time step=5 

  
c) Time step=40 d) Time step=250 

  
e) Time step=1000 f) Time step=2000 

Figure 5: The process of phase separation from a uniform density distribution. 

As can be seen in figure 5, phase separation occurs and two phases appear. Further, with 

an appropriate choice of initial density, two phases with the desired final densities can be 

produced. It is possible to reach  a density (ratio?) of 1000 using C-S EOS [8].  However 

we observed that when the density ratio is higher than 50 in multiphase flow problems, it 

is difficult to prevent the solution from diverging. Therefore in the present paper we used 

a density ratio of 50 – in real air-water systems the density ratio is almost 800. 

3.2 Contact Angle Measurement 
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The next step is to investigate the effect of solid-fluid interaction strength (Gad) on 

droplet contact angle at the solid-fluid contact surface. A set of tests were ran to find this 

effect. Figure 6 illustrates different cases. 

  
Gad = 0 Gad = -0.1 

  
Gad = -0.3 Gad = -1 

Figure 6: The effect of Gad on contact angle. 

Figure 6 demonstrates that the solid-fluid interaction strength can be set to adjust the 

problem for any desired contact angle. 

3.3 Capillary Rise and gravity check 

Capillary rise is the simplest form of spontaneous imbibition. Before advancing our 

model to complicated processes, we start by simulating the capillary rise phenomenon. 

The model consists of a liquid with density of 0.28 and a vapour with density of 0.05 in 

contact with a capillary channel in a two dimensional mesh. Figure 7 shows the 

schematic of the system.  
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Figure 7: Initial condition for the capillary rise test 

Gad was set to -0.5 and the gravity coefficient was set to 0.00001 in lattice units. A mesh 

of size 200×200 was used and a capillary channel of size 20 in width was set at the center 

of the mesh. Initially, the bottom half of the system is filled with the liquid and the upper 

half with vapour. Bounce back boundary condition at the bottom and upper sides and 

periodic boundary condition at the right and left insures a realistic model. Figure 8 shows 

the progress of the liquid in the capillary. The general behaviour of the results is 

reasonable. In this model the outer layer of the wall is different than the inner wall such 

that the contact angle at the outer wall is    . The curvature formed at the area outside of 

the tube is due to particle attraction, small mesh size, gravity and tendency of the vapour 

to form a bubble. 

 
Figure 8: Capillary rise after 1000 time steps 

 

 

3.4 Bubble snap off Analysis 

Bubble snap off is a complicated phenomenon which can arise because of three reasons; 

capillary instability, buoyancy and shear force. Unsal et al. believed that the capillary 

instability is the cause of bubble snap off in their experiments [15]. To test if a two phase 

Shan-Chen model can simulate the snap off phenomenon in the absence of buoyancy and 
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shear force, a simple system was created. A 500×200 mesh (figure 9a) was formed where 

the fluid properties are the same as the capillary rise test. It was seen that in this model 

bubble snap off never occurs by the result of capillary instability. Since the Shan-Chen 

model is not verified to simulate this process it can’t be concluded that in the Unsal et al. 

experiment the cause of the snap off was something other than capillary instability [15]. 

However, since we need the snap off to happen in our model, buoyancy force was 

inserted in the model by adding the gravity effect. As figure 9b-9f shows, by adding the 

gravity component, the bubbles stretches and pinches off.  

 

 

 

 
  

 
 

 

a) No gravity, 1000 time steps b) gravity, 190 time steps c) gravity, 325 time steps 

 

 

 

 

 

 

 
d)gravity, 430 time steps e) gravity, 500 time steps f) gravity, 1000 time steps 

Figure 9: A simple countercurrent imbibition model with and without buoyancy effect 

 

3.5 Unsal et al. Model 

The developed model was modified to simulate the experiments by Unsal et al. [15]. A 

three dimensional mesh of size 60×80×2000 was used to model a countercurrent 

displacement where there exists lateral connection between the channels. Vapour 

pressure at the farthest distance from the imbibition face and production rate of vapour 

were taken as results. Figure 10 shows the pressure at the closed end of the tubes.       
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4. DISCUSSION OF THE RESULTS AND CONCLUSIONS 

As it is seen in figure 10 the pressure of the vapor phase goes up as the imbibition process 

proceeds. Unsal et al. reported that the pressure of the non-wetting phase drops while the 

bubble is forming and rises up suddenly when the bubble pinches off. However it is seen 

is our results that pressure just raises up by time. This is because the Shan-Chen method 

is not able to simulate the capillary instability phenomenon which is the cause of the 

bubble snap off. Figure 10 compares the obtained results in the present work and the 

Unsal et al. results. 

Present results 

 

 

Unsal et al. results [15]

 

 

 

Figure 10: Pressure at the dead end of the tubes 
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