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ABSTRACT 
During Enhanced Oil Recovery (EOR) experiments, front spreading is due to various 
mechanisms: pore-scale mixing, channeling due to permeability heterogeneity, viscous 
fingering, capillary effects, etc. This paper gives a review of existing models for the 
simplest case of tracer spreading and a discussion of their validity based on comparison 
with laboratory experiments. 
 
We first recall the definitions and the physical mechanisms describing pore-scale mixing 
and spreading, and their modeling at the scale of a Representative Elementary Volume 
(REV, local or Darcy-scale approach) called "microdispersion". When used as local input 
in 3-Dimensional (3-D) simulations, the Darcy-scale approach can describe the plug-scale 
spreading related to permeability heterogeneity. In a 3-D heterogeneous medium, even a 
displacement started as a piston-type at the Darcy-scale leads to a dispersion behavior.  
However, laboratory experiments are rarely simulated with 3-D models, but only with 1-
D models. A local microdispersion displacement in a 1-D simulation cannot model the 
large spreading observed at the plug-scale. Consequently, additional parameters must be 
introduced in 1-D local laws to compensate for the missing information on 
heterogeneities, and we recall here the existing up-scaled (or homogenized) models 
(microdispersion, macrodispersion and convective channeling). 
 
These models are compared to our tracer experiments. Displaced and injected fluids have 
different salinities, and local saturation profiles were measured using ten electrodes along 
the sample. Our results confirm previously published results that channeling convective 
models are more suitable than standard dispersion models. The best result is obtained by 
calculating a permeability distribution function in a stratified model. This model accounts 
for the long tail in the effluent production and the in-situ concentration profiles. 
 
INTRODUCTION 
During Enhanced Oil Recovery (EOR) experiments, front spreading is due to various 
mechanisms: pore-scale mixing, channeling due to permeability heterogeneity, viscous 
fingering, capillary effects, etc.  
The main objective of this paper is to clarify the mechanisms linked to the spreading of a 
tracer in a porous medium and to present the equations used to model the concentration as 
a function of time and space (transport equation) at the scale of a plug of real rock. We 
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will show that a transport equation written at the scale of a REV needs to be modified 
when applied to a plug, due to the presence of heterogeneities. This effect, called 
homogenization (up-scaling), will be discussed, and existing models will be compared to 
our experiments. We first give some definitions, then present existing models used at the 
REV scale, and finally we describe homogenized transport equations.  
 
Definitions 
A “tracer” is a soluble substance, like dye or salt, which at low concentration does not 
change the fluid properties. “Dispersion” is used as a general term equivalent of 
spreading, independently of fluids characteristics: miscible or not, with or without 
viscosity contrasts. Originally “diffusive” spreading was referring to the physical 
mechanism of molecular diffusion leading to a transport equation with a second order 
derivative with respect to space. By extension, this term is now generally used when 
spreading is described by a term of transport equation with a second order spatial 
derivative, leading to the width of the front being proportional to the square root of the 
travelled distance, even if the physical mechanism is not molecular diffusion. We will see 
that an uncorrelated velocity field also leads to a front spreading with square root of 
travelled distance. When molecular diffusion is negligible, spreading is due to spatial 
differences in velocities, either at pore level or at larger scale (permeability 
heterogeneities) and dispersion is called “hydrodynamic” (or advective).  
 
In general, a transport equation in concentration as function of time and distance contains 
three terms: the transient term with a derivative with respect to time, a term with a first 
order derivative in space, called the "convective" term, and a term with a second order in 
space, called the dispersive term.  
 
Flux and concentration 
All the equations are written at the Darcy scale, meaning that a REV of porous medium 
contains a large number of pores (such as the micromodel in Figure 1).  
The tracer “concentration”  is the mass of tracer per unit volume. The “flux”  is the 
mass of tracer crossing a given surface per unit of time. The “flux density”  is the flux 
per unit surface.  
 
In an elementary volume (length dx in the direction of flow, cross-section area dA, 
porosity , and volume ), the mass balance equation implies that the 
accumulation of solute during , , is equal to the quantity of tracer 
entering in , , minus the quantity of tracer leaving the volume, 

. This leads to the 1-D mass balance equation, valid with no tracer adsorption: 
 . (1) 
In order to derive the concentration as function of time and distance, the dispersion 
equation, relating the flux density  to the concentration  is required. In addition to the 
mass balance and the dispersion equation, Darcy's equation is used to calculate the local 
velocity as function of fluid properties and pressure gradient.  
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In the following sections, we will study the local dispersion equation for tracer flow. Then 
we will describe the integration of this local equation for a 2 or 3-D flow, leading finally 
to the 1-D homogenization, average in a 1-D flow as commonly used to represent 
laboratory experiments. 
 
Tracer local equation (Microdispersion)  

 
Figure 1- Tracer flow experiment in a micromodel. 
The tracer in red is injected at a constant flux on the 
left 

Spreading in the direction of the mean 
flow is due to the combined effect of the 
variation of velocities inside the pores 
(the tracer follows the streamlines) and 
molecular diffusion between streamlines 
that smears the color near the entrance 
(Figure 1). The molecular diffusion 
allows the invasion of the tracer in “dead-
end” pores and zones with very low 

velocities. 
We can derive the dispersion equations 
(relationships between flux and 
concentration) in some limiting cases: 

Piston-type flow: A theoretical case of transport without any dispersion (not possible in 
porous media). All the particles are transported at the same Darcy velocity U. The flux 
density is therefore: . 
 
Pure molecular diffusion: With no velocity, spreading is due to molecular diffusion and 
Fick’s law gives the flux density proportional to the concentration gradient. In a liquid, 
the coefficient of proportionality is the molecular diffusion . In a porous media, this 
coefficient is an apparent diffusion coefficient . Its ratio with  reflects the presence 
of solid and pore space tortuosity:  where  is formation factor: 

. 
 
Hydrodynamic dispersion: With no molecular diffusion, the spreading due to pore scale 
variations in the velocity field can be described using a stochastic approach. If the 
distribution of pore size is random with no spatial correlation, the invasion of the tracer 
follows the statistic law of large numbers of uncorrelated events, and the spreading is 
proportional to the square root of distance (similar to the macrodispersion described 
below). This mechanism can be represented by a transport equation, sum of a convective 
term (plug flow without spreading) and a diffusive term leading to the spreading in square 
root of travelled distance with a dispersion term : 

.    (2) 
When both molecular diffusion and pore scale velocity field act together, the mechanism 
is called “microdispersion” and the flux density is assumed to have the same form as Eq. 
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2 but with a dispersion coefficient D that includes molecular diffusion and hydrodynamic 
dispersion.  
 
Effect of molecular diffusion on microdispersion 
Microdispersion involves both molecular diffusion and hydrodynamic dispersion 
(Pfannkuch in 1963 [1]; Fried and Combarnous [2]). The balance between molecular 
diffusion and hydrodynamic dispersion is quantified using the molecular Péclet number, 
defined as the ratio of the molecular diffusion characteristic time  to the advective 
characteristic time : , where  is a characteristic velocity (i.e. Darcy 
velocity U or front velocity ).  is a characteristic length, i.e. mean grain 
diameter for unconsolidated porous media or of the order of  for a consolidated media. 
Pfannkuch presented a graph with dispersion coefficient normalized by molecular 
diffusion as function of Péclet number (Figure 2). 

 
Figure 2 – Dispersion coefficient as function of Péclet number (after Pfannkuch [1]). 

 
At very low flow rate (Pé < 1) The dimensionless dispersion coefficient is constant and 
equal to the apparent molecular diffusion coefficient, a regime of pure diffusion 
controlled by the apparent diffusion coefficient described above. For Pé > 1000: the 
dispersion coefficient is roughly proportional to the Péclet number. In this regime the 
dispersion coefficient is independent of molecular diffusion and proportional to the front 
velocity: 

         (3) 
 is called the dispersivity and is around 1.8 times grain diameter for granular material.  

is the front velocity , with  the Darcy velocity. In laboratory, the determination 
of the dispersion coefficient is performed in this regime. 
 
DISPERSION THROUGH A PLUG 
In laboratory, the dispersion coefficient is derived from tracer injection through a 
cylindrical plug with uniform injection and production on the inlet and outlet faces. The 
concentration is measured in the effluent and sometimes locally using in-situ 
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measurements (X-rays, resistivity, etc.). A constant concentration C0 starting at time t=0 
is injected continuously. Several models have been proposed for the boundary conditions: 
 
Inlet boundary condition 
In laboratory, even if the tracer is injected at constant concentration, it is the flux that is 
imposed at the entrance and not the concentration. This is well illustrated in a micromodel 
(Figure 1): A tracer is injected at a constant concentration on the left-hand side of the 
picture. Considering this picture as a REV, the concentration is constant at the pore scale, 
in the first rows of pores, but not at the REV scale. Consequently, the boundary condition 
at the REV scale should be a constant flux density . However, experimental 
data are often interpreted with a constant concentration boundary condition. We will 
compare these two assumptions when presenting the experimental results, but the 
difference is insignificant. 
 
Outlet boundary conditions 
In pure molecular diffusion (without flow), the outlet boundary condition should be the 
concentration imposed at the outlet face. In hydrodynamic regime, the tracer follows the 
streamlines from inlet to outlet with no backflow. Velocity and dispersion inside the plug 
are not influenced by the value of concentration at the outlet or the length of the plug. The 
equation is the same as for an infinite medium, with the condition of zero flux at infinite 
distance (non infinite mass). 
 
Dispersion through a homogeneous plug 
In a homogeneous plug, permeability is uniform and flow lines are parallel to the axe of 
the plug. The velocity is uniform and a 1-D mass balance equation can be written 
(equation 1). Using the microdispersion relationship between flux and concentration leads 
to the standard 1-D dispersion equation. 
  (4) 
 
Analytical solutions are obtained using Laplace's transforms. With the “classical” 
assumption of constant concentration at entrance, the solution is the following (Fried & 
Combarnous [2]): 
  (5) 
 
With the condition of constant flux at the entrance, the solution is:  
  (6) 
 
Then the concentration is calculated using the mass balance equation with the boundary 
condition: 

, (7) 
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with  and   
 
At the outlet face, the flux density is derived from the measurement of the effluent 
concentration . The calculation is similar to the inlet flux: . The 
concentration of the effluent is not equal to the concentration at the outlet inside the plug 
(difference between flux and concentration), such as immiscible flow where fractional 
flow (flux) is not equal to saturation. 
 
Dispersion through a heterogeneous plug 
In heterogeneous media, the permeability is non-uniform and spreading is mainly 
controlled by the variation of velocity due to permeability heterogeneity. This type of 
dispersion is called macrodispersion because mechanisms are at a higher scale than the 
pore scale. Except in artificial media such as filters or chromatographic columns, 
spreading due to microdispersion is generally negligible compared to macrodispersion. 
 
The 2 or 3 -D approach 
Figure 3(a) shows two examples of heterogeneous permeability fields with the calculation 
of flow lines (b) solving Darcy's equation for an uncompressible fluid and the simulation 
of injection of a tracer in black (c) [3]. The tracer is displaced along the flow lines and is 
transported according to the local velocities. In these simulations, microdispersion is 
assumed to be negligible and the tracer is a piston-type displacement along the flow line 
(either black and white, no grey). 
 

 
Figure 3- Two examples of heterogeneous permeability fields with 
the corresponding flow lines and tracer injection assuming piston-
type displacement along the flow lines. 

 
Figure 4 – Principle of stochastic 
calculation for spreading in a 
heterogeneous plug  

 
Homogenization for 1-D flow 
Macrodispersion can be described by hydrodynamic dispersion model (Eq. 2) that 
accounts for 2 or 3 -D local heterogeneities. However, in laboratory studies, plugs are 
rarely described using 2 or 3 -D permeability fields. Instead 1-D models with variables 
averaged over a cross-section are used, and the 1-D permeability becomes uniform, this is 
called “homogenization”. (Figure 3 d). With the “local” plug-flow rule  in a 1-D 
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model, there will be no spreading. The information on heterogeneity is lost, and the local 
dispersion equation must be changed. We study below three cases of homogenization: 
random, stratified, and intermediate medium. 
 
Random permeability field in the flow direction 
Gelhar and Axness [4] assumed a diffusive process with proportionality between the flux 
and the concentration gradient (as in Fick's law) with a lognormal permeability 
distribution. They derived an expression for the dispersion coefficient , where the 
dispersivity  is related to the variance of the logarithm of permeability  and the 
correlation length : . However, mechanism at the origin of dispersion is not 
the concentration gradient but the spatial variations of the velocity field. 
 
A model only based on hydrodynamic spreading can leave to the same result The 
principle is represented in Figure 4 [5]: the complex stream tubes geometry (a) is modeled 
by a bundle of parallel tubes (b) with variable cross-section area of elementary volumes 
(c). The tracer front is irregular due to randomness in the elements volumes. The 
spreading of the front is calculated as a function volumes linked to the permeability 
distribution. The result is similar to Gelhar if randomness is assumed (correlation length 
small compared to travelled distance) and transport equation is similar to the 
microdispersion case equation (4), but with a dispersion coefficient linked to the size of 
heterogeneity (correlation length) instead of pore size. The spreading is “diffusive” and 
the width of the front grows with the square root of travelled distance. This model will be 
noted "D" for the simulations, with the two possibilities for the inlet boundary condition: 
constant flux or constant concentration. The corresponding flux and concentrations are 
given by Eq. 5 to 7. 
 
Homogenization: stratified medium 

Figure 5 - Perfectly layered medium: principle of the calculation of 
tracer transport 

 
Figure 6 - relationship between 
flux and concentration for a 
stratified medium 

Stratified media have been extensively used as model of heterogeneous media either for 
immiscible or miscible flows (for instance Fourar [6], and with a simplified model of 2 
layers by Dauba et al. for carbonate studies [7]). 
 
The heterogeneous porous medium is represented by a perfectly layered medium with a 
permeability distribution function . Microscopic dispersion is assumed to be 
negligible and the tracer follows the streamlines. To simplify the calculation, the layers 
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are re-arranged with increasing permeability (Figure 5). At a given time, the front of 
tracer is calculated using the flow rate in each layer and the concentration, by averaging 
over the cross-section: 
 , (8) 
 
where  is the lower limit of the invaded layers and  is the effective 
permeability. The flux at the same position is calculated by summing the flow rates in all 
invaded layers: 
 . (9) 

 
In the general case, there is no analytical relationship between flux and concentration, but 
the curve can be determined numerically by elimination of the parameter . The shape is 
similar to the fractional flux curve for immiscible flow, but without the front discontinuity 
(Figure 6). The transport equation is “convective” with no second order derivative and the 
width of the front is proportional to travelled distance.  
Fourar [6] used a lognormal permeability distribution and defined a heterogeneity factor 
as the ratio of the standard deviation to the effective permeability. Here we will keep the 
general form of the permeability distribution. 
 
Homogenization: general case  
For real rock samples, the spreading is a combination of “convective” flow in the 
channels of various permeabilities (preferential paths) and “diffusive” spreading inside 
these channels due to random heterogeneities. 
One approach is to use the stochastic tube model with long-range correlations to represent 
the transition between diffusive and layered. Results are close to the Continuous Time 
Random Walk model introduced by Berkowitz [8]. Models with non-integer derivative 
order (between 1 for convective and 2 for diffusive) have also been proposed [9].  
In this study, we tested a simpler empirical model called H-D [10], built as the sum of a 
convective term and a diffusive term: 
 . (10) 
 
This approach is justified by assuming that convective effects take place at a larger scale 
than dispersive effects. The calculation is similar to the microdispersion case, but instead 
of the front velocity in the flux equation, an apparent front velocity is used since the 
injected fluid is moving faster.  
 
EXPERIMENTAL RESULTS 
Tracer are injected at constant concentration, using 35 and 20 g/l NaCl solutions. Several 
plugs have been leading to similar results. Experiment 8 described here is performed on a 
5 cm long Claschasch sandstone plug, 1 inch in diameter, with porosity 0.14 and 
permeability 300 mD. In-situ concentration profiles are measured along the plug with 10 
electrodes. The effluent concentration is measured with a conductimeter placed 5 cm from 
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the outlet face. Injection is performed through a spiral groove, flushed before the 
beginning of the experiment. Injection rate is 10 cc/h with a Pharmacia pump. 
Temperature is controlled at 0.2 °C accuracy (ion conductivity is strongly dependent on 
temperature). 
 
Effluents 
The measured effluent flux normalized between 0 and 1 is plotted in Figure 7 as function 
of dimensionless time (unity corresponds to the time needed to displace the pore volume).  
 

 
 
Figure 7 - Effluent flux profiles: experiment and 
models. 

 
Figure 8 – Permeability distribution G(K) 
calculated from effluent flux and in-situ 
concentrations. 

For the stratified model, the permeability distribution “from effluent” is derived by 
plotting the experimental flux (figure 7) as a function of  and calculating  after 
fitting by spline functions, following Eq. 9. The G(K) “from concentration” is calculated 

from the measured concentration using Eq. 8. The results are plotted in Figure 8 in 
dimensionless form. Curves noted D, HD, G(K) are best fits with the corresponding 
models (models defined below). 
 
Concentration profiles 
Only 5 profiles over the 10 measured are represented in Figure 9 for better readability of 
the figures. Symbols represent experiments and the solid lines are the results of the 4 
models using CYDAR™: 

- D model with the two boundary conditions at entrance: constant concentration 
(conc. BC, Eq. 5) or constant flux (flux BC, Eq. 7)  

- HD model with convective and dispersive terms (Eq. 10), manually adjusted for 
the best fit. 

- Stratified model with G(K) calculated using Eq. 10. In this equation, the variable 
is  proportional to . Therefore, all concentration profiles are plotted as 
function of the scaling variable  and data are fitted using splines functions 
(Figure 10). The permeability distribution  derived from concentration 
profiles is plotted in Figure 8 for comparison to the value derived from the effluent 
flux. 
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In Figure 10, we have also plotted the concentration profiles for the model D with the 
scaling variable . If the experiment follows the model D, all points should 
collapse on the same curve.  
 

 
Figure 9 – In situ concentration profiles measured along the plug at different times. Symbols represent the 
experiment and the solid lines are the results of the various models at the same times. For the flux and 
concentration D model, D= 0.05 (dimensionless). For the HD model, D=0.025 and H=1.1. 
 

 
Figure 10 – a) Scaling laws for the measured in-situ concentration profiles for the D model (scaling in 

 - b) the stratified G(K) model (scaling in x/t). 
 
DISCUSSION 
Effluent profiles 
Models D and HD cannot reproduce the dissymmetry and the long tail of the effluent flux 
production accurately (Figure 7). 2-D numerical simulations performed on heterogeneous 
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permeability field with intermediate correlation lengths permeability field show that the 
injected fluid starts to flow in permeable zones of the medium (channeling), leading to a 
fast displacement. At the end of the displacement, the injected fluid flows in much lower 
permeability zones and the production is slower, explaining the dissymetry of the curve. 
Recently Zik et al. [11] used a model involving exchange by molecular diffusion between 
flowing and stagnant zones (model generally called Coats and Smith). This model allows 
the representation of long tails by diffusion, but the representation of the concentration 
profiles have not been experimentally verified. From the estimate of the diffusion time 
scale, this effect might be valid in chromatographic columns, but comes into play at a 
different scale for displacement in heterogeneous plugs. The agreement between 
experiments and results of G(K) model is good since this distribution is calculated from 
the effluent. The small differences are introduced by the fit with splines functions. 
 
Concentration profiles 
1) From Figure 9, we see that the best fit is obtained with the stratified model, using the 
G(K) permeability distribution. However, the first profiles are not well represented; the 
model gives the maximum concentration in contradiction with the experiment. This 
discrepancy is also visible in Figure 10, where the brown squares represent the first 
profile. This discrepancy could be an experimental artifact during flushing of the inlet 
end-piece spiral, with displacing fluid entering partially into the plug. 
2) D model with the flux boundary condition is the only model that represents the increase 
of concentration at the entrance. However, after a small distance, both boundary 
conditions give similar results. 
3) Scaling laws for the D and G(K) models (Figure 10) lead to similar results. Therefore 
this test cannot efficiently discriminate between models. 
4) The G(K) distributions determined from the flux and the one determined from the 
concentration (Figure 8) are different, although G(K) should theoretically be unique. The 
observed difference may arise from a delay in effluent production in the outlet spiral. The 
volume of the outlet spiral is not negligible (0.3 cc compared to 5 cc of pore volume). 
This dead-volume introduces a delay that would lead to a lower observed permeability. 
 
CONCLUSION 
When used as local input in 3-D simulations, the Darcy-scale approach can accurately 
describe the plug-scale spreading related to permeability heterogeneity. In a 3-D 
heterogeneous medium, even a displacement started as piston-type at the Darcy-scale 
leads to a dispersion behavior due to the spatial differences in velocities. 

� We have presented several up-scaled (or homogenized) models:microdispersion, 
macrodispersion, convective channeling).  

� Our results confirm previously published results that channeling convective 
models are more suitable than the standard dispersion models.  

� The best result is obtained by calculating a permeability distribution function 
 in a stratified model. This model captures both the long tail in the effluent 

production and the in-situ concentration profiles. 
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