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ABSTRACT 
Digital rock physics (DRP) is becoming a standard tool for rock characterization. DRP 
utilizes 2D and 3D digital images of rock samples to analyze petrophysical and 
geological properties. The ability to apply DRP to a large rock sample opens a way for 
economic exploration and recovery of hydrocarbon. Nevertheless, due to the well-known 
multi-scale nature of rocks and limitations in imaging technology, less than 1% by 
volume of a rock sample will be digitally acquired and analyzed. Undoubtedly, relevancy 
and representativeness of DRP remain hotly debated topics in oil and gas industry. 
 
Machine learning (ML) has recently accelerated advances in many industries. ML brings 
together multiple disciplines such as computer science, statistics, and natural science to 
create algorithms that can learn from data. DRP can harness the power of ML to learn 
from its data, the digital image of rocks, to generate breakthroughs in the oil and gas 
industry.  
 
In this paper, we present a framework that combines advances in DRP and ML to 
characterize rock samples at a large scale, not only a tiny part of it. The framework is 
based on an understanding that a rock consists of multi-scale rock fabrics intermixed 
spatially. These rock fabrics are captured as groups of patterns within a digital image 
when they are smaller than the image resolution being used. We developed ML 
algorithms that can automatically learn about rock fabrics and their patterns. This 
learning process can be iteratively repeated down to an image resolution that resolves the 
smallest or the most significant rock fabrics. Thus, the framework integrates DRP 
paradigm to achieve a truly multi-scale analysis. Also, DRP and ML analysis determine 
the optimum number and optimum locations for further acquisition and analysis of rock 
fabrics at a higher resolution.  
 
INTRODUCTION 
Rocks are well-known to inherit complex heterogeneous structures with a broad spectrum 
of scales. For example, pores within a rock sample can range in size from nanometers to 
millimeters. Ehrenberg [1] carried out laboratory measurements of porosity and 
permeability of the same rock at different sample scales; the smaller plug samples were 
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drilled from the larger cores. The study found that the larger core samples had generally 
lower porosity but higher measured permeability values than the plugs. It can be implied 
that small-scale rock samples do not adequately represent all features found in large-scale 
samples. In addition, it is rarely feasible to perform laboratory measurements of large-
scale rock samples and, measurements of small-scale rock samples are typically limited 
to a small amount of samples due to extensive time and cost. 
 
Digital rock physics (DRP) aims at providing qualitative and quantitative understanding 
of flow transport units as well as geometrical properties of rocks. Some of the rock 
properties are extremely difficult, if not impossible, to measure in the laboratory. Thus, 
DRP in conjunction with laboratory measurements, will compliment and complete well 
log analysis with not only detailed information but also with new kinds of insights. Such 
well logs enhance analysis of reservoirs and will open a way for economic exploration 
and better recovery of hydrocarbons.  
 
The use of DRP involves three steps: (a) digital imaging to create a digital representation 
of a rock in 2D and 3D at a scale and resolution that will resolve rock features such as 
pores, organics, and grains; (b) digital image processing to categorize pixels/voxels in 2D 
and 3D respectively, with similar properties, and (c) digital rock analysis to digitally 
model desired rock properties using the digital image of the rock [2, 3, 4].  
 
The following discussions are applicable for both 2D and 3D images. For the sake of 
simplicity, the term “image” refers to 2D and 3D images and “pixel” refers to both image 

pixel and voxel, unless otherwise stated.  
 
Scientists and researchers have been analysing rock properties using multi-scale DRP [5] 
[6, 7, 8, 9]. Figure 1 shows on the left a typical multi-scale DRP paradigm and on the 
right the DRP paradigm introduced in this paper. The main differences are the use of rock 
fabrics instead of rock features and the recursive process to obtain information from the 
small-scale rock fabrics. A rock fabric is defined as a combination of rock features. 
Similar rock fabrics have similar properties or follow similar property trends.  
 
The process begins with an image of a large rock sample acquired at a relatively coarse 
resolution to cover a large field of view. At this stage, rock fabrics larger than the image 
resolution are resolved while smaller ones are unresolved. A rock fabric is considered 
resolved when it is represented, in every direction, by at least two pixels. Then, the 
unresolved rock fabrics are segmented into groups. Information concerning the 
unresolved rock fabrics is analyzed from additional images acquired at a finer resolution 
and smaller field of view. The information from resolved and unresolved rock fabrics are 
fused and populated back into the large-scale image. DRP analysis, of desired properties, 
is carried out using the large-scale image. 
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Multi-scale DRP provides a promising method to characterize rocks. Nevertheless, due to 
limitations in imaging technology, currently available multi-scale DRP methods still 
suffer from shortcomings. They can be roughly summarized as follow: 
 
� Image scale: despite advances in image processing and imaging technology, the size 

of a “large” rock sample is still limited, at best, to several centimeters and often only 
to a few millimeters range. Properties derived from a large sample provide higher 
reliability and relevancy.  

� Image resolution: in rocks, pore size may span several orders of magnitudes. For 
complex rocks, such as shales small scale pores play an important role in transport 
properties as well as in the total porosity of the rock. Therefore, an image resolution 
adequately small to resolve these small pores should be used. However, such image 
will have a drastic reduction in the field of view.  
Lemmens & Richards [10] created an impressive high-resolution, 12 mm in length 2D-
SEM image. 12800 images where stitched and tiled together. It resolved pores from 
millimeter to nanometer-scale. Their approach accurately provides detailed rock 
properties with extensive time and resources requirements. Set aside the practical 
aspect in 2D imaging, the approach is undoubtedly infeasible for 3D imaging. 

� Representative elementary area/volume (REV): REV is defined as the size of sub-
samples in which a measured property is approximately independent from location. 
The definition is arguably invalid when a rock has a mild level of heterogeneity. 

� Unresolved rock fabrics sampling locations: unresolved rock fabrics are divided into 
groups of similar properties, e.g. pixel intensity and CT number. Images of these 
groups are acquired at a higher-image resolution to determine their properties. The 
image locations are typically chosen manually and qualitatively. However, it is 
extremely difficult to make a reasonable and consistent selection in 3D due to complex 
process in human perception of volume from texture [11]. 

 
Recent advances in computing hardware and machine learning (ML) have accelerated 
innovations and breakthroughs in many industries. ML brings together multiple 
disciplines such as computer science, statistics, and natural science to create algorithms 
that can learn from data. These algorithms have the ability to build a model from data 
and/or training data without strict instructions. Detailed discussion regarding ML can be 
found in [12] and [13]. Examples of ML-based computer vision applications include 
autonomous vehicle technology [14], automatic tumor detection [15], and object 
recognition [16]. Digital images produced in DRP can be also considered as data. Based 
on this perspective, DRP can harness the power of ML to discover and learn from its 
data.  
 
In the computer vision community, a texture is loosely defined by complex visual 
patterns formed by distinct features. Such features can be extracted using various 
mathematical models such as intensity histogram, co-occurrence matrix, and Gabor filter. 
Detailed discussion regarding texture analysis can be found in [17].  
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A paradigm for texture analysis usually involves four steps: (a) keypoint detection to limit 
the analysis only to meaningful areas, (b) feature extraction to quantitatively represent 
texture using appropriate models, (c) feature classification defines clusters of keypoints 
corresponding to a perceptually homogeneous texture, and (d) texture segmentation to 
construct area/volume based on the feature clusters. Texture in computer vision is similar 
to the rock fabrics in DRP. Therefore, the texture analysis paradigm can be used with 
some modifications to discover rock fabrics in DRP. 
 

 
 

Figure 1: Left: generalized paradigm for multi-scale digital rock physics. Right: generalized paradigm for 
multi-scale digital rock physics using machine learning. Steps are highlighted according to the tasks shown 
in the bottom. Dotted block indicates a nested digital rock physics paradigm for unresolved rock features. 

 
ROCK IMAGING 
Rocks inherit complex multi-scale heterogeneous structures. A variety of imaging and 
detection techniques have been used to gain insights into rocks. Ideally, the image 
resolution being used should resolve all significant rock features and provide a 
reasonably large field of view (i.e. image scale). Due to limitations in imaging technology 
both image resolution and image scale are overly compromised. 
 
Figure 2a shows a schematic image with multi-scaled objects. Overlaying the objects, we 
have grid cells. Large objects encompass significant amount of grid cells and will be 
resolved. In contrast, small objects are significantly smaller than the grid cells and will be 
unresolved. Figure 2b shows a digitized representation of Figure 2a image. The gray 
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scale (i.e. intensity) of the grid cells directly relates to the object area covered by the grid 
cell. A grid cell has low intensity (dark gray) when completely covering a feature while 
high intensity (light gray) is presented in a grid cell that covers only a tiny part of a 
feature. It can be seen that larger objects are fairly well represented by digitized grid 
cells. On the other hand, small objects are smeared out in digitized grid cells and are 
unrecognizable.  
 
Nevertheless, digitized grid cells are generated based on the interaction between an object 
and the physics of the imaging technique being used. A group of unresolved grid cells 
contains information regarding patterns of unresolved objects. A sophisticated 
mathematical model which quantifies patterns of grid cells intensity, e.g. co-occurrence 
matrix, local binary patterns and Gabor filter, must be used [15] [17]. Since averaged 
intensity of these patterns is approximately similar, the widely used averaging approach 
cannot distinguish them. Figure 3 shows an example of multi-scale rock image. A large-
scale rock image, in the center, contains unresolved rock fabrics which have different 
image intensity patterns.  On the sides, we have high-resolution images  
 
 

 
 

Figure 2: Illustration of a comparison between image resolution (grid size) with resolved rock features on 
the left of (a) and unresolved rock features on the right of (a). Illustration similar rock features acquired and 

digitized (b). 
 

 
 

Figure 3: An example of unresolved rock fabrics in a large-scale image (a). Image of the unresolved rock 
fabrics are acquire at higher resolution (b) and (c). Image courtesy of ADCO Ltd. 
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Figure 4: Eagle Ford sample. Segmented rock fabric overview (left) with optimum size and number of 
areas to capture all rock fabrics (right). 

 
MULTI-SCALE DRP WITH ML 
DRP has been improved significantly in recent years. Variations of multi-scale DRP 
(Figure 1a) are widely adopted [5] [6] [7] [8] [9]. However, applications of DRP for 
reservoir characterization are still limited due to shortcomings discussed earlier. In this 
section, we discuss a scalable multi-scale DRP paradigm with ML techniques for rocks. 
The differences from previous multi-scale DRP are the use of ML to learn about resolved 
and unresolved rock fabrics presented in a rock sample. We also use ML to identify 
optimum size and location for further analysis of the unresolved rock fabrics. 
 
The present multi-scale DRP paradigm (Figure 1b) begins with a digital imaging of a 
rock sample at a large scale. This image will be called overview throughout this section. 
The overview (Figure 4, right) might contain resolved and/or unresolved rock fabrics.  
 
In the second step, rock fabrics (Figure 4, left) in the overview are detected and 
segmented using the texture analysis method discussed earlier. However, rock fabrics are 
different from image texture commonly encountered in computer vision. The main 
difference is that rock fabrics tend to have pattern at individual pixel level not at edge or 
blob level [13] [14] [15] [16] [17].  
 
We developed a novel rock fabric analysis method, based on the texture analysis 
paradigm (Figure 1b). Rock fabrics key-points are detected using the method discussed in 
Appendix A. They are mostly located within an area with a rock fabric.  
 
Then, rock fabric features of the area around the keypoints are computed using the 
method discussed in Appendix B. In this method, four rock fabric features or attributes 
are used: contrast, homogeneity, entropy, and variance.  
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Consequently, keypoints are clustered using the four rock fabric features. We developed 
an unsupervised ML method for clustering high-dimensional data. It automatically learns 
data and finds an appropriate number of clusters. Based on the understanding of rock 
images, it is reasonable to postulate that keypoints within similar clusters have similar 
rock fabrics. For example, in Figure 5, green represents areas with medium to high 
intensities (unresolved organics and pores) while magenta represents areas only with 
medium intensities (might be unresolved organics or very small pores). These clusters 
can be used as a model for segmentation of the whole overview. During segmentation, 
rock fabric attributes for every pixel/voxel are computed. Distance from clusters is 
computed using, for example, Euclidean and Mahalanobis distance. A general discussion 
regarding data clustering can be found in [12].  
 

 
 

Figure 5: Close-up view of overview image (left) and its corresponding segmented fabrics (right). 
 
The goal of rock fabric segmentation is to gain knowledge about unresolved rock fabrics. 
Detailed information of the unresolved fabrics is needed in order to characterize the 
large-scale image. This can be done by sub-sampling unresolved rock fabrics. An 
optimum amount of sub-sampling is desired to minimize expenses while keeping high 
level of accuracy and reliability. We developed an optimization algorithm for spatial data 
analysis which it determines the most suitable locations for further analysis (Figure 4). 
The algorithm finds a combination of areas that contains all fabrics with broadest variety 
within the fabric. Information from sub-sampling areas can be used in fusion of multi-
scale information later.  
 
An illustration of an extraction of multi-scale correlation extraction is shown in Figure 7. 
We give an example of 2D porosity upscaling in this paper. The method can be used 
directly to upscale properties in 2D and 3D. The suggested area within an overview 
image is acquired at a resolution that adequately resolved rock features and segmented 
into phases (e.g. pore and organic matters). A multi-scale correlation is obtained by 
correlating, for each fabric, the intensity of the overview image pixels to the porosity 
obtained from the area cover by the pixel in the high-resolution image. Examples of the 
extraction are shown as plots in Figure 7. A multi-scale correlation for each fabric is 
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derived by fitting a function to the data (shown as solid lines in the plots). Then, the 
porosity is upscaled by populating information from the multi-scale correlations for each 
fabric to all pixels in the overview image (Figure 7). 
 
A truly multi-scale DRP is achieved by repeating the procedure above recursively on the 
unresolved rock fabrics until all rock fabrics are resolved. A method designed for 
upscaling and fusion of multi-scale rock properties is discussed in [9]. It is noted that, the 
multi-scale DRP with ML technology discussed here can be directly applied to multi-
dimensional rock images. We use 2D images in this paper only for the sake of simplicity. 
It is also worth to note that, the methods present in this paper are implemented using 
graphics processing unit (GPU), which results in a computational time of approximately 
100 seconds for a 2D image with a dimension of 2000 x 3000 pixels. 

 
 

Figure 7: Illustration of multi-scale correlation extraction based on fabrics (bottom right) and population of 
the multi-scale correlation back on the overview image (bottom left). 

 
CONCLUSION 
We present a multi-scale digital rock physics (DRP) method using machine learning 
(ML) for rock fabrics characterization and scaling of rock properties. The method 
integrates knowledge in geology, physics, and computer science. We developed new 
algorithms based on the ones used in computer vision and pattern recognition 
communities. The rock fabric analysis discovers rock fabrics both resolved and 
unresolved by the image resolution being used. Also, it has the capability to characterize 
large-scale rock images by iteratively learning about fabrics. 
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Additionally, it can be applied for selecting optimum number of meaningful 
areas/volumes for laboratory measurements using whole core and cuttings.  
 
It is also important to note that, despite the use of unsupervised ML methods, we 
designed the method based on the concept of intelligence augmentation (IA) [21]. Thus, 
experts can integrate their knowledge into the analysis to maximize benefits. 
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APPENDIX 
A. Rock keypoint detection 
Natural rock images inherit highly heterogeneous arrangements of rock features. 
Dividing images into tiles leads to an overestimation and classification of rock fabrics. In 
order to (1) limit further analysis only to meaningful areas, (2) keep computational 
expense tractable and (3) obtain reasonable number and classification of rock fabrics, 
keypoints are detected. Concepts of keypoint detection are widely used in computer 
vision community [18] [19]. Since rock fabrics have different characteristics from 
commonly encountered image texture, previous methods for keypoint detection are not 
applicable. Our rock keypoint detection algorithm (step b in Figure A1) begins with (a) 
discrete wavelet decomposition of the image up to desired level. This step ensures that 
rock fabrics at multiple scales will be captured. Then, (b) pixel/voxel gradient of images 
obtained from previous step is computed. (c) Laplacian of Gaussian (LoG) is computed 
on the gradient images to locate points of variation of pixel/voxel intensity. (d) Keypoints 
detection within rock fabrics are detected by locating maxima in LoG images. Keypoints 
at the edges of rock features are eliminated by limiting keypoints within certain value of 
maxima (e.g. 80% of maxima). 
 
B. Rock fabric features 
There are models for image texture available in literature [17]. It is known that features of 
rock fabrics, especially the unresolved rock fabrics, are in pixel/voxel level. Additionally, 
similar rock fabric may have different orientations in an image. Therefore, a model that 
quantitatively describes rock fabric features and is rotation invariance must be selected. 
Note that, for the sake of naming consistency, rock fabric features (in DRP) are used 
interchangeably with texture features (in computer vision). We use Haralick texture 
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features [20] which based on gray-level co-occurrence matrix (GLCM). They can be used 
to quantify spatial distribution and auto-correlation of pixel/voxel pairs. The GLCM, Pi,j, 
is constructed from probability of intensity j next to intensity i in defined directions and 
distance. In this paper, we select an appropriate set of Haralick texture features to obtain 
maximum separation between rock fabrics (for following features classification) namely, 
(1) contrast, (2) homogeneity, (3) entropy, and (4) variance. Their mathematical 
description can be found in [20]. 
 

 
 

Figure A1: Flow diagram for rock fabric recognition and segmentation. 


