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ABSTRACT 
Over the last decade digital rock physics has made significant advances in particular with 
regard to imaging technology including multi-scale imaging. In terms of transport 
property calculations from tomographic images physical properties related to single 
component fluids are reasonably well understood when the micro-structure is well 
resolved. The calculation of relative permeability remains challenging; fluid distributions 
at partial saturations are often obtained by direct imaging, rather than fluid flow 
simulation and calculations of relative permeability are carried out on the individual fluid 
partitions using a single phase lattice Boltzmann method (LBM) when considering 
systems of significant size. In this paper we use a lattice Boltzmann approach to simulate 
multi-component flow at typical wettability [1]. We base our simulations on the Shan and 
Chen lattice Boltzmann model for two phase flow. The degree of wetting was 
approximated by the contact angle between the wetting and non-wetting phase. We 
demonstrate the effect of discretization and initial conditions on the pressure field 
distribution. The Lattice Boltzmann model was validated against literature values for 
wetting and non-wetting contact angles. After this validation stage, the model was 
applied to reconstructed Fontainebleau sandstone where we can control image resolution. 
 
INTRODUCTION 
The Lattice Boltzmann method (LBM) is known to produce macroscopic behaviour of 
fluids by simulating the dynamics of particle ensembles on a regular lattice. The local 
nature of the computations and the easy implementation of boundary conditions make it 
particularly suitable for simulations on rock micro-structure and for multi-phase flow [2]. 
Various LBMs have been developed and applied to simulate real life phenomenon in 
different fields with varying degrees of accuracy and stability [3]. LBM models are 
known to be limited in their abilities to model fluid dynamics behaviour with regard to 
density ratios and viscosity ratios [3]. A particular question less researched is the effect of 
initial fluid distributions on final fluid distributions. Here we implement a Shan and Chen 
type LBM and a two relaxation time (TRT) approach to improve stability and accuracy.  
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SAMPLES AND INITIAL SATURATION 
To allow a controlled assessment of initial saturations including discretization effects, we 
consider in this work a reconstructed Fontainebleau sandstone. This sample has been 
characterised in detail in [4]. For our simulations we select resolutions of 3.66 µm and 
1.83 µm. Initial saturations are set using distance maps; namely the Euclidean distance 
transform (EDT), the covering radius transform (CRT), and the capillary drainage 
transform (CDT) [5,6]. We note that distances of EDT and CRT are local to a pore, as 
opposed to the CDT, which considers the connectivity of the pore space: the CRT assigns 
each voxel the radius of the largest sphere which can cover it, while the CDT applies the 
additional condition that this sphere has to be able to intrude from the physical boundary 
of the sample. The initial saturation distributions for the simulations are given in Fig. 1a-
c; a particular saturation is set by applying a radius cut-off on the respective distance 
map. Here the resulting saturations are very similar, e.g. Sw=53.2% for CDT, Sw=53.0% 
for CRT, and Sw=53.1% for EDT for the high-resolution discretization. To avoid 
boundary errors in the calculations, the saturation maps were calculated on double the 
domain size used for flow calculations and the central 4003 or 2003 region selected and 
mirrored in flow direction for simulation of fluid flow. In all fluid flow simulations we 
consider the same field of view, which is 2003 voxels (3.66 µm resolution) or 4003 voxels 
(1.83 µm resolution) respectively. 
 
LATTICE BOLTZMANN METHOD 
The lattice Boltzmann model is a mesoscopic numerical scheme based on a simple 
collide and stream algorithm. We use a Shan and Chen type lattice Boltzmann based on 
various accuracy improving strategies and follow the implementation of [7,2]. The LBM 
evolution equation is given by  

 𝑓𝒂! 𝒙+ 𝒆𝒂∆𝑥, 𝑡 + 𝛿𝑡 − 𝑓𝒂! 𝒙, 𝑡 = 𝑓!"𝒂! 𝒙, 𝑡 − 𝑓𝒂! 𝒙, 𝑡 /𝜏! (1) 

with position x, time t, lattice directions 𝒆𝒂, distribution function 𝑓!! 𝒙, 𝑡 , equilibrium 
function 𝑓!"#! 𝒙, 𝑡 , and relaxation time 𝜏!, where σ denotes the fluid components. The 
equilibrium equation above is solved using the formulation below: 

 𝑓!! 𝒙, 𝑡   = 𝑤!𝜌! 1+  𝒆𝒂.
𝒖𝝈
!"

!!!
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!!!!
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!!!!
   (2) 

with equilibrium velocity 𝒖!
!" . The macroscopic quantities of mass and velocities are 

calculated directly from there microscopic ones as: 

 𝜌! = 𝑓!!!       , and (3)        Equation 1 (2)  

 𝜌!𝒖!
!" = 𝑓!!! 𝒆𝒂   . (4) 

Here 𝜌! is the density of component σ. Further implementation details can be found in 
[7,2]. We apply a half way bounce back boundary condition at the solid-fluid boundary. 
At the inlet and outlet, we mirror our image to achieve periodicity. Given the periodicity 
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of our domain, we apply a body force according to [7] to force each fluid. The definition 
of the adhesion/cohesion forces also follows [7,2]. The actual values are reported in the 
Figure captions. 
 
To improve accuracy and stability of our LBM implementation, we use the TRT method 
as a special case of a multi-relaxation time (MRT) LBM. In the MRT relaxation rates are 
considered a diagonal matrix and are typically optimized for stability, conserved 
quantities, and accuracy. In the two relaxation time approach, the matrix reduces to two 
relaxation rates. Symmetric moments are relaxed with a particular choice of relaxation 
parameters and anti-symmetric ones are relaxed with a different one [8-10]. The 
optimization of these relaxation rates is not trivial particularly in a 2-phase flow 
simulation. It has been shown in [8] that the product of these relaxation times in the TRT 
(1/s+ - ½) x (1/s- - ½) depends on the heterogeneity of the sample structure.  
 
RESULTS AND DISCUSSION 
Figure 2 depicts high-resolution simulations of fluid distribution evolutions from three 
different initial saturation conditions set by the CDT, CRT, EDT respectively. Initial 
saturations across the whole domain are comparable. Two different contact angles of θ = 
76.8° and θ = 35.0° are considered. The latter values is given in [1] for the case of water-
wet Bentheimer sandstone, which is like Fontainebleau a rather clean water-wet 
sandstone. For contrast we added the case of high contact angle. Comparing the initial 
conditions (Fig. 1) to the LBM saturation evolution, it is clear that fluid configurations 
after 20,000 iterations are close to the initial conditions for the CDT and CRT. The EDT 
condition is less stable and approaches a saturation distribution similar to the CRT. We 
consider this a result of the local definition of distances (ordinary percolation) compared 
to the invasion percolation represented by the CDT. Furthermore, the EDT may initially 
provide good connectivity of both phases, while at the same time the sharp angles of the 
initial fluid distribution are unphysical. Comparing the rows [a-c] and [d-f] in Figure 2, 
we notice the clear difference in contact angle. It is apparent that the establishment of 
curvatures obeying contact angle settings in the simulation is relatively fast compared to 
approaching global equilibrium saturations—e.g., we expect that at equilibrium Fig.2d-f 
would show the same fluid saturation distribution, while actually after 20,000 iterations 
the initial saturation distribution is still visible. To explore resolution effects and consider 
longer simulation times, we reduced the lattice resolution by a factor of two in Figure 3. 
Time step N=10,000 in Figure 3.a corresponds to N=20,000 in Figure 2d-f. There is 
excellent agreement with local fluid distributions at this discretization level. Figure 3 
illustrates that the convergence to global equilibrium fluid distributions is slow. It is 
noticeable that the fluid distributions are converging from N=0 (initial condition) to 
N=80,000; an order of magnitude step would be required to actually equilibrate fluids 
fully. We tested a further reduction in resolution to speed up the simulation. At that 
discretization level the evolution of fluid distributions diverged significantly with 
simulations at higher resolution.  



SCA2016-040 4/6 
 

 
CONCLUSION 
We presented an implementation of a multi-relaxation time (MRT) method, which was 
applied for the particular case of two relaxation times (TRT). Multiple fluid distributions 
for initialisation of the simulations were considered. It is clear that initial fluid 
distributions have a strong impact on the fluid evolution pattern. In particular, there is a 
very pronounced difference in initial conditions between CDT and CRT. Initialisation 
using the EDT appears to be similar to the CRT and also has little physical basis, thus 
may be discarded. In the future we will be extending the current MRT LBM to include 
free energy and colour gradient approaches. It is clear that application of the LBM 
technique to heterogeneous porous media would require high stability and computational 
efficiency at the same time to address representative volumes. A different route may be 
the combination of micro-CT fluid distribution imaging with LBM fluid relaxation 
techniques e.g. to consider contact angle changes and their influence on petrophysical 
properties. 
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[a]  [b]  [c]  
Fig.1: Slices through the initial saturation conditions for simulations on reconstructed 
Fontainebleau sandstone (subvolumes of 4003 voxel). [a] Capillary drainage transform 
(Sw=53.2%), [b] covering radius transform (Sw=53.0%), [c] Euclidean distance map 
(Sw=53.1%). Saturations are given for the full domain. 

[a]  [b]  [c]  

[d]  [e]  [f]  

Fig.2: Slices through the density map of component one for LBM TRT simulations on 
reconstructed Fontainebleau sandstone corresponding to Fig. 1 (mirrored simulation 
domain 800x400x400). Depicted are saturations after 20,000 iterations.[a-c]: Ga = ±0.1 
corresponding θ = 76.8°. [d-f] Ga = ±0.3769 corresponding θ = 35.0°, Gc = 1.35, ρinitial = 
4/3 in the fluids and 0.04 of ρinitial in the opposite fluid phase; τi = 1 where i=1,2 are the 
fluid components, Fa = ρinitial·10-5 for both fluids in x-direction (white arrow). 
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[a]    

[b]    

[c]    

[d]    

Fig.3: Slices through a time series of density maps with the same initial conditions as Fig. 
2 at reduced resolution, but identical field of view (simulation domain 400x200x200). 
Left column: initialisation by capillary drainage, middle: initialisation by covering radius, 
right: initialisation by Euclidean distance. Each row corresponds to a particular number 
of N iterations. [a]: N=10,000 (see corresponding time-step N=20,000 in Fig.2d-f), [b]: 
N=20,000, [c]: N=40,000, [d]: N=80,000. Physical properties are as in Fig. 2, [d-f]. 


