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ABSTRACT  
The Darcy law provides the basic linear equation for fluid flow in porous media in an 
ideal, simplified condition. The Darcy’s equation has been shown to be valid in flow 
processes happening in sufficiently low Reynolds number regimes. At higher Reynolds 
numbers, the inertial effect causes extra pressure drop and a decrease in the apparent 
permeability of the porous media. The Forchheimer’s equation is a semi-empirical 
relationship which accounts for the inertial effects on the flow characteristics. 

In this research, high Reynolds number flow through two-dimensional pore-throat 
combinations were simulated by the Lattice Boltzmann method. The effect of the 
geometry on the extent of the inertial effects was studied based on the outputs of the 
simulation. The validity and sensitivity of the Forchheimer’s correlation was tested in this 
work. 

 
1. INTRODUCTION 

Permeability is defined as the capability of a porous medium to pass a single phase, 
single component flow. For a natural porous medium such as a natural hydrocarbon 
reservoir, the porous medium consists of a wide range size of pores and the connecting 
pore throats.  

The first basic mathematical model to study fluid flow in porous media is the empirical 
relationship known as the Darcy’s law. This equation relates the fluid viscosity µ, the 
rock permeability k, the flow area A, the sample length L and the piezometric pressure 
difference ∆Ф of the fluid flow rate through the sample Q as 

𝑄 =
𝑘𝐴
𝜇
∆Ф
𝐿  ,       ∆Ф = ∆𝑃 + 𝜌𝑔∆𝑧 (1) 
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At higher Reynolds numbers, the relationship between the pressure gradient and flow 
velocity becomes non-linear. Forchheimer (1901) was one of the first people to provide a 
quadratic empirical correlation for the velocity and pressure gradient relationship 

−
𝑑𝑃
𝑑𝑥 =

𝜇𝑢
𝑘!

+ 𝛽𝜌𝑢! (2) 

where β  is termed the Forchheimer coefficient, u is the average velocity of the fluid, kF 
is the Forchheimer permeability and ρ is the fluid density. There has been some research 
works that propose a cubic relationship for the velocity and pressure gradient (Mei and 
Auriault 1991; Coulaud et al. 1998; Balhoff and Wheeler 2009). However, the range of 
the applicability of the cubic relationship is not wide. 

Ruth and Ma (1992) proposed an alternative form of representing the inertial effects on 
the permeability as 

1
𝑘 =

1
𝑘!

1+
𝛽𝑘!𝜌𝑢
𝜇  (3) 

where k is the permeability, and ko is the apparent permeability. The Forchheimer 
coefficient β is measured experimentally for each type of fluid and porous media by 
multi-rate flow tests and there is no generally accepted theory to predict its value. 
However, there are empirical correlations relating the Forchheimer coefficient to 
permeability and porosity. 
Considering a porous medium to be a bead pack, Ergun (1952) derived a correlation for 
the Forchheimer coefficient as  

 𝛽 = 𝑎𝑏!!.!(10!!𝑘)!!.!∅!!/! (4) 

where a and b are constants depending on the porous structure surface, and ϕ is the 
porosity. MacDonald et al. (1979) modified Ergun’s correlation and defined ranges for a 
and b. There are also some other correlations obtained for natural porous media. Table 4 
presents a few of the correlations found in the literature. 
Flow test experiments on regular shaped sphere packs have shown the applicability range 
of the Forchheimer equation (Dybbs and Edwards 1984; Fand et al. 1987). This ranges 
differ for each type of the packings.  

2. MODEL ANALYSIS AND RESULTS 
Natural porous media consists of a wide range of pores and pore throats of different sizes 
and shapes. In natural porous media the pores could be connected to any number of 
throats. In this study a simple circle in 2D is chosen to represent the pore and channels 
are assumed to represent the pore throats. Figure 1 shows the schematic of the simplified 
pore.  
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The purpose of this study is to investigate the onset of the non-Darcy flow and the 
pressure loss and velocity relationship in the pore-throat combination by simulating the 
hydrodynamics of flow in pore bodies by the Lattice Boltzmann method. The Lattice 
Boltzmann method is a popular fluid dynamics simulation method. For a detailed 
explanation of the method, the paper by Arabjamaloei & Ruth (2016) is suggested.  

It is known that the sudden change in the flow path width causes a shift of the laminar 
flow from the Darcy regime (creeping flow) to non-Darcy regime (Forchheimer or 
turbulent). Turbulent flow happens at very large velocity and rarely innatural porous 
media flow. The dimensionless Reynolds number (Re) is typically the main indicator of 
the onset of the flow regime change. Studies on the onset of non-Darcy flow in sphere 
packs have shown that assigning a unique Re onset for all types of porous media is not 
possible due to the sensitivity of the fluid flow to the geometrical properties of the porous 
medium (Hassanizadeh and Gray 1987).  

Reforming equation 2, for gravity driven flow, by inserting the kinematic viscosity v 
instead of the dynamic viscosity µ, results in another form of the Forchheimer equation as 

𝑔 =
𝑣𝑢
𝑘!

+ 𝛽𝑢! (5) 

The flow processes in all the pore-channel combinations at varying gravity force was 
simulated. The plot of gravity (g) and the average exit velocity (u) for 4 different pore-
throat combinations is provided by figure 2. As it is seen in figure 2, a second order 
Forchheimer type polynomial fits the data well but the trend of the velocity profile is 
more like a third order polynomial with an obvious critical point that could be related to 
the critical Re. The velocity and gravity force in lattice Boltzmann units show a well 
behaved cubic relationship for each combination. However, the effectiveness of this 
relationship depends on its applicability to the whole range of aspect ratio combinations. 
To investigate this issue, the plot of the velocity and gravity for 10 different pore-channel 
combinations with varying aspect ratio was produced, as shown in figure 3.	 The mass 
flow rate is also a characteristic of the flow process and the inertial effects extent. The 
permeability for all the different cases was scaled by dividing the calculated permeability 
to the absolute permeability for all the data 10 combinations. The absolute permeability 
was calculated at vanishing Reynolds number. Scaled permeability (Ks) was plotted 
versus the mass flow rate in figure 4. Comparing figures 3 and four illustrates that the 
mass flow rate and scaled permeability provide a well behaved relationship for the whole 
ranges of pore-throat geometries while the velocity and head loss relationship foe all the 
geometries is not correlating well. 
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4. DISSCUSSIONS AND CONCLUSIONS 
• As it is seen in figure 3, neither third order nor second order polynomial can perfectly 

predict the velocity and gravity relationship. This indicated the weakness of the 
Forchheimer type equation for the pore network combinations.  

• A second order polynomial precisely predicts the permeability change as a function of 
mass flow rate due to the inertial effects in the simplified geometries used for this 
research.  

• The Forchheimer equation seems to work for some pore-throat combinations, 
however it doesn’t work well for all size combinations. 

• The third order form of the Forchheimer equation works better than the second-order 
form in the two dimensional models studied (Figure 2). 
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Figure	1:	Schematic	of	the	velocity	streamlines	in	simple	pore	(the	green	circle)	and	two	connecting	channels	(the	
green	channels)	surrounded	by	solid	impermeable	medium	(the	red	color)	
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Figure	2:	Average	exit	velocity	(u)	versus	dimensionless	gravity	acceleration	and	two	orders	of	polynomial	
fits	for	4different	pore-throat	combinations.	Data	points	show	the	simulation	results	and	the	line	shows	

the	fitted	polynomial. 

 

	
Figure	3:	Plot	of	average	exit	velocity	(u)	versus	dimensionless	gravity	(g).	 

	
Figure	4:	Scaled	permeability	(Ks)	and	mass	flow	rate	(Mf)	relationship	for	10	different	combinations	of	

pore	and	throat	with	different	aspect	ratios	and	the	polynomial	fitting	all	the	data	points	
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