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ABSTRACT 
The foundational paper by Klinkenberg contains a very rich data set for gas flow in 
porous samples over a range of mean pressures from 1 kPa to 2000 kPa.  Based on his 
data, Klinkenberg proposed a correlation between pressure drop and flow rate that 
depends on both the Darcy permeability (the permeability at infinite mean pressure) and 
the ratio of a coefficient, now generally termed the Klinkenberg coefficient, and the mean 
pressure.  Klinkenberg’s approach to analyze his data was to determine the Darcy 
permeability at a high mean pressure, then calculate Klinkenberg coefficients at lower 
values of mean pressures.  He found that values of the calculated Klinkenberg coefficient 
remained constant for a certain range of mean pressures, but changed significantly at low 
mean pressures.  Klinkenberg clearly stated that his results did not show a strictly linear 
function of effective permeability with the inverse of mean pressure – it appears that this 
observation has never been studied in detail.  Based on an approach published by 
Arabjamaloei and Ruth, Klinkenberg’s data have been reanalyzed using three methods: 
by optimizing the Darcy permeability and the Klinkenberg coefficient simultaneously; by 
holding the Darcy permeability constant but optimizing the value of the Klinkenberg 
coefficient to obtain a single value for all mean pressures; by optimizing Darcy 
permeability, the Klinkenberg coefficient, and a second Klinkenberg coefficient divided 
by mean-pressure-squared.  It is shown that the last approach is successful in correlating 
all of Klinkenberg’s data to within ± 5%. However, the improvements due to the 
modified Klinkenberg equation are marginal and do not explain all the disagreement.  For 
this reason, a second data set, published by Ash and Grove, was explored.  This data set, 
which has been largely ignored in the literature, provides convincing evidence for 
Klinkenberg’s ideas, once the data are reanalyzed to account for shortcomings in the 
ranges of experimental pressures.  Based on ideas documented by Carman for mixed 
viscous/ diffusive flows, the results are used to derive estimates of an effective pore 
diameter and the tortuosity. 
 
INTRODUCTION 
Two foundational papers on low-pressure flow in porous media, one by Klinkenberg [1] 
and the other by Ash and Grove [2], have had very different impacts in the literature.  
Based on data from Google Scholar at the time of writing the present paper, the paper by 
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Klinkenberg has been cited 1853 times while the paper by Ash and Grove has been cited 
only 15 times.  The present paper will show that by combining the results from these 
papers with the model documented by Carman [3] (a similar treatment is also presented 
in Klinkenberg’s paper for a single straight capillary), a very simple method can be 
derived to predict an effective pore diameter and tortuosity of a porous sample.  The great 
advantage of the two papers is that they both contain sufficiently detailed experiment data 
to allow reanalysis of the results, a rare occurrence in the literature.  
 
For the purpose of the present paper, three characteristic flow regions will be defined.  
When pressure is very low or pore sizes are very small, this will be termed the “purely 
diffusive flow” region.  This region is often referred to as the “free molecular flow” 
region.  When the pressure is very high or the pore sizes are large, this will be termed the 
“purely viscous flow” region.  This region is often referred to as the “Poiseuille flow” or 
“Darcy flow” region.  Between the two regions is as “intermediate flow” region.  This 
region is also sometimes referred to as the “Knudsen flow”, “slippage flow” or 
“Klinkenberg flow” region, although the Knudsen flow region often is defined to include 
also the purely diffusive flow region. 
 
MATHAMATICAL BASIS 
The analysis in this paper is based on a generalized Klinkenberg equation as proposed by 
Arabjamaloei and Ruth[4].   

− 1+
𝑏
𝑃 +

𝑏!
𝑃!  

𝑑𝑃
𝑑𝑥 = 𝜇

𝑣
𝑘!

 (1) 

Here 𝑏 is the Klinkenberg coefficient, 𝑏! is a second Klinkenberg coefficient, 𝑣 is the 
Darcy (bulk) velocity, and 𝑘! is the Darcy permeability, the permeability at infinite mean 
pressure.  The mass flow rate, 𝑚, is related to the Darcy velocity by the equation 

𝑣 =
𝑚
𝜌 𝐴!

 (2) 

Here 𝐴! is the bulk cross-sectional area and 𝜌 is the density.  For steady, compressible 
gas flow, the mass flow is constant along the sample but the Darcy velocity will vary 
with the density, hence pressure.  Substituting Equation 2 into Equation 1 results in the 
equation 
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For an ideal gas and isothermal flow 

𝜌 = 𝜌!
𝑃
𝑃!

 (4) 

Here the subscript denotes the conditions at the arithmetic mean pressure.  Substituting 
into Equation 3 and multiplying through by 𝑃 
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The right-hand side of Equation 5 is a constant for steady flow.  Therefore the equation 
can be integrated over the bulk length, 𝐿!, and from the pressure at its highest value, 𝑃!, 
to its lowest value, 𝑃!.  The result is 

𝑃!! − 𝑃!!

2 + 𝑏 𝑃! − 𝑃! + 𝑏! ln
𝑃!
𝑃!
= 𝜇

𝑚
𝑘! 𝐴!

𝑃!
𝜌!

  𝐿! (6) 

Because the mean pressure, 𝑃!, is equal to 𝑃! + 𝑃! 2, this equation can be rearranged 
as 

𝑃! + 𝑏 +
𝑏!

𝑃! − 𝑃!
ln
𝑃!
𝑃!
= 𝜇

𝑚
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𝐿!
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 (7) 

 
An effective permeability, 𝑘, is defined by the expression 

𝑘 = 𝜇
𝑚

𝐴! 𝜌!
 

𝐿!
𝑃! − 𝑃!

 (8) 

Substituting this expression into Equation 7 and rearranging 

𝑘 = 𝑘!  1+
𝑏
𝑃!

+
𝑏!

𝑃! 𝑃! − 𝑃!
ln
𝑃!
𝑃!

 (9) 

 
Three dimensionless groups will now be defined: 

𝐃𝐚𝐫𝐜𝐲 𝐍𝐮𝐦𝐛𝐞𝐫    𝐷𝑎 =
𝑘
𝑘!

  (10) 

𝐊𝐥𝐢𝐧𝐤𝐞𝐧𝐛𝐞𝐫𝐠 𝐍𝐮𝐦𝐛𝐞𝐫    𝐾𝑙 =
𝑏
𝑃!

 (11) 

and  

𝐒𝐞𝐜𝐨𝐧𝐝 𝐊𝐥𝐢𝐧𝐤𝐞𝐧𝐛𝐞𝐫𝐠 𝐍𝐮𝐦𝐛𝐞𝐫    𝐾𝑙! =
𝑏!

𝑃! 𝑃! − 𝑃!
ln
𝑃!
𝑃!

 (12) 

to yield 
1+ 𝐾𝑙 + 𝐾𝑙! = 𝐷𝑎 (13) 

 
At first sight, the second Klinkenberg number appears to be ill-behaved because as  
𝑃! → 𝑃! this term goes to infinity.  However, as 𝑃! → 𝑃! then ln 𝑃! 𝑃! → 0 which 
compensates. 
 
THE KLINKENBERG RESULTS 
Klinkenberg included the following statement in his paper: 
 
“Fig.1, 2 and 3 show that the apparent permeability is approximately a linear function of 
the reciprocal mean pressure.  The linear function, however, is an approximation… 
wherein the value of the constant b increases with increasing pressure.” 
 
To explore reasons for this behavior, the Klinkenberg data were reanalyzed using three 
different approaches.  First, the data were fitted with Equation 5 but assuming b2 is zero.  
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This resulted in values for ko and b.  Second, the data were fitted with Equation 5 holding 
the value of ko equal to the value at high pressure and assuming b2 is zero.  Third, the data 
were fitted with Equation 5 allowing ko, b and b2 to vary.  The results for the three 
samples for which Klinkenberg provided detailed data are shown in Table 1.  
 

Table 1  The Fitting Parameters for the Three Models Considered 
 

Sample/Property #1 #2 #3 
 Core Sample “A” Jenna Glass Filter Core Sample “F” 

Varying ko and b 
ko (mD) 24.94 2.51 182.14 
b (kPa) 11.33 55.56 6.759 

Varying b only 
ko (mD) 23.66 2.45 176.57 
b (kPa) 12.02 57.07 7.038 

Varying ko, b and b2 
ko (mD) 24.39 2.46 177.81 
b (kPa) 12.28 58.40 7.781 

b2 (kPa)2 -0.661 -4.183 -1.165 
 

Figures 1 through 3 show the errors between the fitted equations and the measured values 
of effective permeability.  For Sample #1, using both ko and b results in errors exceeding 
5% at high pressures and in the vicinity of 10 kPa.  When only b is used in the fit, the 
effective permeability is well predicted at high pressures (this should occur because this 
is the region used to predict ko) but the error near 10 kPa is the greatest observed.  Using 
all three parameters results in the best prediction.  However, the improvements are 
marginal and the errors at high pressures and near 10 kPa are still relatively large. 
 
The behavior of Sample #2 (Figure 2) is similar to that for Sample #1.  Again, using both 
ko and b results in the largest errors at high pressures.  When only b is used in the fit, the 
effective permeability is better predicted at high pressures, although not as well as for 
Sample #1, but the error near 100 kPa has increased.  Using all three parameters results in 
the best predictions.  However, the improvements are again marginal and the error near 
100 kPa is still relatively large. 
 
The behavior of Sample #3 (Figure 3) is even more similar to that for Sample #1.  Again, 
using both ko and b results in the largest errors at high pressures and in the vicinity of 10 
kPa.  When only b is used in the fit, the effective permeability is better predicted at high 
pressures, although not as well as for Sample #1, but the error near 10 kPa is still large.  
Using all three parameters results in the best prediction.  However, the improvements are 
again marginal and the errors near 10 kPa are still relatively large. 
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In summary, despite using a higher order correlation, there remains a systematic 
deviation in the Klinkenberg data.  In order to obtain further insights into this problem, a 
second data set, published by Ash and Grove [2], was studied. 

 

 
Figure 1  The Errors for Sample #1 (Core Sample “A”).  These errors are the values 

predicted by the correlation equation minus the measured values, divided by the 
measured values. 

 
 

 
Figure 2  The Errors for Sample #2 (Jenna Glass Filter).  These errors are the values 
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predicted by the correlation equation minus the measured values, divided by the 
measured values. 

 

 
Figure 3  The Errors for Sample #3 (Core Sample “F”).  These errors are the values 

predicted by the correlation equation minus the measured values, divided by the 
measured values. 

 
 
THE ASH AND GROVE RESULTS 
Ash and Grove [2] reported effective permeability, and upstream and downstream 
pressure data, for 10 gases on a single sample of ceramic porous media.  However, the 
data is not in the same form as that used in the petroleum literature.  The flow rate, 𝐺, 
was calculated using the declining pressure in a known upstream volume using the 
equation  

𝐺 =
𝑑𝑃!
𝑑𝑡  𝑉!  

𝑇
𝑇!

 (14) 

Here 𝑡 is time, 𝑉!is the upstream chamber volume, 𝑇 is temperature, and 𝑇!is a reference 
temperature, in this case ambient.  (The units of the flow rate in the original paper were 
ergs/s, the pressures were in cm of Hg and time was in min.  In Equation 14 the units of 𝐺 
are J/s.)  In the paper, flow rates are not actually reported; however, permeabilities, K, in 
units of cm2/s are reported and G is related to K by the equation 

𝐾 =
𝐺 𝐿!

𝐴! 𝑃! − 𝑃!    (15) 

All the variables in this equation are reported except G which can be calculated from 
Equation 15.  Once G is calculated, the mass flow rate can be calculated using the 
equation 
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𝑚 =
𝐺 𝑀
ℛ 𝑇   (16) 

where 𝑀 is the molecular weight of the gas and ℛ is the universal gas constant.  Once the 
mass flow rate is known, Equation 8 can be used to calculate the effective permeability. 
 
The resulting effective permeability/ mean pressure data were fitted to determine the 
Darcy permeability and the Klinkenberg coefficient.  When fitting an equation to 
experimental data, the form of the error equation used can lead to different values for the 
fitting parameters because different equations will “weight” the data points differently.  
In the present analysis, two different error equations were used 

1+
𝑏
𝑃! !

−
𝑘!
𝑘!

!!!

!!!

= 𝐸𝑟𝑟𝑜𝑟 (17) 

and 

𝑘! +
𝑘! 𝑏
𝑃! !

− 𝑘!

!!!

!!!

= 𝐸𝑟𝑟𝑜𝑟 (18) 

The results for fitting these two equations to the experimental data for the ten gases are 
shown in Table 2.  These results are not at all what is expected.  All the experiments were 
done on a single experimental sample and the expectation is that the Darcy permeability 
should be the same for all the gases.  What is observed is that the Darcy permeability 
varies by a factor approaching 3 and the two error equations generally predict very 
different values for the same gas.  In the original paper, the same observation was made.  
There was some attempt to explain the variations based on arguments involving 
adsorption and surface flow but the authors admitted the arguments were not convincing.  
We could speculate that this inconsistent behaviour may be why this work has been 
largely ignored in the literature. 

 
Table 2  Calculated Darcy Permeabilities and Klinkenberg Coefficients 

 

 
Equation 17 Equation 18   Equation 17 Equation 18 

Gas ko 
(mD) 

b 
(kPa) 

ko 
(mD) 

b 
(kPa) 

 Gas ko 
(mD) 

b 
(kPa) 

ko 
(mD) 

b 
(kPa) 

He 13.84 97.77 19.11 70.37  H 5.78 149.03 14.00 61.45 
Ne 10.59 94.95 14.78 67.89  N 15.84 29.65 18.58 25.09 
Ar 12.10 42.52 15.11 33.77  O 10.73 49.36 13.99 37.56 

SO2 8.59 22.37 25.14 7.45  C2H6 16.50 13.09 16.79 12.84 
Kr 14.32 27.23 14.50 26.89  CO2 9.33 34.39 29.74 10.19 

 
When fitting data, it is important that the data covers the full range that the equation 
represents.  In this case, if an accurate value of 𝑘! is desired, at least some of the data 
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points should have a sufficiently high mean pressure such that the Da is close to 1.  Table 
3 shows the minimum Darcy numbers calculated using the Darcy permeabilities based on 
fitting the data.  Clearly, none of these Darcy numbers are even close to 1.  In order to 
determine if this observation was the source of the scatter in the values of 𝑘!, the data 
were reanalyzed by using only data points that had a Darcy number less than 10 (this was 
not possible for hydrogen) or the last three data points.   Although this was not expected 
to yield accurate values for the Darcy permeability, this was the only way that at least 
three points would be used for each gas.  The results for the recalculated Darcy 
permeabilities are shown in Table 4. 

Table 3  The Minimum Experimental Darcy Number Calculated using Darcy 
Permeabilities based on Equation 13. 

 
Gas Minimum 

Da 
 Gas Minimum 

Da 
He 6.352  H 14.540 
Ne 5.229  N 2.801 
Ar 3.577  O 4.556 

SO2 2.782  C2H6 2.326 
Kr 2.345  CO2 4.397 

 
 
Although the values for Darcy permeability still show variations, they are in much better 
agreement.  Furthermore, the two error equations now predict very similar values.  In 
order to proceed, the values for the 10 gases and the two error equations were averaged.  
This gave a value for 𝑘! of 16.0 𝑚𝐷. 
 

Table 4  Reanalysed Darcy permeabilities based on data points for which the Darcy 
number is near 1. 

 
 

Gas 
ko 

(mD) 
(Eq.13) 

ko 

(mD) 
(Eq.14) 

 Gas ko 

(mD) 
(Eq.13) 

ko 
(mD) 

(Eq.14) 
He 18.32 18.40  H 14.47 14.48 
Ne 15.44 14.78  N 14.97 14.98 
Ar 16.63 16.74  O 15.25 15.26 

SO2 15.51 15.52  C2H6 17.41 17.85 
Kr 16.11 16.15  CO2 15.74 16.11 

 
Using the single value of the Darcy permeability, the data were reanalyzed to obtain new 
values for the Klinkenberg coefficients.  The work of Carman suggests that the 
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Klinkenberg coefficient divided by the mean pressure should vary with the mean free 
path of the gas.  The mean free path can be calculated from the equation 

𝜆 =
𝜆!
𝑃!

 (19) 

where 𝜆! is the mean free path coefficient 

𝜆! = 𝜇
𝜋 ℛ 𝑇
2 𝑀  (20) 

Table 5 shows the results and Figure 4 shows a plot of 𝑏! versus 𝜆!  
 

Table 5 Calculated values for the Klinkenberg coefficient and the mean free path 
coefficient. 

 
Substance 𝑏 𝑘𝑃𝑎  𝜆!×10!  Substance 𝑏 𝑘𝑃𝑎  𝜆!×10! 

He 84.34 5.72  H 53.73 3.57 
Ne 62.64 3.99  N 29.33 1.90 
Ar 31.82 2.05  O 32.70 2.06 

SO2 11.87 0.904  C2H6 13.54 0.962 
Kr 24.28 1.57  CO2 19.69 1.29 

 

 
Figure 4  The Klinkenberg Coefficient as a Function of the Mean Free Path Coefficient 

 
As observed in Figure 4, the correlation between the two variables is remarkably good.  
In fact, the regression coefficient is 0.9962.  It can be concluded that when the Ash and 
Grove data is analysed by taking care to separately analyse the data that contains 
information on the viscous flow region, the results conform well with the expectation that 
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all the different gases will have behaviours that can be accounted for by changes in the 
mean free path coefficient. 
 
Figure 5 summarizes the errors between the experimental values and the calculated 
values of permeabilities using the data from Table 5.  In general the errors are small, 
much below ±0,05.  However, the sulphur dioxide results show anomalously large errors; 
there is no apparent reason for this behaviour.  It is observed that the errors are generally 
positive.  This may be due to the value of Darcy permeability used in the analysis.  The 
Darcy permeability can easily be in error because it was calculated from data that did not 
include values for Darcy numbers near 1. 
 

Figure 5  The Errors for the Ash and Grove data.  These errors are the values predicted by 
the correlation equation minus the measured values, divided by the measured values. 

 
USING KLINKENBERG DATA TO PREDICT SAMPLE 
STRUCTURE 
The Ash and Grove work was motivated by a desire to determine pore properties based 
on flow in capillary tubes collected into a parallel tube model.  The equation for the 
effective permeability (as developed in Carman [3] but based on the earlier work of 
others, most notably Adzumi [5]) is 

𝑘 =
𝜙 𝛿!

32 𝜏!  1+ 8 
𝜆
𝛿  21 

Here 𝜙 is the porosity, 𝛿 is an “effective” tube diameter, 𝜏 is the tortuosity, and 𝜆 is the 
mean free path of the gas given by Equation 19.  Comparing this equation with Equation 
9, and ignoring the second Klinkenberg term, the Darcy permeability may be identified as 
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𝑘! =
𝜙 𝛿!

32 𝜏! (22) 

and the Klinkenberg coefficient by 

𝑏 =
2 𝜇
𝛿 

𝜋 ℛ 𝑇
𝑀  (23) 

Given values for 𝜙, 𝑘! and 𝑏, these equations should allow the prediction of the effective 
diameter and the tortuosity.  Based on the Ash and Grove data, the values for these 
variables are 𝛿 = 1.91×10!!  ∓ 0.14 𝑚 and 𝜏 = 1.46∓ 0.11.  The value for the 
diameter compares favorably with values that were calculated by Ash and Grove based 
on a number of different approaches (0.41×10!! to 2.84×10!! 𝑚).  The medium used 
for this study was a ceramic which would be expected to have a very uniform and 
systematically packed structure.  As such, a reasonable expectation for the tortuosity 
would be 2 or 1.414 which is remarkably close to the value based on the Ash and Grove 
data. 
 
At very low pressures, or for samples with very small flow passages, the flow becomes 
purely diffusive and viscosity effects become minimal.  The onset of this behavior is 
characterized by the Knudsen number which is defined as  

𝐾𝑛 =
𝜆
𝛿 (24) 

and Equation 21 may be written as  

𝑘 =
𝜙 𝛿!

32 𝜏!  1+ 8 𝐾𝑛  (25) 

As the Knudsen number becomes large, this equation goes to 

𝑘 =
𝜙 𝛿!

4 𝜏! 𝐾𝑛 (26) 

If experiments are conducted in the diffusive region, this equation may be used to model 
the results.  The measurement of diffusive properties of porous media has great utility.  
As pointed out by Klinkenberg in a separate paper [6], diffusion is an analogy for 
electrical conductivity in porous media.  For a parallel tube model, the formation factor 𝐹 
is given by (Ruth, Lindsay and Allen [7]) 

𝐹 =
 𝜏!

𝜙  (27) 

Therefore, once effective pore diameters and tortuosities are determined, formation 
factors can be predicted without the need to saturate the samples with an electrically 
conducting liquid.  The present work clearly demonstrates that when experiments are 
conducted to capture and analyze flow in both the diffusive and viscous regions, gas flow 
experiments give the results predicted from simple theories of flow in tubes.  Therefore, 
they should allow calculation of meaningful values for effective pore diameters and 
tortuosities.  It is the opinion of the authors that diffusive experiments represent a very 
important but underutilized opportunity to gain a much better understanding of rock 
samples. 
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A word of caution is required.  It should always be possible, by using very low pressures, 
to conduct experiments in moderate to high permeability samples that range over the 
diffusive, intermediate, and viscous flow regions.  However, for low permeability 
samples, it may be difficult to perform experiments in the viscous flow region without 
using very high pressures.  Therefore, the potential to use this technique to determine 
pore structure on tight samples needs further investigation. 
 
CONCLUSIONS 
The work reported in this paper supports the following conclusions: 
1. Using a model equation with a second order dependence on mean pressure leads to a 

better correlation between mean pressure and permeability.  However, the 
improvements are marginal. 

2. Even with a second order model, the Klinkenberg data show a systematic deviation 
from the predicted values in the intermediate flow region between purely viscous and 
purely diffusive flow. 

3. When reanalyzed to reduce the impact of lack of data near a Darcy number of 1, the 
Ash and Grove data provide very consistent results for the permeability of the sample 
to various gases. 

4. Based on the Ash and Grove data, the Klinkenberg coefficient varies in a linear 
fashion with the mean free path coefficient with a very high regression coefficient. 

5. Using the derived Darcy permeabilities and Klinkenberg coefficients, very reasonable 
values for the effective pore diameter and tortuosity are predicted for the sample used 
by Ash and Grove. 

6. In order to best implement a method to calculate effective pore diameter and 
tortuosity of a sample, accurate data must be collected in both the purely viscous and 
the purely diffusive flow regions. 

7. Diffusion experiments could represent a very important technique for studying 
samples of porous media. 
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