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ABSTRACT 
This paper reports on a study with the objective to validate a set of core analysis data 
using a combination of mercury injection capillary pressure (MICP) data and statistical 
correlation techniques.  The data set is from an off-shore reservoir in Atlantic Canada.  
Analysis of this reservoir was complicated by the fact that the permeabilities of the 
samples were high, greater than 2400 mD.  The analysis was done using an existing data 
set, not a data set specifically tailored for the techniques used in the analysis.  The data 
analyzed included samples that represented seven zones in a single well.  Porosities and 
permeabilities were available for the MICP samples.  Electrical properties, along with 
porosities and permeabilities, were available on samples from each zone, but not from 
the same depths as the MICP samples.  Steady-state relative permeabilities (SSRP) were 
available for stacked samples in each zone; one of the samples in the stack was a 
companion sample for one of the MICP samples from that zone.  The MICP results were 
used to validate the permeability measurements using both the Swanson method (SM) and 
the Ruth-Lindsay-Allen (RLAM) method.  The SM, using published correlation 
parameters, significantly under-predicted the permeabilities; the RLAM, which uses no 
correlation parameters, gave predictions within a maximum error of just over 33% and a 
mean error of -12%.  The MICP data was used to validate the shapes of the SSRP curves 
using the Gates and Tempelaar-Lietz method (GT-LM), the Burdine method (BM), and a 
modified Burdine method (MBM).  The GT-LM, which uses no correlation parameters, 
provided good predictions of the wetting phase SSRP curves but very poor predictions of 
the non-wetting phase SSRP curves.  The BM, using published correlation parameters, 
provided poor predictions of the wetting phase SSRP curves but improved predictions of 
the non-wetting phase SSRP curves.  The MBM provided good predictions of the wetting 
phase SSRP curves and acceptable predictions of the non-wetting phase SSRP curves.  
The MBM method does use a correlation parameter but a single value was used for all 
seven zones.  This work provides a protocol for validating core analysis data that can be 
implemented in a straightforward manner to determine the “quality” of the data.  The 
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results emphasize the importance of MICP as an experimental technique.  A proposed 
modified workflow is presented that would optimize the validation protocol. 
 
INTRODUCTION 
Whenever core analysis data is reviewed, the question of data validity must be addressed.  
Data validation is a two part process.  The first question that must be asked is: Are the 
values what are expected?  This question rests on the implicit assumption that we can 
actually state what we expect.  Even with the most sophisticated imaging and flow 
simulation, there is still great uncertainty in predicting transport phenomena, particular 
multi-component flow phenomena, in porous media based on primary information such 
as pore images and fluid properties.  If it is determined that the transport properties are 
sensible, then the data can be considered to be validated.  However, if the data does not 
agree with expectations, then a further question must be asked: Is the data correct?  The 
“correctness” of the data refers to the accuracy and precision of the experiment itself.  
Unlike many fields of testing, except for synthetic samples such as those made by 
sintering glass, porous samples with well documented properties are not readily available.  
However, careful examination of laboratory procedures and close scrutiny of data 
analysis techniques will generally determine if the data is “correct”.  If the data is judged 
to be “correct” and the results do not conform to expectations, then sources of the 
anomalies can be explored with confidence. 
 
The present study was conducted to determine if a relatively straightforward protocol can 
be used to validate a set of data for a well from off-shore Atlantic Canada.  Rather than 
use sophisticated core images and predictive techniques, the protocol relies on 
determining if data from a number of different core analysis tests can be rationalized 
without the use of a large number of correlation (“fitting”) parameters.  The present 
validation process relies on the availability of mercury injection capillary pressure curves. 
 
The protocol was tested on an existing data not one specifically tailors for this study. 
 
PERMEABILITY VALIDATION 
The foundational data for this study were mercury injection capillary pressure (MICP) 
results for a suite of seven samples.  The properties of these samples are shown in Table 
1.  The first row in this table shows the Klinkenberg corrected permeabilities.  The last 
row in this table are the permeabilities calculated by the service laboratory from the 
MICP data using the Swanson method [1]. 
 
All of the samples have high permeabilities, ranging from just over 2000 mD to just 
under 8000 mD.  The first stage in validating the data was to determine if the MICP 
results could be used to accurately predict the sample permeability.  This was done in 
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three different ways: using a simple permeability-porosity cross plot; using the Swanson 
method (SM) [1]; and using the Ruth-Lindsay-Allen method (RLAM) [2]. 

Table 1  Basic Data for the MICP Samples 
Sample Number #7 #18 #25 #36 #43 #48 #53 
Klinkenberg Corrected 
Permeability (mD) 2407 6317 6854 3565 5810 7855 6540 
Helium Porosity 0.286 0.316 0.259 0.291 0.305 0.296 0.262 
Helium Pore Volume (cc) 0.947 0.833 0.754 0.940 0.698 1.174 0.705 
Bulk Volume (cc) 3.313 2.635 2.914 3.234 2.290 3.965 2.694 
Grain Volume (cc) 2.366 1.802 2.161 2.294 1.592 2.791 1.989 
MICP Permeability (mD) 1046 2686 2020 1283 2094 2587 1125 
 
Figure 1 shows the permeability-porosity cross plot along with the best fit regression line.  
Clearly, there is no evident trend in this data. 

Figure 1  Permeability-Porosity Cross Plot for the MICP Data 
 
Both the SM and the RLAM rely on interpreting the MICP curves to obtain a 
representative pore (tube) diameter on which to base the permeability prediction.  Figure 
2 shows the pressure versus vacuum saturation for the seven curves.  The interpretation 
of these curves used values of interfacial tension and contact angle of 0.480 N/m and 
140° respectively. 

All of the MICP data appear to be of high quality with no evidence of secondary porosity.  
As expected for samples of this high permeability, the threshold pressures are very low 
and all of the samples have low residual vacuum saturations. 
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Figure 2  The Mercury Injection Capillary Pressure Curves 
 
The SM permeability is determined by finding the maximum value of the expression  

𝑘!" = 2.517×10!
𝑆!" 𝜙
𝑃!

!.!"#

 (1) 

Here 𝑆!" is the fractional mercury saturation, 𝜙 is porosity (decimal), and 𝑃!is the 
capillary pressure in kPa.  𝑘!" has units of mD. 
 
Figure 3 shows a cross plot of the SM permeabilities with the measured permeabilities.  
The SM values are seen to be consistently lower than the experimental values.  The 
maximum error is 84% and the mean error is -67%.  This analysis used the conventional 
values of the correlation parameters (2.517×10! and 1.691) in the prediction equation.  
The systematic trend in the data suggests that much better prediction could be made using 
different parameters.  The calculated values for the SM permeabilities were very similar 
to those provided by the service laboratory; they used slightly different values of 
interfacial tension and contact angle (0.485 N/m and 130°) which explains the small 
differences. 
 
The RLAM method is based on assuming that the sample can be modelling using the 
simple Representative Elemental Volume, illustrated in Figure 4.  This element consists 
of a single tortuous tube, and the permeability is predicted using the equation  

𝑘!"#$ =
𝜙 𝛿!

32 𝜏!      (2) 

Here 𝛿 is a representative pore diameter and 𝜏 is the tortuosity.  If the pore diameter is 
expressed in µm, then 𝑘!"#$ will have units of mD.    
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Figure 3 A Comparison between the Permeabilities Predicted by the Swanson Method 
and the Experimental Values 
 

Figure 4  The Representative Elemental Volume 
 
The representative pore diameter is found using a method based on the Purcell equation 

𝛿! = 4 𝜎 𝑐𝑜𝑠 𝜃 ! 𝑑𝑆!
𝑃! !

!

!

      (3) 

If 𝜎 has units of N/m and the capillary pressure has units of Pa; the units for the diameter 
will then be m, which would be converted to µm before use in Equation 1.  In order to 
apply the RLAM, the formation factors based on electrical properties are needed.  Then 
the tortuosity is found using the following formation factor equation:  
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𝐹 =
𝜏!

𝜙       (4) 

Combining these equations 

𝑘!"#$ =
𝜎 𝑐𝑜𝑠 𝜃 !

2 𝐹
𝑑𝑆!
𝑃! !      (5) 

 
Unfortunately, electrical properties were not available for the MICP samples.  However, 
electrical properties were available for a separate suite of samples taken from the same 
reservoir and similar, but not exactly the same, depths.  Table 2 contains the data for 
these samples.  Figure 5 shows the cross plot of formation factor versus the porosity plus 
the regression line given by the equation 

𝐹 =
0.85
𝜙!.!"" (6) 

The regression coefficient for this equation is 𝑅! = 0.80. 
 

Table 2  Data for the Samples used to Determine the Formation Factor Parameters 
 

Sample 
Identification Porosity 

Formation 
Factor 

N/A 0.262 9.22 
N/A 0.272 8.20 
3 0.280 7.72 
28 0.282 7.37 
4 0.283 8.05 
N/A 0.286 7.77 
30 0.288 7.48 
N/A 0.291 7.97 
N/A 0.292 7.24 
N/A 0.296 7.19 
12 0.298 6.98 
13 0.301 7.07 

 
Using Equation 5 and the correlation given in Equation 6, the permeabilities were 
calculated.  The results are shown in Figure 6.  Three of the predictions are almost exact.  
The maximum error is 33% and the mean error is -12% which is a significant 
improvement over the SM results.  It is important to note that this method does not use 
any fitting parameters – it is strictly based on the model assumptions. 
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Figure 5  The Formation Factor versus Porosity Cross Plot 

Figure 6  A Comparison between the Permeabilities Predicted by the Ruth-Lindsay-Allen 
Method and the Experimental Values 
 
RELATIVE PERMEABILITY VALIDATION 
The data set included steady-state relative permeability (SSRP).  All SSRP experiments 
were performed on composite cores of reservoir rock material.  The composites contained 
four individual plugs which were arranged with decreasing permeability from inlet to 
outlet.  Initial water saturation was established by porous plate desaturation for all 
samples.  Ageing was performed over two weeks with live oil at reservoir conditions.  
Flooding was performed vertically with injection at the bottom at reservoir conditions.  
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The stacked cores were approximately 36 cm in length.  Experiments were conducted at a 
temperature of 73 oC and a pore pressure of 270 MPa.  Typical water flow rates (those for 
Sample #7) were 10.80, 32.4, 82.8, 144.0, 234.0, 295.2, 334.8, 352.8, and 360.0 ml/hr 
and the corresponding oil flow rates were 349.2, 327.6, 277.2, 216.0, 126.0, 64.8, 25.2, 
7.2, 0.0 ml/hr.  For each of these stacks, one of the samples was a companion sample for 
one of the MICP samples.  In the study described below, the MICP data for the 
companion sample was assumed to be representative of the entire stack. 
 
Three different models were used to predict the SSRP results: the Gates and Tempelaar-
Lietz method (GT-LM) [3]; the Burdine method (BM) [4]; and a modified Burdine 
method (MBM).  All of these methods depend on integrating the capillary pressure curve 
over sub-ranges of the total saturation range in order to obtain wetting component and 
non-wetting component relative permeabilities.  The common difficulty faced by all these 
methods is that they cannot account for irreducible saturations – the mercury curves start 
at a vacuum saturation of 1.0 and typically end at a vacuum saturation much lower than 
the wetting component saturation of a typical oil-water experiment.  For this reason, only 
the shapes of the curves were studied – the curves were normalized, the saturations with 
the total saturation change and the relative permeabilities with their end-points.  The 
details of the methods will be described only for Sample #7. All the other samples 
behaved in a similar manner. 
 
The shapes of the relative permeability curves suggest the samples are moderately oil 
wet.  However, for the purposes of this study it is assumed that water preferentially enters 
the tubes with smaller diameters.  The basic equation used for all the methods is Purcell’s 
original formulation [5] which is written as  

𝑘!" =

𝑑𝑆!
𝜏 𝑃!!

!!
!!"

𝑑𝑆!
𝜏 𝑃!!

!
!!"

        and      𝑘!"# =

𝑑𝑆!
𝜏 𝑃!!

!
!!

𝑑𝑆!
𝜏 𝑃!!

!
!!"

 (7) 

Here the tortuosity 𝜏 must be estimated as a function of saturation.  The simplest estimate 
is that tortuosity is a constant.  This assumption leads to the GT-LM. 

𝑘!"#$% =

𝑑𝑆!
𝑃!!

!!
!!"

𝑑𝑆!
𝑃!!

!
!!"

     and   𝑘!"#$%& =

𝑑𝑆!
𝑃!!

!
!!

𝑑𝑆!
𝑃!!

!
!!"

 (8) 

 
 Figure 7 shows the result of applying the GT-LM to the data for Sample #7.  Whereas 
the predicted wetting component relative permeability curves are reasonable, the non-
wetting component curves are in complete disagreement with the experimental data.  This 
is not surprising because for this model the two relative permeabilities must always sum 
to 1.  
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Figure 7  The Normalized Steady State Relative Permeability Curves Compared with the 
GL-TM Predictions for Sample #7 
 
Burdine assumed that the tortuosity varied in a very specific way with the saturation and 
arrived at the equations 

𝑘!"#$ =
𝑆! − 𝑆!"
1− 𝑆!"

!
𝑑𝑆!
𝑃!!

!!
!!"

𝑑𝑆!
𝑃!!

!
!!"

     and   𝑘!"#$% =
𝑆!" − 𝑆!"#

1− 𝑆!" − 𝑆!"#

!
𝑑𝑆!
𝑃!!

!
!!

𝑑𝑆!
𝑃!!

!
!!"

 (9) 

Figure 8 shows the results for the BM.  Here the non-wetting component relative 
permeability is much better predicted but the wetting component relative permeability is 
much more poorly predicted. 
 
The BM was modified by allowing the exponent on the saturation term to vary.  For the 
non-wetting component, the best value for the exponent was found to be 3; the best value 
for the wetting component was found to be 0.  (The exponent characterizes the manner in 
which the tortuosity varies with the saturation.)  These values were used to calculate the 
results in Figure 9.  The results for the remaining six samples are shown in Figure 10.  
Visually, the agreement for the non-wetting curves are quite good.  This is remarkable 
given the fact that water is implicitly assumed as the wetting phase (invades the smaller 
pores) whereas the curves are more characteristic of oil wet samples according to Craig’s 
Rules of Thumb [6].  The difference between the experimental values and the predicted 
values of the relative permeabilities range from 0.02 to 0.13 with a mean of 0.067.  
Agreement for the wetting component curves do not appear to be quite as good but are 
reasonable considering this method is identical to the GL-TM which does not use any 
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correlation parameters.  The actual differences for the wetting curves are similar to those 
for the non-wetting curves, ranging from 0.03 to 0.10 with a mean of 0.062. 
 

Figure 8 The Normalized Steady State Relative Permeability Curves Compared with the 
BM Predictions for Sample #7 

Figure 9  The Normalized Steady State Relative Permeability Curves Compared with the 
MBM Predictions 
 
A REVISED EXPERIMENTAL PROGRAM 
The results presented above were obtained using an existing data set.  To optimize this 
protocol, it is necessary that both electrical testing to determine formation factor and 
mercury injection capillary pressure be determined for samples that represent each unique 
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feature in the well.  The RLAM should then be used to determine if the results are 
consistent. 
 
Two further ideas are worth pursuing.  Firstly, electrical tortuosity and diffusive 
tortuosity are widely accepted to be analogous.  Yet diffusion tests are rarely done as part 
of a core analysis program.  Experimental procedures that use diffusion tests should be 
developed.  Secondly, resistivity index experiments should contain information on how 
pore networks are connected.  The connection between relative permeability and 
resistivity index has never been fully explored.  It would be useful for resistivity index 
experiments to be routinely performed on samples that are to be tested for relative 
permeability. 
 
CONCLUSIONS 
Using a very simple model for the porous media, this study shows that porosity, 
permeability, electrical properties, and mercury injection capillary pressure all show 
mutually consistent behaviours, that is, the measured permeability and the permeability 
calculated using the other properties in the simple model are in acceptable agreement.  
Furthermore, the analysis was extended to give reasonable predictions of the shapes of 
steady-state relative permeability curves.  Although these agreements could be purely 
coincidental, the authors contest that the agreement can be taken to mean that the core 
analysis results are valid. 
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Figure 10  Comparisons for the Normalized Steady State Relative Permeability Curves 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe
rm

ea
bi
lit
y

Wetting	Saturation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe
rm

ea
bi
lit
y

Wetting	Saturation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe
rm

ea
bi
lit
y

Wetting	Saturation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe
rm

ea
bi
lit
y

Wetting	Saturation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe
rm

ea
bi
lit
y

Wetting	Saturation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Re
la
tiv

e	
Pe

rm
ea
bi
lit
y

Wetting	Saturation

Sample #18 Sample #25 

Sample #36 Sample #43

Sample #48 Sample #53


	SCA2018_002

