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ABSTRACT  

We present a predictive model of formation damage in Vendian deposits based on the 
analysis of rock properties and flooding conditions. We have studied all the features of 
the self-colmatation process and arrange them in accordance with their importance. We 
have used two approaches to obtain the results. The first one was to discover all possible 
2D cross-plot correlations between colmatation characteristics and features (manual 
analysis). The second is based on machine learning algorithms. The benefits and 
disadvantages of both approaches were discussed in details. 

 
INTRODUCTION 

The unpredictable decline in productivity and injectivity of wells due to formation 
damage or colmatation is an important problem of petroleum engineering [1, 2]. The 
origin of the formation damage mechanisms varies from fines migration and retention to 
adsorption processes. Moreover, the mechanism of colmatation is dependant on an area 
of interest: near-well or inter-well zone. In some cases, the colmatation happens not only 
in the near wellbore zone but cover a significant part of a reservoir.  

The focus of our research is on fines migration in porous media in the case when 
influent fluid is free of any solid particles. Only the fine particles that are naturally 
present in porous media of a reservoir rock (in-situ particles) and can be released and 
entrained with the flowing fluid are considered. These entrained particles can be trapped 
in pores and cause a significant permeability reduction [1]. This type of formation 
damage (self-colmatation) is commonly related to flows in inter-well area of reservoir.  

The key objective of this work was to investigate colmatation in more complex 
reservoir rocks than it has been considered before. Our objects were sandstones of the 
Lower Vendian deposits of the Nepa-Botuoba Arch, which is the second largest dome-
shaped regional high of Eastern Siberia. Water filtration in these reservoir rocks has a 
strong self-colmatation feature: entrainment of the in-situ fines during injection of 
initially clean water to core samples [3]. 

 
PROBLEM STATEMENT AND APPLIED METHODS  

Our previous study [3] showed that natural cores from Vendian deposits demonstrate 
self-colmatation during water filtration even with relatively high (3%) constant salinity 
which was a sufficient extension of observations from [4]. Corresponding permeability 
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reduction was registered in cores with a wide range of porosity, absolute permeability and 
residual oil saturation. We also performed some tests with a single-phase oil filtration. 
The permeability decrease was observed only when water is flowing in the porous space. 
And there were no colmatation in the case of oil-flooding. Water itself was shown to be a 
strong driver of self-colmatation, which is likely because of its intensive physicochemical 
reaction with pore surface. 

Experimental procedure is described in [3]. The self-colmatation at single-phase water 
flooding was studied during 22 lab tests. Each core model was composed of two or three 
samples with the similar porosity, permeability, mineral composition and granulometric 
distribution. Experiments conditions are presented in Table 1. 

In addition to water flooding experiments, some of the core samples were tested to 
estimate a grain size distribution, mineral composition with X-ray diffraction and pore 
throat distribution with semipermeable membrane method for capillary pressure 
measurement. 

Core samples characteristics we used in the experiments are in Figure 1. One can spot 
a significant variation in porosity (m=6–21%), absolute permeability (K=10–1650 mD) 
and the residual oil saturation (Sor=30–70%).  

The core features do not follow a 
normal (Gaussian) form of distribution. 
It is especially noticeable for 
permeability data. This reduces the 
potential of applications of some of 
classical machine learning techniques. 
Moreover, because of the complex 
structure of productive intervals of 
Vendian deposits, these core samples do 
not have strong K-m correlations. All 
these constraints of dataset increase 
uncertainties of colmatation prediction 
and analysis. 

All water-flooding experiments were 
performed at residual oil saturations. 
Development of colmatation was 
characterized by the growth of 

differential pressure after water breakthrough. After injection of 3.5-20 pore volumes of 
water, the total permeability was reduced by a factor of 1.02 to 4.76. 

Table 1. Conditions of the experiments 
№ Condition Value № Condition Value 
1 model of oil N-decane (C10H12) 6 pressure drop accuracy 0.5% 
2 Initial saturation residual oil saturation 7 saturation accuracy 10% 
3 confining pressure 50 MPa 8 NaCl concentration  30 g/l 
4 pore pressure 12 MPa 9 Water viscosity 1 cP 
5 temperature Ambient (23C) 10 Water density 1.02 g/cc 

 
Figure. 1. Distributions of core parameters. 
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Previous research showed that the pressure drop dynamics demonstrates five typical 
patterns (Figure 2). The purpose of the classification was to define a simple criterion for 
evaluating the mechanism driving retention and correlate it with some of rock properties 
and flooding conditions. Type I corresponds to the classical no-colmatation regime of 
filtration, when pressure drop over the core model decrease monotonically with water 
injection (ΔP(t)/ΔP0 < 1, ΔP(t) – pressure drop in time, ΔP0 – initial pressure drop).  
Types II and III presents two boundary cases: unlimited and limited formation damage 
respectively (ΔP(t)/ΔP0 ≥ 1). Unlimited (Type II) formation damage refers to the 
monotonic rise of ΔP(t) with increasing growth rates throughout the duration of the 
constant-rate filtration process. Type III corresponds to decreasing permeability to a new 
steady level with a stabilized pressure drop at some flow rate. This classification will be 
further used in determination of correlations between colmatation and rock properties. It 
will be shown that within each type we can find more tight correlations. 

Colmatation is a non-steady 
behavior of a flooding system with a 
time-dependent normalized 
permeability K(t)/K0. Thus, to estimate 
correlations between colmatation, rock 
properties, and flooding conditions 
one should find one or more unique 
colmatation characteristics which are 
able to describe the dynamic of 
permeability reduction. We found it 
more sensible to present K(t)/K0 as a 
function of injected water pore 
volumes (Vinj) and study the function’s 
parameters dependencies on rock 
properties and experimental conditions.  

There is a widely used approximation representing the normalized permeability K/K0 
as an inverse function of the retained fine concentration (σ) [5, 6]: 

                                                                     
𝐾(𝜎)
𝐾!

=
1

1+ 𝛽𝜎 ,                                                         (1) 

where β is the formation damage coefficient. If β is large, even a small retained 
concentration causes an intensive permeability reduction. σ in eq. (1) can be considered 
as the concentration of plugged fines. Knowing fines concentration in the inlet and the 
outlet flow, it is possible to count σ in each time moment and predict permeability 
reduction at a specific value of β. Unfortunately, at self-colmatation, we do not have 
enough information about in-situ fines concentrations. To solve this problem, we used a 
method from [7], which contains an assumption that σ can be related to the amount of the 
water (V) that passed through the area of a porous sample denoted as A: 

                                               
𝑘/𝑘! − 𝑅!"#
1− 𝑅!"#

=
1

(1+ 𝛼(𝑉/𝐴)!) ,                                               (2) 

 
Figure 2. Different types of colmatation. 
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where α, n, and Rmin are the three governing parameters of the model. α represents the 
intensity of the damage. n defines the shape of the damage curve. Rmin sets an asymptotic 
limit for permeability reduction (kmin=k0*Rmin).  

We have used equation 2 as basic approximation to investigate correlations between α, 
n, Rmin and rock properties together with flooding conditions. Results of the best 
approximation for each experiment are presented in [3] and the frequency distributions of 
α, n, and Rmin are in Figure 3.  

 
COLMATATION PREDICTION RESULTS 

Described approach allows defining dependences of all three governing parameters (α, 
n, and Rmin) on different features of the experiments. We used 16 features for further 
analysis: porosity m, absolute permeability Kabs, pore volume Vpor, initial oil saturation 
Sor, pressure drop type, 3 characteristics of pore throat size distribution, 3 characteristics 
of grain size distribution, 4 characteristics of mineral content distribution, and horizon 
(Talakh, Khamakin or Botuobinsk). The characteristics of pore throat size distribution 
were fractions of pore throats with sizes dp = 6-12 µm, dp = 12-30 µm, and dp > 30 µm. 
And the characteristics of grain size distribution were fractions of grains with sizes dg = 
0.05-0.01 mm, dg = 0.1-0.25 mm, and dg = 0.25-0.5 mm. Contents of microcline, 
dolomite, anhydrite, and quartz were used as 4 characteristics of mineral concentration 
distribution. 

 For the first step we have tried to 
find correlations between each of α, n, 
and Rmin and each of 16 features 
independently (using the cross-plot 
charts). Unfortunately, it was not 
possible to find any correlations within 
horizon types because of a small dataset 
and non-Gaussian distribution of 
features in each type. We could not find 
the correlations between α, n, Rmin and 
porosity and pore volume: the 
coefficient of determination R2 was 
negative in both cases. All analytical 
data concerning influence of any of 13 
residual features on colmatation 
intensity is presented in Table 2. We 
have estimated R2 for Type II and Type 

III separately. And within each type it has been obtained a more tight correlations with 
higher value of R2. 

The intensity of the formation damage α and the exponent n are increasing and the 
factor Rmin is decreasing with the colmatation amplification. We assume weak correlation 
between colmatation parameters and a feature of consideration if we have a mismatch in 
any trend direction (if the trend of one of the colmatation parameters contradicts to the 

 
Figure. 3. Distributions of colmatation parameters. 
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others). Low level of correlation (R2 < 0.1) or a mismatch in trend direction marked with 
gray color.  

To estimate the influence of 13 parameters on colmatation process (feature importance 
arrangement) we should obtain single numerical criterion using R-squared statistics for 
all three parameters of colmatation equation 2. We used the following rule for averaging: 
𝑅! = 0.5𝛾 𝑅!"#$ !!

! + 𝑅!"#$ !!!
! , where 𝑅!"#$ !!

! ,𝑅!"#$ !!!
!  are means with respect to α, n, 

and Rmin for each pressure drop Type. 𝛾 = 0.66 in case with mismatch in trend direction, 
and 𝛾 = 1 in case without mismatch.  
Table 2. Analysis of rock properties influence on colmatation parameters. 

Parameter Type R2 

for α 
R2 

for n 
R2 

for Rmin Parameter Type R2 

for α 
R2 

for n 
R2 

for Rmin 
Kabs Type II 0.5 0.7 0.52 dg=0.1-0.25 mm Type II 0.42 0.52 0.29 

Type III 0.5 0.7 0.52 Type III 0.81 0.39 0.002 
Sor Type II 0.73 0.007 0.31 dg=0.05-0.01 

mm 
Type II 0.56 0.49 0.36 

Type III 0.73 0.04 0.001 Type III 0.52 0.26 0.14 
dp>30um Type II 0.6 0.8 0.48 quartz Type II 0.28 0.02 0.78 

Type III 0.71 0.49 0.15 Type III 0.84 0.59 0.23 
dp=12-30um Type II 0.55 0.015 0.11 microcline Type II 0.21 0.02 0.71 

Type III 0.8 0.46 0.61 Type III 0.79 0.63 0.27 
dp=6-12um Type II 0.73 0.29 0.25 dolomite Type II 0.77 0.06 0.4 

Type III 0.91 0.35 0.27 Type III 0.49 0.03 0.05 
dg=0.25-0.5 mm Type II 0.62 0.67 0.24 anhydrite Type II 0.7 0.68 0.27 

Type III 0.38 0.06 0.63 Type III * * * 
* not enough data for correlation 
Bold underlined font stands for bad correlation (wrong trend or low R-squared). 

 Based on this analytical approach it was possible to investigate all the features of the 
self-colmatation process and arrange them in accordance with their importance (Figure 
4). The absolute permeability and the fraction of pore throats with diameter larger than 30 
µm had the strongest influence on colmatation. The smallest correlation was for the 
residual oil saturation and the fraction of grains with size 0.01-0.005 mm. 

 The second approach for 
investigating the influence of all the 
features on the self-colmatation have 
been dedicated to machine learning 
algorithms. The major benefit of this 
approach is a possibility to build 
complex prediction models of α, n, 
and Rmin, where all features can be 
taken into account simultaneously. 

 For all predictive models we used 
17 features: 14 features described 
earlier with the exception of pressure 

drop and horizon types. Additional 3 features were Talakh, Khamakin and Botuobinsk 
horizons. The pressure drop was excluded from the features because it was a post 
experimental information (result of permeability depletion analysis). 

Small dataset is a very essential problem to train and test the models. Another 
problem for machine learning algorithms is missing data in dataset: an ideal case is to 

 
Figure 4. The factors affected on colmatation 
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have all features for each experiment. The grain size distribution, pore throat distribution 
and mineral composition analysis were performed not for all the core samples. Actual 
number of experiments with all 17 features was 5 tests out of 19. Thus, the first aim was 
to extract maximum information from our dataset.  

To fill the missing data in dataset matrix we applied sequence of predictive 
procedures based on artificial neural network (ANN). Implementation of ANN has been 
done in Python environment. Python’s scikit-learn library provides ANN representation 
in MLPRegression method [8]. The sequence of the procedures is the following. On first 
step we have predicted missing pore throat sizes distributions characteristics (for 6 tests) 
using a limited grain sizes distributions data (11 tests). On the second step an extended 
dataset (16 tests) have been used to predict all the missing grain sizes distributions 
characteristics (3 tests). And on the last step we have predicted characteristics of minerals 
distributions (for 9 tests) using all data recovered on previous steps. Completely 
recovered dataset matrix with 19 rows (tests) and 17 columns (features) was used then to 
build effective predictive models for α and n. And for Rmin predictive we used model 
dataset matrix with 17 rows and 17 columns. Two experiments were excluded from the 
dataset in last case to obtain positive correlations in multivariable prediction.    

We have considered 8 machine learning algorithms: 2 linear regressions with 
regularization (Lasso and Ridge); Decision Tree; Random Forest; Gradient Boosting; XG 
Boosting; SVR (implementation of Support Vector Machine method) and MLPRegressor 
(implementation of ANN) [9-13]. To evaluate the accuracy of the methods we have used 
the coefficient of determination R2. The same metrics has been used previously at 
independent feature analysis. To avoid overfitting of the model, there is a common 
practice to keep a part of the available data as a train and another part as a test set. The 
cross validation technique has been applied to estimate models’ performance and 
compare them with each other. In Python’s scikit-learn K-Folds cross-validator provides 
train/test indices to split data in train/test sets. K-Folds cross-validator splits dataset into k 
consecutive folds. Each fold is then used once as a validation while the k - 1 remaining 
folds form the training set. In all our cross-validations we used k = 7 data splits. It 
corresponds to 16 rows in training and 3 rows in testing.  

The best result (R2 = 0.68) for α model was obtained for XG Boosting algorithm. 
Performance of the model could be demonstrated by plotting predicted values versus 
observed values of porosity after ablation (Figure 5a). One can see that data points are 
located in a vicinity of the bisectrix. 

The best result (R2 = 0.61) for n model was obtained with Lasso algorithm (Figure 
5b). 

The best result (R2 = 0.44) for Rmin model was obtained with Gradient Boosting 
algorithm (Figure 5c). 

To combine these three predictive models with formula (2) we can predict 
permeability reduction in time K(t)/K0 using only 17 features of rock properties and 
flooding conditions for Vendian deposits. The major benefit of the intelligent analysis 
with machine learning algorithms is the dependence of colmatation parameters on all 
significant feathers simultaneously. It makes the machine learning models more robust 
than the 2D cross-plot correlations only. We can also show that for each α, n, Rmin 
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coefficient of determination R2 averaged for all features will be lager for the machine 
learning models than for manual analysis (Table 3). It is important to mention that 
relatively large R2 in Table 3 could be explained by a relatively small initial dataset (with 
missing data). Even in this case intelligent analysis looks more precise than the manual 
method. 

   
a) intensity of the damage α b) exponent n c) factor Rmin 

Figure 5. Comparison of real and predicted colmatation parameters. 
 

Table 3. Models comparison 
Colmatation 
coefficient 

Averaged R2 for all features 
(manual analysis) 

R2 
(intelligent analysis) 

α 0.62 0.68 
n 0.36 0.61 

Rmin 0.33 0.44 

Machine learning models also allow performing feature importance analysis directly 
without any assumptions and approximations. The Python’s XGBoost method allows 
arranging features due to their influence on prediction model [11]. The XGBoost library 
provides a built-in function to plot features ordered by their importance and provides a 
score indicating how useful each feature was in the construction of the boosted decision 
trees within the model. The importance is calculated for a single decision tree by the 
amount that each feature split point improves the performance measure, weighted by the 
number of observations the node is responsible for. The feature importances are then 
averaged across all of the decision trees within the model. Results of feature importance 
analysis for α, n and Rmin are presented in Figure 6.  

Each colmatation parameter has its own most important feature: the content of 
microcline for α, the absolute permeability for n, and the fraction of pore throats with 
diameters 12-20 μm for Rmin. We now consider the first five important features for α, n 
and Rmin. We can see that 5 of 15 features could be found twice: the microcline content 
and the fraction of pore throats sizes >30 μm (in Figure 6a and 6b); the absolute 
permeability and the fraction of pore throats sizes 6-12 μm (in Figure 6b and 6c); and the 
porosity (in Figure 6a and 6c). Accordingly, these five features have the dominant 
influence on the colmatation process. 

It is also interesting to compare importance from intelligent and manual analysis. One 
can see that four of five features of dominant influence on the colmatation could be found 
within five most important features from Figure 4. This fact proves that both approaches 
do not contradict and demonstrate close results.  
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The example of prediction with both approaches is shown in Figure 7.  
 

  
a) b) 

 
c) 

Figure 6. Results of feature importance analysis for α (a), n (b) and Rmin (c). 
 

  
a) b) 

 
c) 
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Figure 7. The example of prediction α (a), n (b) and Rmin (c) prediction versus absolute permeability 
feature. 

CONCLUSION 
The predictive model of formation damage development in Vendian deposits based on 

the analysis of rock properties and flooding conditions has been developed. It is shown 
that machine learning algorithms allow to build precise prediction model of permeability 
reduction. All the features of the self-colmatation process have been arranged in 
accordance with their importance using two independent methods (cross-plot correlation 
estimations and joint XGBoost analysis). The most influencing features are permeability, 
porosity, fractions of pore throats with diameters 6-12 μm and >30μm and content of 
microcline minerals in the rock. 
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