
SCA2021-002 

*
 Corresponding author: tanguy.lhomme@epslog.com 

Combining high-resolution core data with unsupervised machine learning 

schemes for the identification of rock types and the prediction of reservoir 

quality. 

Christophe Germay1,*, Tanguy Lhomme1, and Paul Bisset2  

1EPSLOG, Liege, Belgium 
2Core Technical Services, Aberdeen, UK 

Abstract. CoreDNA is an integrated core analysis solution combining transdisciplinary, high resolution, non-

destructive measurements on whole cores, for an early yet objective description of cores and the rapid estimation of 

formation properties. Whole cores, which may still be in their half-open liners, are mounted on one unique table-

top equipment and submitted to a battery of tests, all sharing the same depth reference and compatible resolution 

ranges. A key enabler of CoreDNA is the capability to create a smooth and flat surface along whole cores, which is 

obtained with a succession of dry cut with a PDC cutter, each removing a sub-millimetre thick layer of rock. On a 

4-inches diameter core, removing a 3mm-thick layer of rock suffices to create a 3cm wide flat surface. Such a 

surface is too small to hinder further sampling and plugging, yet large enough for many different types of sensors, 

and therefore suitable to take many high-fidelity measurements, which would normally require slabbed cores. 

Technologies including ultra-high-resolution pictures, elemental composition and the direct measurement of 

geomechanical properties such as strength and acoustic velocities, are all deployed on the same mini-slab surface 

along entire cores. Ultra-high resolution panoramic pictures (1.8µm/px) are processed to extract textural and colour 

features but also continuous grain size distribution from wavelet analysis. Grain size distributions calculated from 

images are backed-up by analysis of 3D topographical maps created with a laser scan. Results of these fast tests (3ft 

per hour) are analysed real-time and turned into high resolution, continuous profiles of properties (petrophysical, 

geomechanical and geochemistry). This knowledge is fed into (unsupervised) machine learning algorithms for the 

automated identification of lithofacies, the design of fit-for-purpose plug selections and the programming of 

subsequent steps in core analysis programs, even remotely. Measured core properties are stored under one unique 

format for all discipline, which eases interdisciplinary work, from the QC of standard tests (Routine Core Analysis, 

Rock Mechanical Test) to the upscaling of core data and the calibration of robust predictive models from well logs. 

Such data bases are also formatted for machine learning and can therefore be used to train AI models with reliable 

data from large numbers of legacy cores, where sedimentological descriptions and plug data are available. The case 

study of a well drilled in a North Sea field underlines the benefit of this disruptive technology in core analysis when 

run on intact cores prior to slabbing or taking any sample (plugs and preserved).. 

1 Introduction  

Because most branches of core analysis rely heavily on 

plug samples, the competition for intact core material is 

tough. In practice, not only these samples consume a 

significant fraction of the material available but also, the 

selection of sample sites is based on not much a-priori 

information. Indeed, little is known before permanent damage 

is done to the core by plugging and cutting. In this paper we 

promote a new approach of core analysis, which is focused 

on finding practical ways to bypass this issue. 

To this end we designed an integrated core analysis 

concept that combines several non-destructive tests to 

produce multi-disciplinary data sets continuously along 

whole cores. The primary purpose of this concept is to equip 

core specialists with quantitative, high resolution logs of real 

rock properties as early as possible in their core analysis 

workflows, without causing any irreparable damage to cores.  

2 Methodology 
CoreDNA is an integrated core analysis solution combining 

transdisciplinary, high resolution, non-destructive 

measurements on whole cores, for an early yet objective 

description of cores and the rapid estimation of formation 

properties (Figure 1). Whole cores, which may still be in their 

half-open liners, are mounted on one unique table-top 

equipment and submitted to a battery of tests, all sharing the 

same depth reference and compatible resolution ranges. 

The complete CoreDNA test series includes the following 

tests: 

• portable XRF measurements for elemental composition,  

• then high resolution photo for panoramic viewing of the 

cores,  
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• ultra-high resolution photos for the rock texture and grain 

properties,  

• probe permeability,  

• laser scan for grain properties,  

• ultrasonic velocity logging,  

• strength from the scratch test. 

• The MiniSlab is also a suitable surface for sedimentolog-

ical descriptions. 

 

Figure 1: CoreDNA test sequence. 

Results of these fast tests (3ft per hour) are analysed real-time 

and turned into high resolution, continuous profiles of 

properties (petrophysical, geomechanical and geochemistry). 

This data is fed into (unsupervised) machine learning 

algorithms for the automated identification of lithofacies, the 

design of fit-for-purpose plug selections and the programing 

of subsequent steps in core analysis programs. 

2.1 Mini-Slab 
The MiniSlab is created with a succession of dry cuts with a 

PDC cutter (Figure 2), each removing a sub-millimetre thick 

layer of rock. On a 4-inches diameter core, removing a 3mm-

thick layer of rock suffices to create a 3cm wide flat surface. 

Such a surface is too small to hinder further sampling and 

plugging, yet large enough for many different types of 

sensors, and therefore suitable to take many measurements, 

which would normally require slabbed cores. Technologies 

including ultra-high-resolution pictures, elemental 

composition and the direct measurement of geomechanical 

properties such as strength and acoustic velocities, are all 

deployed on the same mini-slab surface along entire cores. 

 

Figure 2: Creation of a MiniSlab surface with a PDC cutter. 

2.2 Portable XRF 
An Olympus Vanta XRF system is integrated on the 

CoreDNA bench. The X-Ray detector faces the MiniSlab and 

reports the elemental composition once the X-Ray source is 

triggered. Elemental compositions are calculated from the 

factory-standard Geochem calibration available on portable 

XRF devices from Olympus. The spot size is 1cm and 

continuous logs can be created by moving the XRF by steps 

of 1cm along the core. The measurement time can be chosen 

or automatically adapted to measure the elemental 

composition of rock cores with a specified accuracy. 

2.3 High Resolution Pictures 
High-definition panoramic core pictures (35µm/pixel) of the 

MiniSlab are taken under white light or UV light. The 

acquisition of core images is performed while the samples are 

fastened onto the test bed to guarantee an accurate depth 

match between the different measurements and core 

photographs. The camera system is calibrated in order to 

ensure a consistent picture quality despite varying testing 

environments and testing setups. 

Principal Component Analysis are run on images of the RGB 

pixels of high-definition core photographs for every 

centimetre. The two first principal components respectively 

represent the picture brightness and a log of color differences. 

They provide useful information for the identification of rock 

facies. 

2.4 Ultra-High Resolution Pictures 
Photos of core samples are taken with telecentric lenses 

giving a resolution of less than 2 microns per pixel. The depth 

of field these lenses is limited to about 0.3mm, which is too 

small to fully capture the topographic features related to grain 

size in most clastic reservoir rocks. We combine stacks of 

several pictures of the same zone taken at different altitudes 

in order to increase the sharpness of a single reconstructed 

picture across the entire depth range (Error! Reference 

source not found.). The actual depth range is measured on 

the MiniSlab surface by the laser and used to determine the 

optimal number of pictures per stack.  

 

Figure 3: Acquisition and stacking of ultra-high-resolution images. 
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These pictures are turned into grey-scale images and analysed 

using wavelet transforms according to the following sequence 

(Error! Reference source not found.): 

 

Figure 4: Wavelet analysis of Ultra-High Resolution Images for 

grain size distribution mapping. 

1. First we extract lines of pixel intensity, and then  

2. we calculate convolution products of these intensity vec-

tors by wavelets of different scales s. 

3. Then we calculate the norm of these convolution prod-

ucts. At this point, for every line in the working window 

we have created such a map where the horizontal axis is 

the position of the pixel on the line and the vertical axis 

is the scale of the wavelet used in the convolution prod-

uct. A high value at the coordinate (i,s) , shown with a 

green colour in (Figure 4), shows a good match between 

local features of the intensity profile centered on the ith 

pixel and a wavelet of scale s. 

4. We average the norm of the convolution products over 

the entire line 

5. And over the number of lines in the working window 

6. We normalize the product to create a cumulative distrib-

uted function (cdf) in scale and 

7. Transform this cdf into another one in terms of grain di-

ameter 

8. Finally we use a Cahn-Fullman transform to turn this re-

sults into a cdf in grain volume [1]. 

There are a few limitations in the technique using ultra high 

resolution images for Grain size distributions mapping. First 

the wavelet transform often ends up with non-zero low 

frequency residues, which are interpreted as large particles. 

Although in small numbers, these large ghost particles 

amount for a significant fraction of the cumulative grain 

volume. We therefore need a low-frequency filter, or a 

maximum grain size cut-off value to remove these ghost 

particles from the distributions. 

These is also the matter of bedding planes and fractures which 

sometimes come with high contrasts and are interpreted as 

large particles. Strong colour contrasts may also amplify the 

detectability of some grains with respect to others. Windows 

of investigation are 1cm wide, which means that particle 

larger than 5mm will be hardly visible with this method. 

For these reasons, the best option to obtain reliable grain sizes 

is two combine two independent data sources, which are the 

laser scans and the ultra-high resolution pictures. 

Practically, maximum grain size cut-off values can be 

determined from laser scans and the QA/QC of results can be 

greatly improved such that spotting outliers and invalidating 

dubious results becomes much easier. 

2.6 Laser Topography 
The laser scan technology uses a laser beam to map the 

topography of the MiniSlab surface continuously along whole 

cores, with a vertical accuracy of 1 micron and a horizontal 

resolution of 20*20 microns (Figure 5).  

 

Figure 5: - Laser topography: acquisition. 

The fundamental assumption here is that the topographic 

features of the Mini-Slab surface are related to the size of 

constitutive grains. 

This is mostly the case in clastic rocks, unless large grains 

embedded in a strong matrix are sheared by the PDC cutter 

during rock cutting, which blurs the correlation of the 

measured surface roughness with the size of large grains. 

2.7 Strength and Ultrasonic Velocities 
Continuous high resolution profiles of rock strength profile 

and ultrasonic compressional velocity (Vp) profile are 

acquired on fresh cores. Details on the scratch tests can be 

found in [2] and [3]. 

2.8 Grain Size From Autocorrelation of Laser 
Profiles 

Topographic maps are analysed for the purpose of deriving 

continuous grain size distributions along tested cores. 

First we compute 1D autocorrelation functions along lines 

perpendicular to the core length, which are then averaged 

over a 1cm window. A proprietary transform, which has been 

calibrated on more than 10 outcrop rock samples, is then used 
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to turn the average autocorrelation function into a cumulative 

distributed function in volume of the grain size (Figure 6). 

 

Figure 6: - Grain size from autocorrelation of laser profiles. 

2.9 Estimated Permeability from Grain Size 
An estimate of permeability is obtained with an empirical 

transform of grain size data from laser scans. This strong link 

between CoreDNA and conventional core data had already 

been demonstrated in other case studies involving other 

formations, as seen for example in the two charts in Figure 

7: the blue curves show CoreDNA data (strength and grain 

size), while the red dots show porosity and permeability 

values measured on plug samples much later [4].  

 

Figure 7: - Reservoir quality indexes derived from CoreDNA data 

3 Applications 

CoreDNA data was acquired on two cores from an 

observation well drilled by Neptune Energy in a North Sea 

prospect [5].  

3.1 Data Recovery 
The two cores had about similar lengths of 37m each, 

although Core1 had been subject to intensive plugging, 

including seal peels, prior to being tested with CoreDNA, 

while Core 2, which was tested immediately after opening its 

barrel, had not been plugged and was therefore in much better 

condition overall. CoreDNA data recovery was significantly 

lower in Core1 than in Core2, as seen in Figure 8, where 

coloured intervals correspond to sections where CoreDNA 

data could be retrieved, while blank intervals are seen where 

core material was too sparse even for CoreDNA sensors.  

 

Figure 8: Data recovery on Cores 1 and 2 
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This difference in recovery advocates for continuous, non-

destructive core measurements such as CoreDNA to be taken 

as a first step in core data acquisition programs, before any 

core material is spent in more destructive tests. 

3.2 Missing data points 
If the presence of specific elements in the cores is such that 

their concentrations cannot be detected wherever it is lower 

than the limit of detection (LOD) of the XRF device, the core 

data analyst has the two following options: 

• the dataset only covers sections where all selected 

vectors are defined, or; 

• the data set is completed with values equal to 10% 

of the device LOD wherever measured element 

concentrations where found below the LOD. 

3.3 Data Coherence 
The internal coherence of CoreDNA data is visible in the 2 

cross-plots seen in Figure 9Figure 9. 

Brightness and color index values are normalized over the 

entire core depth range. High values of the brightness index 

means brighter formations under UV light. 

 

Figure 9: a) P50 of grain size distribution vs Rock Strength@1cm 

resolution vs. b) Colour index under UV light vs Brightness index 

under UV light. Colours indexed on Si/Al concentration 

concentrations ratio given by the portable XRF measurements. 

Sections with low Si/Al concentration ratios have strength 

limited below 80MPa and smaller median grain sizes. They 

are also darker, although their colour index under UV light 

span across the entire range. These attributes are all 

compatible with the properties of clays. 

Conversely, sections with higher Si/Al concentration ratios 

have strengths varying across the whole range but always 

have large grain sizes. They also appear brighter under UV 

light, with a slightly tighter range of colour index under UV 

lights than “clay” sections. These sections therefore have 

attributes compatible with those of clean, hydrocarbon-

bearing sands.  

The data organisation visible in Figure 9 prompts for a data 

analysis scheme based on the following data vectors: 

• Strength, 

• Grain Size P50 from Laser Scan, 

• Elemental Compositions from XRF , 

• Brightness and colour index from high res-

olution core photos. 

3.4 Identifying Lithofacies 
A K-mean clustering scheme was run on the CoreDNA data 

set consisting of selected vectors, all at a 1cm resolution. The 

clustering analysis is performed in the multidimensional 

space defined by the principal components of the original data 

vectors. The number of selected components is adjusted to 

capture a meaningful fraction of the total variance. The results 

of the clustering algorithm are visualized with a colour 

scheme specifically built to represent the degree of proximity 

of clusters centroids. To this end, the RGB bits of each cluster 

colours are related to the position of cluster centroids in a 3D 

space defined by the three first principal components of the 

data space analysed by clustering (Figure 10). 

 

Figure 10: RGB colour scheme indicative of cluster centroid 

proximity. 

The adequate number of clusters required to describe the 

spatial distribution of lithofacies detected along the tested 

core is determined with the use of a stabilisation diagram, 

synthesizing colour-based clustering results obtained for the 

same data set with an increasing number of clusters. The 

optimal number of cluster is set equal to the minimum number 

of cluster above which the colour-based representation of 

facies does not change anymore. 

Statistical properties of lithofacies identified as clusters are 

shown using the logic depicted in Figure 11. 
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Figure 11: Statistic box example 

The vertical axis of the statistic box corresponds to the facies 

number, while the horizontal axis corresponds to the range for 

one of the physical properties used in the clustering scheme. 

The topmost line shows the statistics for the physical property 

displayed by the statistic box for the entire core. Each facies 

is shown on a different line below, with its specific colour, 

extending from the 1st to the 99th percentiles for the physical 

property being displayed. The dot on this bar corresponds to 

the median value of the physical property for this facies. The 

left hand side extremity of the thick bar shows the 13th 

percentile while the right hand side of the thick bar shows the 

87th percentile. In a normal distribution, the range covered by 

the thick bar would correspond to the median plus or minus 

the standard deviation. 

3.5 Results 
Clustering analysis for lithofacies identification was run on 

the two cores separately. 

3.5.1 Core1 

The first core was analysed using the following CoreDNA 

vectors: 

1. Strength; 

2. Brightness Index; 

3. P50 of GSD from Laser; 

4. Al, Ca, Fe, S & Si concentration 

A total of seven different lithofacies were identified in Core1. 

Statistic boxes are shown in Figure 12 for each of the physical 

properties used in the clustering scheme. The main 

characteristics of the 7 lithofacies identified in Core1 are 

described in Table 1. 

 

Table 1: Lithofacies identified in Core1 

Fa-

cies 

Core 

cover-

age 

Strength Grain size Mineralogy 

0 13% Weakest Coarse to 

very coarse 

Low Al 

1 2% Strong Small High Ca, 

low Al, low 

Si 

2 13% Interme-

diate 

Medium  High Si, low 

Ca, low Al, 

low S 

3 34% Weak Medium to 

coarse 

High Si/Al 

ratio, low 

Ca, low S, 

low Fe 

4 9% Weak Medium to 

coarse 

High Al, 

High Fe 

5 10% Strong Medium to 

coarse 

High Si, low 

Ca,  

6 13% Strong Small High Al, 

high Fe,  

High S 

 

Facies ID

Statistics for 
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Figure 12: Lithofacies identified by clustering; Core1. 

 

3.5.2 Core2 

The second core was analysed using the following CoreDNA 

vectors: 

1. Strength; 

2. P50 of GSD from Laser; 

3. Al, Ca, Fe, S & Si concentration. 

A total of six different lithofacies were identified in Core2. 

Statistic boxes are shown in Error! Reference source not 

found. for each of the physical properties used in the 

clustering scheme. 
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Figure 13: Lithofacies identified by clustering: Core2. 

The main characteristics of the 6 lithofacies identified in 

Core2 are described below: 

Table 2: Lithofacies identified in Core2 

Fa-

cies 

Core 

cover-

age 

Strength Grain size Mineralogy 

0 12% Interme-

diate 

Very fine Low Si/Al 

ratio 

1 44% Weak Medium High Si/Al 

ratio, low Ca 

2 5% Interme-

diate 

Very fine Very low 

Si/Al ratio 

3 28% Weak Coarse to 

very coarse 

High Si/Al 

ratio, low 

Ca, low Al 

4 5% Weak Medium to 

coarse 

Low Si/Al 

ratio, large S 

5 6% Strong fine Large Ca, 

High Si/Al 

ratio 

3.5.3 Facies groups 

Facies identified above are grouped by types of lithology, 

using the information synthetized in Table 2. For instance, the 

aluminium concentration detected by the XRF measurements 

is indicative of the presence of clay, and therefore of the sand 

cleanliness. Facies can therefore be grouped according to 

their position with respect to a mid-range threshold (Figure 

14). 

 

Figure 14: Distinction between shaly sand and clean sand based on 

the average Al concentration in each facies. 

Using this classification, we group lithofacies as seen in 

Figure 15. 

 

Figure 15: Lithofacies identified and grouped along Core2. 

4 Conclusions 

The complete CoreDNA array of transdisciplinary, high 

resolution, non-destructive tests was deployed as an 

integrated core analysis package on cores from one 

observation well drilled by Neptune Energy in a North Sea 

prospect. 

One of the two cores from this well was tested with CoreDNA 

prior to any other testing program and was therefore virgin 
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from any sample hole, which allowed for maximum 

CoreDNA data recovery along its 37 meter of length. 

A comprehensive data set ranging from textural and colour 

features of the rock to grain size distribution statistics, 

elemental concentrations, elastic wave velocities and rock 

strength was fed in an unsupervised machine learning 

algorithm for the early yet objective identification of 

lithofacies.  

Six different lithofacies were identified in the 37m core 

interval, ranging from coarse clean sand to fine grain shaly 

sands, including limited thin calcite cemented layers. 

In less than 24 hours following the testing campaign, a 

detailed sequence of rock facies with associated properties 

including reservoir quality index was provided to 

sedimentologists and core analysis specialists.  

Such a detailed and comprehensive knowledge of the 

distributions of core properties, available under one unique 

format for all discipline, eases interdisciplinary work and 

significantly improves existing core analysis standards. It 

also provided a sound basis to train AI rock reservoir property 

predictors linking well-log data to well established core-

based lithofacies signatures. 
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