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Abstract Characterisation of multiphase flow properties is crucial in predicting large-scale fluid behaviour 

in the subsurface, for example CO2 plume migration at CCS storage sites. One gap in conventional reservoir 

simulation workflows is the field scale representation of the impact of small-scale capillary heterogeneities. 

We present an approach to characterising rock samples, which combines core flood experimental data with 

a numerical optimisation scheme, developed by Jackson et al. (2018). We apply the characterisation effort 

to a carbonate and two sandstone cores with distinct types and length scales of heterogeneities. The 

Bentheimer and Bunter sandstones exhibit parallel and perpendicular layering, respectively, whereas the 

Edwards Brown dolomite is characterised by isotropic, multi centimetre cementation. We use the digital 

core models to predict the relative permeability of both phases at distinct flow rates. The isotropic 

heterogeneity in the Edwards Brown dolomite resulted in non-monotonic behaviour as the flow rate was 

reduced; initially the gas relative permeability increases, and subsequently decreases with approach to the 

capillary-limit. This work highlights the significant contrast in fluid behaviour between sandstones and 

carbonates caused by variations in capillary characteristics and underscores the importance of characterising 

these small-scale heterogeneities for field studies. 

1 Introduction  

1.1 Introduction to multiphase flow properties 

The characterisation of multiphase flow properties is crucial 

in predicting large-scale fluid flow behaviour, for example for 

the prediction of plume migration at carbon capture and 

storage (CCS) injection sites or in field development plans for 

hydrocarbon production. Subsurface fluid flow is governed 

by the multiphase Darcy law [1,2]: 

 
𝑞𝑝 =  

−𝐾𝑘𝑟𝑝

𝜇𝑝

(∆𝑃𝑝 − 𝜌𝑝𝑔) 
1 

 

where 𝑞 is the Darcy velocity (ms−1), 𝐾 is the permeability 

(m2), 𝜇 is the viscosity (Pa s), 𝑃 is the pressure (Pa), 𝜌 is the 

density (kgm−3) and 𝑔 is gravity acceleration (ms−2). 𝑘𝑟𝑝 is 

the relative permeability of phase p and the subscript 𝑝 refers 

to the property of a phase. Relative permeability is one of the 

key parameters controlling fluid behaviour. Historically, flow 

calculations assumed rocks to be homogeneous, see for 

example [3]. However, the work from [4] demonstrated that 

permeability heterogeneity significantly impacts the relative 

permeability and should thus be incorporated in flow models. 

More recently it has become apparent that rocks may be 

heterogeneous in terms of spatially varying relative 

permeability and capillary pressure functions. The type and 

length scale of heterogeneity plays a key role on the observed 

fluid behaviour [5-7]. For example, layering parallel to flow 

may result in capillary crossflow, which can be observed as 

an increase in the phase permeabilities [8]. 

The ratio of capillary to viscous forces controls the 

importance of capillary heterogeneity. At the low flow 

potentials typically encountered in reservoirs, capillary 

pressure heterogeneity has been shown to significantly alter 

fluid flow [5-7]. Its importance can be quantified using the 

capillary number. Throughout this work, we use the 

definition first proposed by [9] for capillary heterogeneity 

formed of layers parallel to flow: 

 𝑁𝑐 =  
𝐻

𝐿

∆𝑃

∆𝑃𝑐

 
 

2 

where 𝐻 [m] is a length scale associated with the 

heterogeneity, 𝐿 [m] is the sample length along the flow axis, 

∆𝑃 [Pa] is the pressure differential across 𝐿, and ∆𝑃𝑐 [Pa] is 
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the contrast in capillary pressure imposed by the 

heterogeneities (Figure 1).  

1.2 Capillary Heterogeneity Characterisation 

To model capillary heterogeneity, [10] developed a 

method, which used capillary pressure and J-function 

scaling to infer the 3D permeability distribution within a 

core. The workflow enabled the authors to build a 3D 

model of the sandstone rock sample, which was verified 

by comparing experimental and simulation saturation 

distributions. [11] and [12] built on these results and 

developed the method further by analysing a wider range 

of samples. It emerged that gas relative permeability 

anisotropy was also mainly caused by the presence of 

capillary heterogeneity within a rock sample. 

Even though studies thus far have demonstrated the 

importance of capillary heterogeneity as one of the dominant 

fluid distribution mechanisms on a sub-core scale for both 

brine-oil and brine-gas systems, the established analytical 

methods used for calculating relative permeability, until 

recently, failed to incorporate this mechanism. This was the 

main motivation behind the work of [13]. Two sandstone 

samples were characterised on a sub-core scale based on the 

methodology presented in [10]. Thereafter, the authors 

determined the core-average effective relative permeability 

using the digital models in a numerical simulation. The work 

also investigated the factors influencing the rate dependency 

of relative permeability, which had been observed for many 

years. They concluded that capillary forces and end effects 

control this behaviour. 

[14] noted that [13] primarily focused on deriving an 

effective, viscous-limit relative permeability for each sample. 

This does not describe fluid behaviour at flow rates typically 

encountered in the subsurface [15]. Instead, fluid flow in 

these applications is largely in the capillary-limit regime. 

Hence, the authors proceeded to use the method developed by 

[13] as a basis to numerically characterise the rock 

heterogeneity on two samples with differently orientated 

heterogeneities. Rather than solely deriving the effective 

relative permeability, the characterisation effort allowed the 

authors to simulate flow and predict the characteristic relative 

permeability for a range of capillary numbers (spanning 4 

orders of magnitude). Additionally, they removed 

experimental constraints such as boundary effects.  

[16] simultaneously also developed a workflow to 

characterise heterogeneity in carbonates, but instead, used 

multi-rate core-flood experiments. The use of multiple rates 

enabled them to introduce a multi-objective optimization, 

incorporating both, saturation and pressure. Their goal was to 

characterise relative drainage capillary pressure curves as 

well as scaling factors, which quantitatively describe the 

distribution of heterogeneity within a core. Using three 

different rock samples, they applied their workflow and 

presented a close match between simulation and experiment, 

thereby verifying the method. 

1.3 Focus of this study 

The aforementioned studies have demonstrated the 

importance of capillary action as a fluid distribution 

mechanism. However, the majority of reservoir simulation 

workflows have thus far failed to incorporate the impact of 

small-scale heterogeneities on the field scale, leading to 

incorrect flow predictions, for instance at the Sleipner 

injection site [17]. This is partly driven by the uncertainty 

surrounding the characterisation of capillary heterogeneity in 

reservoir samples and the predicted impact on relative 

permeability anisotropy. The majority of characterisation 

studies have focused on well-behaved sandstones. However, 

reservoirs typically exhibit more complex sedimentary 

structures.  

In this work, we have applied the workflow developed by 

[14] to three rock samples, two sandstones and one carbonate. 

The sandstones exhibit distinct planar bedding, one parallel 

to the axis of flow and one perpendicular to the axis of flow. 

The carbonate rock is characterised by isotropic 

heterogeneity - a low-permeable, multi-centimetre, cemented 

region towards the outlet of the core. Using the methodology, 

we have produced digital models of the three samples, which 

incorporate capillary heterogeneity. These models enabled us 

to predict the relative permeability at a range of flow rates and 

analyse the varying fluid behaviour in distinct flow regimes.  

Figure 1: Schematic of layer cross flow arising from capillary heterogeneity in a 2-layer system. The governing parameters from 

Equation 2 are also depicted. 
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2. Methodology 

In this section, we first introduce the rock samples analysed 

and we then describe the experimental method. This is 

followed by a detailed description of the numerical 

modelling, which forms the second part of the rock 

characterisation workflow. 

2.1. Rock types 

Three rocks were chosen due to their distinct depositional 

features and heterogeneities. The Bentheimer sandstone was 

deposited in a shallow marine environment and is known for 

its homogeneity [18]. Its composition was mainly quartz 

(95%), followed by feldspars (4%) and clays (1%) [19]. Our 

sample was characterised by a single planar bedding parallel 

to the principal axis of flow.  

The Bunter sandstone is a reservoir sample from a 

previously proposed CCS site in the Southern North Sea. It is 

a permeable, porous formation [20], thus was evaluated as a 

potential storage site for the 2008 CASSEM project (CO2 

Aquifer Storage Site Evaluation and Monitoring project) 

[21]. The sample exhibited a similar composition to the 

Bentheimer sandstone, with a majority of quartz and some 

feldspars and clays [22]. However, this sandstone was more 

porous and heterogeneous than the former, with distinct 

layers perpendicular to the principal axis of flow.  

 

The Edwards Brown dolomite represented the most 

heterogeneous rock we studied. It was quarried from the 

Upper Cretaceous formation in Texas (USA) [23]. The 

sample was composed primarily of dolomite and calcite with 

some quartz [23-24]. The core exhibited isotropic porosity 

variations with a large ~4cm low-permeable region.  

2.2. Core flood experiments 

Cylindrical rock samples were plugged with lengths of  

~15cm < L < ~20cm and a radius of 1.9cm. Prior to the 

experiment, the samples were dried in a vacuum. A drainage 

core-flood was performed on each individual sample in a 

closed flow loop at constant temperature and pressure. The 

sample was initially saturated with the wetting fluid (brine or 

DI water). Chemical equilibrium between the wetting fluid 

and the rock was ensured by passing several pore volumes of 

the wetting fluid through the core at high pressure. Thereafter, 

the core was left saturated for hours. Subsequently, the 

wetting and non-wetting fluids were co-injected at a constant 

fractional flow until steady state was reached (stable pressure 

drop across the core). A medical X-ray CT scanner was then 

used to image the rock core, thereby measuring the fluid 

saturations within the sample. The pressure drop across the 

core was also recorded using pressure transducers. The 

fractional flow of the non-wetting fluid was increased, and 

the previous steps were repeated. This continued until the 

fractional flow of the non-wetting phase reached 1. The 

fractional flows were chosen to cover a large range of water 

saturations. The experiment was performed at two flow rates 

to collect data near the viscous-limit and capillary-limit flow 

regimes. See Figure 2 for a schematic of the flow loop and 

Table 1 for a summary of the experimental parameters. 

Figure 2: A schematic of the flow loop used for the drainage core flood experiments. 
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Table 1: Summary of the experimental conditions for the three 

rock samples. 

Experimental 

Parameters 
Bentheimer Bunter 

Edwards 

Brown 

Experimental core 

length (m) 
0.198 0.151 0.148 

Experimental core 

radius (m) 
0.019 0.019 0.019 

Pressure (MPa) 15.5 13.1 10 

Temperature (°C) 50 53 20 

Wetting fluid 
Deionised 

Water 
Brine 

Deionised 

Water 

Non-wetting fluid Nitrogen 
Carbon 

Dioxide 
Nitrogen 

Wetting fluid 

salinity (molkg-1) 
- 1 - 

Total flow rate 

low (mlmin-1) 
7 2 0.5 

Total flow rate 

high (mlmin-1) 
40 20 5 

Number of 

fractional flows 

high rate 

10 8 10 

Number of 

fractional flows 

low rate 

6 6 16 

2.3. Core characterisation 

Mercury-intrusion porosimetry (MIP) was performed on all 

the samples to obtain a core-average intrinsic Pc-Sw curve. For 

the Bentheimer, a sample was taken from the end of the core. 

For the Bunter and Edwards, sister samples were analysed.  

We use a Brooks-Corey model to describe the data, with 

parameters obtained by minimising the misfit between the 

MIP data and the model given by Equation 3 [25]: 

 𝑃𝑐(𝑆𝑤) =  𝑃𝑒(
1 − 𝑆𝑤𝑖𝑟𝑟

𝑆𝑤 − 𝑆𝑤𝑖𝑟𝑟

)
1
𝜆 3 

where Pc [Pa] is the capillary pressure as a function of 

water saturation (Sw [-]), Pe [Pa] is the entry pressure, Swirr [-

] is the irreducible water saturation and λ [-] is the pore size 

distribution factor. A maximum Pc cutoff was applied to the 

MIP data before fitting. Swirr was determined from the 

experimental voxel saturations. The values for the parameters 

from Equation 3 are summarised in Table 2.  

The CT images were cropped and coarsened, primarily to 

reduce the uncertainty in the voxel-scale experimental 

saturation and speed up the numerical simulations. The 

amount of coarsening applied to the images was also 

governed by the REV. It is important to choose a voxel size 

under which a continuum property has meaning. We verified 

the REV for porosity by estimating the number of pores 

present within each voxel using the maximum pore radius 

obtained from MIP. We recognise that the REV for capillary 

pressure may be different, however challenging to quantify 

using the available data. Jackson et al. (2020) and Zahasky et 

al. (2020) showed that the correlation length scales of 

capillary pressure and porosity are of a similar order of 

magnitude. From this, we assumed that capillary pressure is 

also a valid continuum property at the chosen voxel scale. The 

image coarsening reduced the standard deviation for the 

voxel saturation to under 4%.  Please refer to [16] for further 

detail, including a more detailed discussion on REV. 

To obtain 3D porosity maps of the rock cores, the CT 

images were processed using the standard method described 

in [27]. See Figure 3 for 2D profiles.  

Figure 3: 2D porosity profiles from the central slices for the Bentheimer (top), Bunter (middle) and Edwards Brown (bottom) obtained from the CT 

images. The key features of each sample are indicated with the black dashed lines. Core dimensions are provided in Table 1. 
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The core-average pressure drops and saturations recorded 

at each fractional flow during the high-rate experiment are  

used to model a viscous-limit, characteristic relative 

permeability for each sample. This describes the fluid 

behaviour unaffected by capillary heterogeneity. For the two 

sandstones, the 1D fluid simulator SENDRA was used to 

history match the experimental slice average saturation 

profiles and pressure drops across the core. For the Edwards 

Brown dolomite, the history match failed to converge to a 

solution with an acceptable residual error. Hence, Matlab’s 

built-in fmincon optimisation tool was used to directly fit the 

core averaged relative permeability data. In this study, we 

fitted the relative permeability with the Chierici functional 

form [28]: 

 𝑘𝑟𝑔 = 𝑘𝑟𝑔(𝑆𝑤𝑖𝑟𝑟)𝑒−𝐵𝑅𝑤
𝑚

 4 

 𝑘𝑟𝑤 = 𝑘𝑟𝑤(𝑆𝑔𝑐)𝑒−𝐴𝑅𝑤
−𝐿

  5 

 𝑅𝑤 =  
𝑆𝑤 − 𝑆𝑤𝑖𝑟𝑟

1 − 𝑆𝑔𝑐 − 𝑆𝑤

 6 

where krg [-] and krw [-] are the gas and water relative 

permeabilities, respectively. Sw [-], Swirr [-] and Sgc [-] refer to 

the water saturation, irreducible water saturation and critical 

gas saturation, respectively. A, B, M and L are the Chierici 

parameters that control the shape of the curves. The 

modelling parameters for each sample are summarised in 

Table 2.   

2.4 Characterisation of capillary heterogeneity 

To characterise the capillary heterogeneity, we applied the 

method developed by [14]. The workflow will be briefly 

described in the following. For further detail, please see [14]. 

The method is an iterative optimisation scheme, which uses 

the experimental core flood observations to infer the capillary 

pressure characteristics within a rock sample. It is an inverse 

process, which uses the experimental 3D saturation 

distribution to obtain voxel-scale capillary pressure 

heterogeneity information. Thus, it was assumed that the 

capillary heterogeneity can be characterised on a grid block 

scale. After obtaining an initial guess of the capillary 

heterogeneity, numerical simulations mimicking the core 

flood experiment were run to iteratively calibrate the digital 

model until the residual error reached a certain threshold. 

Throughout, a mismatch between the simulation and 

experiment saturations and capillary pressures was assumed 

to stem from an incorrectly assigned capillary characteristic. 

For the initial guess, the capillary pressure within each 

slice was assumed to be constant and was mapped to the core-

average characteristic Brooks-Corey curve obtained in the 

routine characterisation workflow. A deviation of a voxel-

scale saturation from the slice value was assumed to stem 

from capillary heterogeneity.  

Thus, a scaling factor 𝜅 was assigned to that voxel, which 

scales the core-average characteristic curve as the following:  

 𝑃𝑐,𝑖(𝑆𝑖) =  𝜅𝑖𝑃𝑐,𝑎𝑣𝑔(𝑆𝑖) 7 

where Pc,i is the individual voxel capillary pressure, Pc,avg 

is the average capillary pressure curve, Si is the experimental 

voxel saturation and 𝜅𝑖 is the voxel’s scaling factor, which 

represents the capillary heterogeneity.  The goal here was to 

minimise the mismatch between the slice and voxel Pc-Sw 

values by scaling the capillary pressure curve:  

 

Θ =  ∑ ∑ √(𝐾𝑖𝑃𝑐,𝑎𝑣𝑔(𝑆𝑖𝑓
𝑒𝑥𝑝) − 𝑃𝑐,𝑖(𝑆𝑖𝑓

𝑒𝑥𝑝))2 × √(𝑆(𝐾𝑖𝑃𝑐,𝑎𝑣𝑔) − 𝑆𝑖𝑓
𝑒𝑥𝑝)2

𝑁𝑓

𝑓

𝑁𝑣

𝑖

 8 

where Sexp is the experimental voxel saturation, 𝐾𝑖 is the 

individual voxel scaling parameter, Nv is the total number of 

voxels, Nf is the total number of fractional flows and 

𝑆(𝐾𝑖𝑃𝑐,𝑎𝑣𝑔) represents the saturation of the average capillary 

pressure curve after it has been scaled (using the slice-average 

capillary pressure).  

Upon completion, a 3D digital model of the sample can 

be built with this initial guess of the capillary heterogeneity 

as well as the 3D porosity distribution and the viscous-limited 

relative permeability, found previously. This is then used in 

the CMG IMEX fully implicit simulator to simulate the 

experiment. 

 
Table 2: Summary of experimental and numerical modelling 

parameters for the three samples 

Parameters Bentheimer Bunter 
Edwards 

Brown 

Experimental 

core length (m) 
0.198 0.151 0.148 

Experimental 

core radius (m) 
0.019 0.019 0.019 

Entry pressure 

Pe (kPa) 
3.51 1.62 9.18 

Pore 

distribution, λ 

[-] 

2.3 1.43 0.48 

Permeability, 

Kabs (D) 
1.86 2.20 0.046 

Chierici A/L [-] 3/0.75 3/0.9 15.7/1.06 

Chierici B/M [-] 5/0.56 3.75/0.4 2.66/0.54 

Swirr/Sgc [-] 0.08/0.0 0.08/0.0 0.0/0.0 

Core-average 

porosity,  [-] 
0.21 0.25 0.23 

Coarsened 

voxel size, 

∆𝑥, ∆𝑦 (m) 

0.0032 0.00277 0.00246 

Coarsened 

voxel size  ∆𝑧 

(m) 

0.005 0.003 0.002 
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A deviation between the experimental and simulation 

voxel saturations was assumed to stem from an incorrectly 

assigned 𝜅 value. The assumption of constant capillary 

pressure within each slice was now relaxed. The digital model 

of the rock core was updated by adjusting the 𝜅 values to 

minimise the following objective function, where 𝑆𝑖𝑓
𝑒𝑥𝑝

 was 

replaced by 𝑆𝑖𝑓
𝑠𝑖𝑚, which represents the voxel-scale simulation 

saturation:  

Θ =  ∑ ∑ √(𝐾𝑖𝑃𝑐,𝑎𝑣𝑔(𝑆𝑖𝑓
𝑒𝑥𝑝) − 𝑃𝑐,𝑖𝑓(𝑆𝑖𝑓

𝑠𝑖𝑚))2 × √(𝑆(𝐾𝑖𝑃𝑐,𝑎𝑣𝑔) − 𝑆𝑖𝑓
𝑒𝑥𝑝)2

𝑁𝑓

𝑓

𝑁𝑣

𝑖
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The optimisation is said to have converged when the error 

in the voxel saturations, R2, has stabilised. See [26] for further 

details. The calibration scheme is summarised graphically in 

Figure 4.  

 

3. Results and discussion  

3.1 Advanced core characterisation 

Using the workflow presented in Section 2, the three rock 

cores were characterised successfully. The success of the 

models was determined by comparing the voxel saturations 

and relative permeabilities from the experiment to a core 

flood simulation. The simulation used the digital, calibrated 

model and mimicked the core flood performed in the 

laboratory. The resultant error then provides an indication 

whether the rock core was adequately characterised using the 

calibration scheme. See Figure 5 and Table 3 for the resultant 

errors. 

 

Table 3: Percentage errors of the core-average saturation and 

pressure drop recorded in the experiment and the core-flood 

simulation for the three rock samples.  

Gas fractional flow % Error ∆𝑺𝒘 (-) % Error ∆𝑷(kPa) 

Bentheimer 

0.14 4.29 22.16 

0.40 0.14 9.75 

0.71 5.28 1.81 

0.99 10.50 48.58 

Bunter 

0.1 6.52 23.87 

0.31 12.33 13.53 

0.85 4.93 1.19 

1.0 5.44 15.92 

Edwards 

0.11 2.17 22.77 

0.36 0.32 17.57 

0.83 1.83 12.17 

1.0 3.64 19.44 

Figure 4: Flow chart summarising the iterative optimisation scheme to characterise the capillary heterogeneity from [14]. VL 

refers to the viscous limit, high-rate conditions. 

Figure 5: This plot compares the voxel saturation observations from 

the experiment to the results from the simulation at the final 

fractional flow. The simulation mimics the core flood experiment 

using the digital calibrated model. The outliers in the Edwards at 

high Sg stem from uncertainties in the end effect model in the 

simulation. These become most prominent at the last fractional flow 

plotted here.  
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Pore entry pressure distributions from the final, calibrated 

models are plotted in Figure 6. As shown, the Edwards Brown 

has the largest range of entry pressures, followed by the 

Bentheimer with the Bunter last. The homogeneity of each of 

the layers in the Bentheimer is clearly visible: each of the two 

layers displays a relatively uniform entry pressure of 4kPa 

and 5kPa, respectively. In comparison to this, the 

perpendicular bedding observed in the porosity map of the 

Bunter is clearly visible. The entry pressures cluster into 

distinct layers of low (1kPa) and high (2kPa) regions. Overall, 

this sandstone sample appears significantly more 

heterogeneous than the Bentheimer sandstone. Lastly, the 

Edwards Brown displays the most severe heterogeneity with 

regions reaching nearly 26kPa. Pressures can be clustered 

into large vug-shaped regions as was sketched on the 2D 

porosity profile. The core characterisation workflow has thus 

allowed us to characterise the spatial distribution of capillary 

heterogeneity. 

3.2 Fluid dynamics 

To investigate, in more detail, the varying flow dynamics 

caused by capillary heterogeneity within each sample, we 

used the digital models from Section 3.1 to run core flood 

simulations at varying flow rate. The core-average pressure 

drops and saturations were used to determine the relative 

permeability at each rate using Darcy’s law, Figure 7. 3D 

saturation maps were plotted for two of the samples to further 

illustrate the value these digital models add to our 

understanding of flow dynamics in heterogeneous rocks 

(Figures 8 and 9).  

 

From Figure 8 it can be seen that the parallel layering in 

the Bentheimer sample resulted in capillary cross-flow in the 

low rate case, enhancing gas flow. After invading the sample, 

the gas preferentially flows laterally first into the low Pe 

region, and only then migrates towards the outlet. This 

resulted in a raised gas relative permeability at high water 

saturations (Sw > 0.6) compared to the viscous-limit curve as 

the flow rate was lowered, whereas the water relative 

permeability was reduced (Figure 7, top). At lower water 

saturations, the end effect is artificially lowering the relative 

Figure 6: 3D entry pressure maps for the three samples obtained from the workflow described in Section 2. 
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permeability, see [14] for a detailed discussion. The high-rate 

simulation results in a homogeneous saturation distribution 

and thus a lower gas relative permeability.  

In comparison to the Bentheimer, the distinct bedding 

perpendicular to the axis of flow in the Bunter sample 

hindered fluids from migrating efficiently through the 

sample. This is observed as a significant reduction of both 

phase permeabilities with decreasing flow rate (Figure 6, 

centre).  

 

The Edwards Brown, characterised by isotropic 

heterogeneity, displays non-monotonic behaviour with 

increasing rate (Figure 7, bottom). Initially, the relative 

permeabilities increased with increasing flowrate, after which 

they decreased again, in agreement with the analytical work 

by [9]. Referring to the 3D saturation maps from a low-rate 

simulation (0.5mlmin-1) and a high-rate simulation 

(100mlmin-1) shown in Figure 9, it emerges that the isotropic 

heterogeneity leads to the formation of connected pathway 

flow, where the gas forms a channel through the low Pe 

regions in the sample. This results in an increased gas 

permeability. In contrast to this, the high-rate core flood 

resulted in a very uniform saturation map, which translates to 

a lower permeability.  

 

 

 

 

 

Figure 7: Predicted drainage relative permeabilities at a range of 

flow rates obtained using the digital models from Figure 6. 
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Figure 8: 3D saturation map of the Bentheimer at two distinct simulated flow rates. 

Figure 9: 3D saturation map of the Edwards Brown at two distinct simulated flow rates. 
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4. Conclusion 

We have presented an advanced core characterisation 

workflow that combines observations from core flood 

experiments with an iterative numerical optimisation scheme 

developed by [14]. Three rock samples were selected for this 

study, two sandstones and one carbonate, with a range of 

heterogeneity types and length scales. This work represents 

the first step in an upscaling procedure, whereby the digital 

models can be used to infer the upscaled impact of capillary 

heterogeneity at the field scale, as demonstrated in [30].  

 

Drainage core flood experiments were performed on each 

of the samples [22-23, 29]. A medical X-ray CT scanner was 

used to image the core saturation and the core-average 

pressure drops were recorded with pressure transducers. The 

experiments were performed at two distinct flow rates to 

obtain multiphase flow parameters in the capillary and 

viscous flow regimes. After routinely characterising the 

samples, the experimental core data was used in combination 

with the optimisation scheme. This was essentially a history 

match of the core flood experiment, with the voxel-scale 

saturation distribution as a matching target and the voxel-

scale capillary pressure heterogeneity as a fitting parameter. 

Through this, a 3D digital model of each sample was built 

incorporating spatial variability in porosity and capillary 

pressure.  The 3D models illustrated the contrasting entry 

pressure distributions in each sample. The Bentheimer and 

Bunter sandstones exhibited parallel and perpendicular 

layering, respectively. The entry pressures in the Edwards 

Brown were isotropically distributed and could be clustered 

into large vug-like regions.  

 

Using the digital models, core flood simulations were run 

at a range of flow rates to investigate the varying flow 

dynamics in each of the samples. Strong rate dependency of 

relative permeability was observed in all samples. The 

parallel layering in the Bentheimer allowed for the phases to 

cross flow between the layers, which raised the gas relative 

permeability. In contrast, the Bunter sandstone, with layers 

orientated perpendicular to the axis of flow, inhibits the flow 

of both phases, thus the relative permeabilities decreased in 

the capillary flow regime. Lastly, the Edwards Brown with 

isotropic heterogeneity exhibited non-monotonic behaviour, 

where the relative permeability did not display a clear 

relationship with flowrate. The results illustrate the 

importance of incorporating rock heterogeneity into flow 

simulations and the value added from producing these digital 

models.   
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