
SCA2021-006 

 

3D Multiclass Digital Core Models  

via microCT, SEM-EDS and Deep Learning 

Igor Varfolomeev1*, Vladimir Svinin1,2, and Ivan Yakimchuk1 

1Schlumberger Moscow Research, Reservoir Potential Department, 125171 Moscow, Russia 
2NRNU MEPHI, ICIS, 115409 Moscow, Russia 

Abstract. We describe an integrated methodology for constructing a 3D multiclass model of a rock sample, 

based on X-ray microtomography (microCT) and quantitative evaluation of minerals (QEMSCAN) by 

automated SEM-EDS (Scanning Electron Microscopy, Energy Dispersive Spectroscopy). We focus on 

building an automated operator-independent workflow, allowing to distinguish between voxels featuring 

substantially different physical properties, such as void, quartz, denser and less dense clay aggregates. The 

workflow is demonstrated using a set of five ⌀8 mm Berea sandstone miniplugs. For each miniplug, a  ~40003 

voxel microCT image is acquired. Next, each miniplug is cut into smaller pieces, and the 45 resulting polished 

surfaces are subjected to the QEMSCAN analysis, producing ~40002 pixel mineral maps. Each mineral map 

is automatically spatially registered with the corresponding microCT image using an in-house surface-based 

algorithm. Further, the ground truth images for the supervised multiclass segmentation are constructed from 

the mineral maps. We compare 3D and 2D convolutional neural network (CNN) architectures with the 

baseline Naïve Bayes classifier, which is roughly equivalent to the approaches commonly used in practice 

today. We find that supervised CNN-based segmentation is fairly stable, despite microCT image quality non-

uniformness and achieves higher quality scores compared to feature based and baseline approaches. 

1 Introduction 

Nowadays, the Digital Rock approach is a well-known 

technique for core analysis. Generally, it consists of 

numerical simulation of physical phenomena on a digital 

representation of a core sample.  

Centimetre-scale Digital Rock models are usually 

created via X-ray microtomography (microCT) imaging 

and subsequent image segmentation. Binary solid/void 

segmentation using methods like Indicator Kriging [1] 

and Active Contours [2] is still most commonly used in 

practice. Such models proved to be suitable for estimating 

single-phase and multi-phase permeabilities of some rock 

samples, like Berea sandstone [3], where spatial 

resolution of the modern microCT scanners easily allows 

to resolve the pore throats. One major drawback, 

associated with these segmentation methods is the 

significant operator involvement; the operator’s choices 

might greatly influence the ultimate result, and it might be 

not clear which segmentation parameters are more 

appropriate. Due to the nature of the hydrodynamics, the 

required parameter selection precision increases 

dramatically as the pore throat sizes get closer to the 

microCT resolution limit. Another drawback is that the 

substances featuring sub-resolution porosity could not be 

appropriately represented in such models. This might 

limit the ability to model, for example, clayey sandstones 
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or carbonates. Both difficulties could be handled through 

the use of multiclass operator independent segmentation 

process and a suitable physical properties simulator.  

Modern sophisticated simulation techniques allow to 

take into account a sizeable set of physicochemical 

properties (e.g., mineralogy, sub-resolution porosity, 

wettability) with respect to their volumetric spatial 

distributions [4,5]. In this paper, we focus on the 

segmentation part. 

2 Related works 

One of the first works, discussing the possibility of 

combining SEM and microCT images is [6,7]. The 

authors acquired microCT and QEMSCAN images of a 

sandstone sample, and spatially registered them. 

However, the segmentation technique, described by the 

authors is limited to a direct correlation between the 

microCT grayscale values and mineral types. Although 

such approach allows to distinguish minerals with 

significantly different X-ray effective linear attenuation 

coefficients, like quartz and pyrite, it is usually unreliable 

in most practical cases, like when distinguishing quartz 

and dense kaolinite. The contrast between different 

practically important minerals tends to be low on regular 

microCT systems, equipped with ~100 kV X-Ray tubes, 
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although it could be significantly higher on 

monochromatic lower-kV synchrotron-based systems. 

2.1 Extracting features 

Some works highlight the possibility to use additional 

features instead of just the grayscale value for CT image 

segmentation, for example, image gradients in [8]. The 

operator selects an area, attributed to a specific class on a 

2D intensity-gradient histogram, which improves 

segmentation quality, compared to grayscale-only 

methods.  

It is natural to assume that the segmentation quality 

could be further improved by increasing the number of the 

features (e.g. local average, median, variance, ...) taken 

into account. However, as the number of features grows, 

it becomes problematic to manually select ranges, 

attributed to specific classes. Thus, instead, operator 

directly specifies a set of voxels, attributed to each 

specific class, and the machine learning (ML) supervised 

segmentation task arises. The [9] was one of the first 

works to utilize the Fiji Trainable Weka Segmentation 

tool [10] for the microCT image segmentation task. The 

authors demonstrate that this approach allows better 

particle separation than the traditional, grayscale-based 

binary segmentation. 

Nowadays, multiple software packages, similar to the 

Fiji Trainable Weka Segmentation are available, namely 

ilastik [11] and Zeiss Zen Intellesis™[12]. However, they 

share the same basic idea — using manual brush strokes 

as a training set for a ML classifier. Each tool provides a 

different set of feature extraction filters. Their common 

drawback is increased memory requirements due to in-

memory architecture. Two more tools to mention are 

Thermo Scientific™ Amirа-Avizo™ (including the 

XImage PAQ plugin) and ORS™ Dragonfly™, which 

also provide the ability to train pre-configured CNN 

models. 

2.2 Training data 

Some authors use semi-automatic segmentation results to 

train their ML models. In [13] authors train 2D SegNet 

CNN [14] using a set of 20 images, 256×256 each. The 

classes they consider are mostly easily distinguishable by 

their grayscale values, except a single phase, that got its 

own distinct microstructure. In [15] authors also use a 

“mainly grayscale-based” method to create a training set 

for their CNN, even though they do have two QEMSCAN 

images of the same sample. The motivation for such a 

decision is that those two slices do not provide a large 

enough training set. Some image registration difficulties 

are also mentioned. The CNN is able to almost perfectly 

reproduce that ground truth labeling, achieving ~99% 

accuracy. However, it is not entirely correct to directly 

compare this score with the score achieved with an 

independent ground-truth data (such as QEMSCAN-

based). 

Considerable efforts were spent on inventing a better 

ground truth segmentation, suitable for training ML 

models. Some works, discussing microCT image 

segmentation use an “image degradation” approach to 

create a ground truth segmentation and the “image to be 

segmented” from a single source. In [12] an already 

segmented volume is forward-projected into the 

projection domain, then shadow projections are blurred, 

and Gaussian noise is added to them; and finally a new 

volumetric image is reconstructed from these shadow 

projections. According to the authors, this emulates the 

real noise generating processes, taking place in a microCT 

device. However, it should be mentioned that this simple 

model does not take many other possible imperfectnesses 

of the real microCT device into account. In [16] the 

ground truth segmentation is produced from real full-

quality X-ray projections, while the “image to be 

segmented” is produced from the decimated or 

downscaled subset of the same projections — this 

emulates faster microCT acquisition. 

Although such approaches are well-suited for 

development purposes, we believe that the usage of a 

naturally higher-resolution SEM data represents a more 

promising approach. 

In [17] authors use SEM-EDS to create a mineral map 

of the edge of a rock sample cylinder. This might not be 

the best option, because microCT images typically feature 

significant artefacts next to the outer edges of the sample 

being scanned, especially flat edges. In [18] both sample 

cylinder edge and a flat cut surface are scanned before the 

microCT, which might produce similar issues. The 

authors of the [19,20] also perform SEM-EDS on the top 

part of the cylindrical sample after the microCT 

measurement. They mention the imperfectness of the 

result, even after the histogram matching [19]. The 

authors utilize 2D SURF-based image registration [20] 

and also mention the imperfectness of the result, even 

though their sample contains large distinctive features. 

They conclude [19] that the feature based ML 

segmentation was unable to improve the quality, as 

compared to the grayscale-based segmentation. This 

result is also partially associated with the classes in 

question — all 3 classes being considered are easily 

distinguishable by their grayscale level. 

In [21] authors use spatially registered QEMSCAN 

images of internal miniplug cross-sections to construct the 

ground truth labelling. They mainly focus on a feature-

based segmentation of a coarse-grained sandstone via per-

grain classification. Indeed, for larger, easily separable 

(using a watershed transform) and fairly uniform grains, 

this provides an ability to accumulate a massive amount 

of statistics that characterizes each grain. The non-zero 

threshold rotation-invariant Local Binary Patterns (LBP) 

[22] feature extraction technique was recognized as one 

of the most robust, allowing to distinguish even such a 

similar minerals, like quartz and albite. The demonstrated 

proof-of-concept per-pixel feature-based segmentation 

result considers 5 classes, and the whole experiment uses 

a single QEMSCAN image. 

3 Imaging 

3.1. X-ray microCT imaging 
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We use Bruker™ SkyScan™ 1172 cone-beam microCT 

scanner to obtain images of the five similar ⌀8 mm Berea 

sandstone miniplugs with ~2.2 µm voxel size, using 

100 kV tube voltage and the maximum available 10 W 

tube power. Each sample is also ~8 mm high, which 

results in ~40003 voxel microCT image. It must be noted 

that the CCD detector being used got 4000×2096 pixels, 

and the conventional circular trajectory is used. Thus, the 

sample is scanned as two independent vertical segments, 

that are later stitched together by the scanner’s image 

reconstruction software. We would later discuss how this 

affects the segmentation quality. 

3.2 Sample slicing 

After the acquisition of the microCT images, we use a 

precision diamond saw to cut each sample into smaller 

blocks and embed 

them into epoxy 

resin. Each block 

undergoes standard 

SEM-EDS sample 

preparation 

procedures, namely 

polishing and 

carbon deposition. 

The resulting 

geometry is 

illustrated in Fig. 1. 

Each cutting plain is 

roughly orthogonal 

to the plug cylinder 

axis, but up to 5° 

errors are possible, 

due to overall 

mechanical 

tolerances. We 

avoid using original 

outer miniplug edges for the SEM-EDS mapping, not only 

because these areas are associated with significant 

artifacts, but also because we would like to use 3D CNN 

receptive field later. 

Furthermore, once the first set of the SEM images is 

acquired, we re-polish all blocks, to remove few extra 

microns, and repeat the imaging process. This allows us 

to obtain numerous slices from a limited physical volume. 

In this paper, about 9 slices were imaged from each of 5 

miniplugs. A total of 45 slices allows to investigate the 

segmentation quality as a function of the size of the 

training set, and the effects, associated with non-

uniformity of the microCT image quality. 

In a daily practice, the “densely packed cross-

sections” geometry allows to efficiently utilize the 

volume of the scanned sample, to save the most of the 

miniplug intact, e.g., for the subsequent laboratory 

experiments. 

3.3 SEM imaging 

We use Thermo Scientific™ QEMSCAN™ 650F SEM to 

acquire ~4000×4000 mineral maps of each cross-section. 

The bundled iMeasure® software acquires EDS spectra 

with about 1000 counts for each pixel of the mineral map 

and independently classifies each pixel in accordance 

with the pre-built mineral library [23]. We would refer to 

this image as QMS-mineralogy. Simultaneously, the 

BackScattered Electrons (BSE) image with the same 

resolution is acquired, we would refer to it as QMS-BSE. 

The software automatically moves the SEM table to 

sequentially cover the whole ⌀8 mm area of the sample 

with ~0.3×0.3 mm frames. The example mineral map is 

shown in Fig. 4a.  

We also utilize Thermo Scientific™ Maps™ software, to 

obtain a higher-resolution BSE (Backscattered Electrons) 

image of the same surface, we would refer to it as Maps-

BSE. 

4 Image registration 

To utilize classic supervised ML segmentation 

approaches, we must first spatially register the microCT 

and the SEM images. This task is complicated by the large 

size of the data (a single 40003 8-bit image takes 64 GB), 

and the lack of reliable “special” points — the whole 

image could be viewed as a semi-stochastic texture. Thus, 

most modern image registration techniques either incur a 

large computation cost [24], associated with the direct 

area-based registration, or require a rather fine manually 

selected initial starting point.  

In this work, each mineral map is automatically 

spatially registered with the corresponding microCT 

image using the following in-house registration approach, 

which consists of the three steps. 

4.1 Surface-based registration 

The aim of the initial step is to roughly locate the global 

minima, with the precision, comparable with the size of 

the grain (or pore), as required for the subsequent area-

based optimization process to start in the vicinity of the 

global minima. 

The general rigid-body image registration problem 

could be formulated as an optimization of six translation-

rotation parameters, and a scale parameter: 

 𝑇𝑚 =  [𝑥𝑚, 𝑦𝑚, 𝑧𝑚 , 𝜑𝑚, 𝜃𝑚, 𝜓𝑚, 𝑠𝑚]. 

Here, 𝑥𝑚, 𝑦𝑚 , 𝑧𝑚 are related to image shift along 

corresponding axes; 𝜑𝑚, 𝜃𝑚, 𝜓𝑚 are x-y-z Euler angles; 

and 𝑠𝑚 is image scaling. 

In this notation, we can significantly reduce the 

volume of the parameter space to look through. For the 

binarized versions of the images, namely 𝐼3𝐷 and 𝐼2𝐷, we 

extract the “center of mass” points. That is (𝑥2𝐷𝑎 , 𝑦2𝐷𝑎) 

for the 2D image. For 3D image, we use a number of z-

slices and the least-squares approach to estimate the 

cylinder axis position (𝑥3𝐷𝑎(z3D), 𝑦3𝐷𝑎(z3D)) for each 

𝑧3𝐷 within the 3D image. 

The key point is the extraction of the outer contours of 

the images, as illustrated in Fig. 2. For 3D image, they 

could be formalized as 

 

 
Fig. 1. Positions of the surfaces 

scanned with the SEM and the 

miniplug, imaged with microCT 

(purely schematic). 
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𝑅2𝐷(𝜑2𝐷) = 𝑚𝑎𝑥(𝑟):(𝐼2𝐷(𝑥2𝐷 , 𝑦2𝐷) = 1)

𝑅3𝐷(𝜑3𝐷 , 𝑧3𝐷) = 𝑚𝑎𝑥(𝑟):(𝐼3𝐷(𝑥3𝐷 , 𝑦3𝐷 , 𝑧3𝐷) = 1)

𝑥2𝐷 = 𝑥2𝐷𝑎 + 𝑟𝑠𝑖𝑛(𝜑2𝐷)

 𝑦2𝐷 = 𝑦2𝐷𝑎 + 𝑟𝑐𝑜𝑠(𝜑2𝐷)

𝑥3𝐷 = 𝑥3𝐷𝑎(z3D) + 𝑟𝑠𝑖𝑛(𝜑3𝐷)

𝑦3𝐷 = 𝑦3𝐷𝑎(z3D) + 𝑟𝑐𝑜𝑠(𝜑3𝐷)

 

Having the surface profiles, we can estimate 𝑠𝑚 using 

the average radius values. The 𝑥𝑚 and 𝑦𝑚 could be 

calculated based on the axis position, once the rest of the 

parameters would be known.  

Thus, we would only need to optimize 4 parameters: 
[𝑧𝑚, 𝜑𝑚 , 𝜃𝑚, 𝜓𝑚], out of which for 𝜑𝑚 and 𝜃𝑚 we may 

consider only a quite limited discrete set of their values, 

because, in accordance with the assumption about the 

cutting geometry, they should not exceed 5°.  

By the simple geometrical means, the 
[𝑧𝑚, 𝜑𝑚 , 𝜃𝑚, 𝜓𝑚] parameterize the sine-like 𝑅2𝐷 curve 

position on the 𝑅3𝐷 surface (Fig. 3), and the aim is to find 

the matching set of parameters, that would define the 

correct position of the 𝑅2𝐷 curve (some additional details 

could be found in [21]). 

Due to relatively small size of the 𝑅2𝐷 and 𝑅3𝐷 arrays, 

which is unlikely to exceed 10 Mbytes, and a limited 

number of options to consider, even the exhaustive grid 

search only takes a few seconds on a modern CPU.  

According to our practice, the surface profiles are 

good unique descriptors, and the rock sample surface is 

never smooth, which allows to automate the whole image 

registration process. 

Moreover, the method works even if the outer surface 

of the sample is partially damaged. One could notice a 

perfectly smooth and round part of the surface in the top-

right area of the sample shown in Fig. 4b. This artefact 

resulted from a sample being slightly outside the cylinder-

shaped microCT reconstruction volume. Nevertheless, the 

surface-based registration works in this case as well. 

4.2 Area-based registration 

The aim of the second image registration step is to 

improve the result of the first step, still sticking to the 

rigid-body assumption. This is implemented as a direct 

iterative “black-box” optimization of all 𝑇𝑚 parameters, 

using area-based registration norm. To compare discrete-

index mineral map with continuous grayscale microCT 

image, we use mosaic-image Put’ev matching score [25] 

(or similarly, the explained variance score, calculated 

after assigning each mineral the grayscale value equal to 

the average of all the microCT image pixels, matching to 

that mineral, according to current 𝑇𝑚).  

4.3 Smooth non-rigid distortions compensation 

Although the miniplug usually represents a fairly good 

example of a rigid body, the rigid body approximation is 

insufficient for pixel-perfect SEM-microCT image 

registration. The issue arises mainly due to acquisition 

hardware imperfectnesses — even tiny sub-pixel SEM 

lens distortions tend to accumulate to several pixels–large 

smooth distortions, when multiple SEM images are 

stitched together. 

One possible workaround is to calibrate the SEM 

distortions using a special regular sample, and later apply 

the corresponding de-warping to all SEM images [7]. One 

of the drawbacks of this method is that it assumes that the 

distortions would not change after the calibration. 

Another drawback is that this method is unable 

to compensate the distortions, that arise from a 

limited SEM stage movement precision and 

the SEM image stitching algorithm glitches. 

 Instead, we directly apply an Optical Flow 

estimation method [26] to the pair of images in 

question. We use smooth large-scale 

components of the resulting vector field to de-

warp the SEM image. This ensures that small 

artefacts, like mechanically damaged grains 

would not result in major image distortions. 

The transformation is so smooth, that for each 

small sub-area, containing a few grains, it 

could be viewed as a plain translation. 

 It must be noted that this de-warping step only 

considers the 2D distortions in the plane of the 

SEM image. Thus, it is unable to fully replace 

 
 (a) (b) 

Fig. 4. Example 3D-to-2D image registration procedure result: (a) de-warped 

QMS-mineralogy image; (b) spatially corresponding microCT cross-section 

 

 
Fig. 2. Surface profiles of a miniplug sample  

(coarse-grained sandstone is used for readability). 

 
Fig. 3. Matching 2D and 3D surface profiles of a miniplug  
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the area-based registration step, which is fully 3D, even if 

the surface-based registration step provides a very good 

initial approximation. 

The ultimate result of the image registration procedure 

is shown in Fig. 4. Finally, to allow calculating features 

on the original microCT data, we scale the SEM image to 

match the original microCT voxel size. Also, for ML 

needs, we not only export a single matching microCT 

cross-section (Fig. 4b) but a 401-slices thick 3D block 

(e.g. ± 200 slices around the matching cross-section).  

5. Relabelling 

In [27] it was demonstrated that the QEMSCAN 

classification result could be misleading sometimes and 

not agree with the optical petrography results — the issues 

generally arise for minerals that are very close in their 

elemental concentration proportions, but considered very 

different from a petrography point of view. One simple 

example is the quartzite and quartz pair. These two 

minerals are usually easily visually distinguishable on a 

BSE image, but might be indistinguishable from the 

QEMSCAN’s “independent pixels” point of view. This 

particular pair could be separated via a joint 

QMS-mineralogy and QMS-BSE images post-processing, 

honouring some minimal neighbourhood of the pixel in 

question. In this work, we do not question the accuracy of 

the QEMSCAN image. However, the original 

QEMSCAN image is still poorly suitable for direct use as 

a ground truth labelling, mainly due to the noise-like 

patterns, shown in Fig. 5. 

Firstly, we note a number or single-pixel grains, that 

are definitely too small to be recognizable on a microCT 

image (Fig. 5a) — even though QEMSCAN pixel size 

(2 µm) is very close to microCT voxel size (~2.3 µm), the 

physical resolution of the SEM is significantly higher. 

Moreover, such objects would hardly influence any 

physical properties of the Digital Rock model anyway. 

However, the underlying grain still might be real, and 

might influence the microCT image somehow. Thus, the 

general principle we use is not to “smooth-out” such 

objects with a median filter or equivalent, but to re-assign 

them to the “Unknowns” class, which is later ignored by 

all the ML classifiers we use. The mask, highlighting such 

objects, is shown in the rightmost column in Fig. 5a. 

Areas featuring high concentrations of such single-

pixel grains are trickier. We found that removing 

relatively large areas around them stabilizes many 

classifiers, most probably because such objects are 

usually outliers in the ML sense. One might note that the 

 (a) 

 (b) 

 (c) 

 (d) 

Fig. 5. QEMSCAN mineral map relabeling examples: 1st column - QMS-BSE image; 2nd column - QMS-mineralogy image; 3rd 

column – spatially registered microCT image; 4th column – relabeling result; 5th column – the relabeled pixels in question (see 

text); (a) small objects; (b) Clay_mixture class; (c) Quartz_with_clay class; (d) Quartz_clay_cement class. 
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relabeled image in Fig. 5a contains more Unknowns than 

just the “small objects” mask, discussed in the previous 

paragraph.  

More importantly, there is a multitude of clay-related 

classes. The Fig. 5b-d demonstrate that some grains look 

fairly uniform on the scale of tens of pixels (especially on 

the BSE image) but produce single-pixel noise-like 

patterns on both mineral map and BSE. 

We relabel such objects, aiming to also distinguish the 

most important types of conglomerates. Most of them 

could be easily categorized into broad classes, each 

containing at least tens of such objects per a single 

QEMSCAN image. Namely, the grain shown in Fig. 5b is 

assigned to the Clay_mixture class. The grain, shown in 

Fig. 5c is assigned to the Quartz_with_clay class. The 

grain, shown in Fig. 5d is assigned to the 

Quartz_clay_cement class. Such relabelling not only 

makes sense from the further Digital Rock physical 

properties modelling point of view (and could be viewed 

as an upscaling step), but also greatly simplifies the 

segmentation task — now 

pixelwise classification 

losses begin to make sense. 

All the said relabelling 

was implemented using basic 

morphological image 

processing operations, and 

carefully hand-tuned for the 

specific dataset in question 

(but not for individual slices). 

Theoretically, such a 

“clustering” operation could 

be automated to avoid 

operator involvement, but 

that would require 

considerable additional 

research. 

Finally, slices are 

inspected manually, and the 

broad Unknown class strokes 

(black) are placed where 

major artefacts are noticed. An example of such a manual 

intervention is clearly visible in Fig. 6 on the top-right part 

of the image. The reason for this is the same artefact 

(resulting from a sample being slightly outside the 

cylinder-shaped microCT reconstruction volume) that 

was already discussed above. We also automatically 

detect the sample circle radius and fill the out-of-sample-

circle area with Background/pore class colour (white). We 

ignore this area in all further area-percentage calculations, 

including segmentation accuracy calculations. 

6. Feature-based segmentation 

For the feature-based segmentation results, demonstrated 

below, we build on the results, demonstrated in [21,28]. 

We only use 2 QEMSCAN slices for training and a single 

QEMSCAN slice (shown in Fig. 6) for validation —

feature-based approaches require less data before the 

result quality stops to increase, compared to the CNN-

  

Fig. 6. The ground truth image of the validation slice — the result of the relabeling procedure 

for the image, shown on Fig. 4a. The legend result and the area percentage for all the classes 

on the relabeled image. 

Color Class 

name 
Area % 

64.99

9 
Quartz_dense 
Background / pore 20.56

6 K-Feldspar 04.15

5 Quartz_with_clay 03.20

0 01.99

9 
Albite 

01.24

4 
Kaolinite_degraded 
Quartz_clay_cement 01.23

3 Muscovit

e 
00.84

4 Dolomit

e 
00.39

9 Chlorit

e 
00.33

3 Kaolinite_dense 00.32

2 Clay_mixtu

re 
00.28

8 Siderite 00.23

3 Rutile 00.22

2 Zircon 00.03

3 Pyrite 00.01

1 Unknown 

 

Fig. 7. The result of the “Naïve Bayes” segmentation approach: validation slice segmentation (see legend in Fig. 6), confusion matrix 

(row-normalized), Precision and Recall (green-yellow-red palette highlights good-average-poor values). 
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based. Depending on the circumstances, this could be 

either a strength or a weakness. 

6.2 Naïve Bayes 

Our baseline “Naïve Bayes” approach actually utilizes 

only a single feature channel – the original microCT 

image, filtered with the manually tuned bilateral filter to 

suppress noise. We use parametric Naïve Bayes classifier 

assuming normal distribution. This is roughly equivalent 

to manually choosing a set of a threshold values after 

image pre-filtering. The result, shown in Fig. 7 highlights 

a set of substances that are easily distinguishable by their 

grayscale values with green background in Precision and 

Recall columns (definitions of the “Precision”, “Recall”, 

“accuracy” and “F1” terms could be found in [29]). A 

visual comparison with Fig. 4b confirms this assumption. 

Still, Naïve Bayes looks significantly better than the 

binary Otsu segmentation approach (Fig. 15, Fig. 16) 

which only achieves 0.813 accuracy and 0.109 F1, (we use 

micro-averaging) assuming that it distinguishes 

Quartz_dense and Background classes. 

6.3 LightGBM 

LightGBM [30] is a modern gradient boosting framework, 

providing both high performance and state-of-the-art 

classification accuracy in many benchmarks. We combine 

it with two 3D 8-bit cube-shaped rotation-invariant LBP 

patterns and a local window statistics feature vector (e.g. 

average, median, variance, skew, kurtosis, …). We fine-

tune LBP meta-parameters using cross validation (namely 

histogram windows size, pattern scale and threshold 

value). Also, we post-process the soft-classification 

result, provided by the LGBM using the Graph Cut 

approach [31] to make it a bit smoother. The result 

demonstrated in Fig. 8 achieves higher scores compared 

to Fig. 7. 

7. CNN-based segmentation 

 

Fig. 9. The result of the “3-slice U-net” segmentation approach. Designations are equal to Fig. 7. 

 

 

Fig. 8. The result of the “LightGBM” segmentation approach. Designations are equal to Fig. 7. 
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The CNN-based segmentation results, demonstrated 

below, utilize the U-net architecture [32]. For the 

experiments in this section, we use the same single 

QEMSCAN slice for validation, and 44 slices for training. 

We use 3D receptive field, valid-mode convolutions and 

dense 2D output labelling (except that some pixels belong 

to the Unknown class). We argue that such a geometry is 

more efficient than sparse 3D labelling [33]. The training 

epoch corresponds to a number of randomly selected 

patches with a total area equal to the total area of the 

training set. We do not perform training data rebalancing 

or hard negative mining, despite severe imbalance. We 

use cross-entropy loss and Adam optimizer with learning 

rate 0.0002, β1=0.5, β2=0.99. Our experience suggests 

that further fine-tuning only provides specific minor 

improvements. Although they might be valuable in 

specific cases, they are out of the scope of the present 

article, aiming at a more general comparison. 

7.1 3-slice U-net 

Our first, most lightweight U-net 

model uses 3-slice [34] 

architecture (Fig. 10), that is — 

only the first single convolution 

is 3×3×3, while the rest are 3×3, 

thus being almost 2D. Some 

additional details are available in 

[28]. The training performance is 

about 100 epochs per day, on a 

single GK210 chip of the 

Nvidia® K80 GPU. The Fig. 9 

demonstrates the 1000-epoch training result, but scores 

only marginally improve after 200 epochs. On the large 

scale, this result is visually similar to the LightGBM result 

(Fig. 8), but the scores are significantly higher. Some 

differences could be seen in the Fig. 15 – the CNN 

generally produces less small infeasible details. The 3D 

rendering (Fig. 11) demonstrates adequate 3D geometry 

of the grains despite the “almost 2D” nature. 

7.2 3D U-net 

Our second U-net model (Fig. 13) is fully 3D and all 3 

spatial dimensions are (almost) equal. It uses 204×204×92 

input patches and 112×112 output patches. Specific patch 

sizes are used to ensure full symmetry in max pooling and 

up-convolution layers. Additional 3×3×1 convolution 

layer is added for the same purpose. Each convolution, 

except the last one, is followed by PReLU activation with 

0.25 activation parameter. The last convolution uses 

softmax activation. Up-convolution layers use transposed 

convolutions and halve the number of the feature 

channels. The training performance is, again, about 100 

epochs per day, but now a GPU sever with 7×RTX2080Ti 

is used. The training batch size is 7 (a single patch per a 

GPU) due to GPU memory limitations. After the first 

 

Fig. 10. The 3-slice U-net architecture. The number of feature channels is indicated in green; 

z-size is indicated in gray; x and y sizes are equal and are indicated in black. 
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Fig. 12. The result of the “3D U-net” segmentation approach. Designations are equal to Fig. 7. 

 
Fig. 11. The 3D render of the 3-slice U-net segmentation result 
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100 epochs, 

accuracy score, 

calculated on 

our only 

validation slice, 

oscillates in 

[0.088, 0.0885] 

range.  

For the Fig. 

12, we select a 

result with the 

maximum 

accuracy 

observed. This 

result 

demonstrates a 

significant step 

forward, as 

compared to 

our previous results — the confusion matrix now looks 

much more like a clean diagonal. One exception is the 

most-common Quartz_dense class that is thus considered 

“the safest choice” when the U-net is not certain about a 

specific pixel. The Precision score is above 0.37 for all 

classes, but the Recall is still below 0.25 for the most 

difficult-to-distinguish classes, including clays. However, 

the confusion matrix suggests that in many cases clays are 

mostly mixed with other clays, which might be acceptable 

for many practical scenarios. Classes like 

Quartz_with_clay and Quartz_clay_cement are similar in 

their nature — there is no clear boundary between them. 

The fact that Pyrite is commonly mixed with Quartz 

and Background could be attributed to the small size of 

the Pyrite grains and mechanical damage of the sample 

surface during polishing. 

7.2 3D U-net+GAN 

The Generative Adversarial Networks (GAN) are 

algorithmic architectures that use two neural networks, 

competing against each other, e.g., while the first one 

attempts to generate realistic synthetic images, the other 

one attempts to distinguish between the synthetic and real 

images. This concept, originally proposed in [35], proved 

to be very successful for continuous data generation tasks, 

like grayscale or RGB image generation, including image-

to-image translation [36]. But only a limited success 

should be expected, when directly applying GANs to 

discrete data generation tasks, like the image 

segmentation task in question. The issue arises from a 

limited amount of information, available to the generator 

network through the argmax layer.  

Last but not least, almost all ground truth patches 

contain at least one Unknown (black) pixel (see Fig. 16b), 

while our segmentation methods are designed to produce 

none (see Fig. 16e-k). If we blindly pass such “real” and 

“fake” patches to the discriminator, it would be able to 

distinct between them by just that. Thus, it would not 

provide any meaningful information about the “fake” 

patch quality to the generator. To fix this, we make 

generated patches look like real in terms of the Unknown 

class distribution, by copying the Unknown pixels from 

the ground truth image.  

Our third U-net model utilizes effectively the same 

architecture as the previous one, but features an additional 

14-layer discriminator network, attached to its output. 

 

Fig. 13. The 3D U-net architecture. Designations are equal to Fig. 10. 
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Fig. 14. The result of the “3D U-net+GAN” segmentation approach. Designations are equal to Fig. 7. 
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Only 2D 3×3 convolutions are used, because we lack 3D 

ground truth data. For the 4th, 7th and 10th convolutions, 

stride equals 2, for the rest stride equals 1. The number of 

feature channels first doubles after each filter, starting 

from 32 and ending up at 512, and then halves back down 

to 32. Each convolution is followed by a LeakyReLU 

activation with 0.2 parameter and instance normalization. 

The last convolution is rather followed with a sigmoid 

activation. During the training phase, generator and 

discriminator are updated with 1:1 ratio, using minimax 

GAN loss. Dropout and hard-negative mining are not 

used. The training performance drops to about 60 epochs 

per day. 

Once again, in the Fig. 14 we just present the best 

result achieved. However, we must admit that in this case, 

the training performance is less stable, and results vary 

way more across different epochs, which is a typical for 

the architecture used. One promising point, however, is 

that this result is significantly better than those on Fig. 12 

in terms of the F1 score. Another promising point is that 

careful inspection of the smaller crops (Fig. 15) indicate 

some progress towards smoother, more realistic grains, 

with less unfeasible mineral mixtures. Even though this 

“smoothing” hardly ever provides a truly realistic result 

and sometimes results in an even more incorrect 

classification, like for a K-Feldspar grain in Fig. 16. 

8. Image quality uniformness 

To assess the microCT image quality uniformness, and 

the possible associated effects, we train 3-slice U-net on 

various sets of slices, and simultaneously evaluate it on all 

available slices (Fig. 17). One simple effect to mention is 

that training sets below 10 slices seem to be insufficient 

in terms of the F1 score. 

 
 (a) (c) (e) (g) (i) 

 
 (b) (d) (f) (h) (k) 

Fig. 16. Comparison of the different segmentation results for the fragment two: (a) original QMS-mineralogy; (b) Relabeling result 

(segmentation ground truth); (c) original QMS-BSE; (d) microCT; (e) Otsu; (f) Naïve Bayes; (g) LightGBM; (h) 3-slice U-net; (i) 3D 

Unet; (k) 3D Unet+GAN. 

 
 (a) (c) (e) (g) (i) 

 
 (b) (d) (f) (h) (k) 

Fig. 15. Comparison of the different segmentation results for the fragment one: (a) original QMS-mineralogy; (b) Relabeling result 

(segmentation ground truth); (c) original QMS-BSE; (d) microCT; (e) Otsu; (f) Naïve Bayes; (g) LightGBM; (h) 3-slice U-net; (i) 3D 

Unet; (k) 3D Unet+GAN. 
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The second, more interesting effect we notice in Fig. 17 is 

that the segmentation quality is not growing 

monotonously when adding training slices. In particular, 

it significantly drops (in terms of the F1 score) for most 

slices, when we add slices 38-43 to the training set. This 

might suggest that there are some “bad” slices, negatively 

affecting the segmentation quality. To assess this 

hypothesis, we train the same classifier using 12 best-

accuracy slices, however, the segmentation quality 

decreases on all slices (Fig. 18). Thus, one might conclude 

that there are no “bad” slices, just an intrinsic non-

uniformness, which is partially associated with microCT 

image quality non-uniformness.  

We found a strong correlation between the distance 

from a slice to the microCT optical axis (central slice) and 

the segmentation quality for that slice (the fact that the 

first slice from each block demonstrates lower 

segmentation quality than the second one should be 

probably attributed to the sample preparation issues). 

Gradual minor quality drop in the areas further from the 

optical axis is the expected effect for 

conventional cone-beam circular-trajectory 

microCT scanners, utilizing Filtered Back 

Projection (FBP) reconstruction algorithm. 

The multiclass segmentation relies on 

barely visible tiny features and thus it is 

highly sensitive to such effects. However, 

this is certainly not the only source of 

imperfectnesses. We assume that the only 

feasible mitigation measure is to train 

models on a larger datasets, covering more-

or-less all possible imperfectnesses. Later, 

such model could be 

fine-tuned for a 

specific smaller 

practical job. 

9. Learned 

super-resolution 

The ability of the 

CNN to resolve 

meaningful details in 

the microCT image 

could be also studied 

by using effectively 

the same CNN 

architecture and input 

data for a learned 

super-resolution task. 

For this purpose, we 

use a single full-slice 

Maps-BSE image for 

training, and another 

Maps-BSE image, 

from a different slice, 

for the visual 

comparison (Fig. 19). 

The result 

demonstrates that 

although our model is unable to reconstruct the Maps-

BSE image exactly, and locations of specific tiny features 

may not match real in a pixel-perfect manner, on a larger-

scale, the overall morphology and substance types are 

mostly reproduced correctly (which is actually more 

important than pixel-perfect positions for the subsequent 

physical properties modeling). Moreover, infeasible 

patches are uncommon. This is partially associated with 

the fact that continuous data generation task is more 

suitable for the modern GANs. This looks promising in a 

sense that there is still potential for segmentation quality 

improvement. 

It should be noted that such a super-resolution tool is 

also valuable by itself. In [37] authors discuss microCT-

to-microCT super-resolution and provide the visual 

comparison of the result with an SEM image. This super-

resolution task is also close to the conditional image 

generation [38], which could be viewed as effectively the 

same task with a weaker preconditioning. 

 
Fig. 17. The effect of the training set selection. Each block corresponds to a physical miniplug. 

 
Fig. 18. The “distance from the optical axis” effect. 
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 (a) (b) (c) 

Fig. 19. Super-resolution experiment image fragments comparison: 

(a) original Maps-BSE image; (b) microCT image; (c) super-resolution result 
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10. Conclusions 

Convolutional neural networks allow multiclass microCT 

image segmentation with a quality far beyond more 

traditional methods (Fig. 20). Larger 3D receptive fields 

are beneficial for the segmentation quality, but the 

associated computation cost is higher. Basic supervised 

training could be considered fairly stable and thus 

production ready. However, a tightly spatially matching 

sizable operator-independent ground truth labelling is 

required. The 3D GAN-based approaches have not 

demonstrated their full potential yet and are currently less 

stable in general. However, they already provide slight 

improvements and represent a promising subject for 

further research. 

References 

1.  W. Oh et al., IEEE Transactions on Pattern 

Analysis and Machine Intelligence 21, 590–602 

(1999) 

2.  A. P. Sheppard et al., Physica A: Statistical 

Mechanics and Its Applications 339, 145–151 

(2004) 

3.  D. A. Koroteev et al., in Proc. of International 

Symposium of the Society of Core Analysts 

(California, USA, 2013), 12 

4.  O. Dinariev et al., in Proc. of International 

Symposium of the Society of Core Analysts (Pau, 

France, 2019) 

5.  J. Goral et al., Sci. Rep. 10, (2020) 

6.  M. Knackstedt et al., in Soc. Pet. Eng. - SPE Asia 

Pac. Oil Gas Conf. Exhib., APOGCE (2010), 

1589–1597 

7.  T. K. Varslot et al., US20110181701 A1 (2011) 

8.  A. C. Jones et al., Biomaterials 28, 2491–2504 

(2007) 

9.  Y. Wang et al., Minerals Engineering 83, 185–191 

(2015) 

10.  I. Arganda-Carreras et al., Bioinformatics 33, 

2424–2426 (2017) 

11.  C. Sommer et al., in 2011 IEEE International 

Symposium on Biomedical Imaging: From Nano 

to Macro (2011), 230–233 

12.  M. Andrew, Computational Geosciences 22, 

1503–1512 (2018) 

13.  S. Karimpouli et al., Computers & Geosciences 

126, 142–150 (2019) 

14.  V. Badrinarayanan et al., IEEE Transactions on 

Pattern Analysis and Machine Intelligence 39, 

2481–2495 (2017) 

15.  Y. Da Wang et al., ArXiv:2002.05322 (2020) 

16.  I. A. Varfolomeev et al., Computers 8, 21 (2019) 

17.  M. Andrew et al., Microscopy and Microanalysis 

23, 156–157 (2017) 

18.  M. R. Ball et al., Microscopy and Microanalysis 

25, 410–411 (2019) 

19.  G. Tiu, Classification of Drill Core Textures for 

Process Simulation in Geometallurgy: Aitik Mine, 

Sweden, Master’s thesis in Natural Resources 

Engineering, Luleå University of Technology, 

(2017) 

20.  P. I. Guntoro et al., Minerals Eng 142, 19 (2019) 

21.  I. A. Varfolomeev et al., in Proceedings of the 3rd 

IAPR Asian Conference on Pattern Recognition – 

ACPR (Kuala Lumpur, Malaysia, 2015), 346–350 

22.  M. Pietikäinen et al., in Computer Vision Using 

Local Binary Patterns (Springer, London, 2011), 

13–47 

23.  A. R. Butcher et al., in Seventh Mill Operators’ 

Conference (The Australasian Inst. of Mining & 

Metallurgy, 2000), 267–271 

24.  S. Latham et al., in Proc. of International 

Symposium of the Society of Core Analysts 

(Society of Core Analysts, Abu Dhabi, UAE, 

2008) 

25.  Yu. P. Pyt’ev et al., Methods of Morphological 

Analysis of Images [In Russian] (Fizmatlit, 

Moscow, 2010) 

26.  C. Liu, Beyond Pixels: Exploring New 

Representations and Applications for Motion 

Analysis, PhD thesis in Electrical Engineering and 

Computer Science, Massachusetts Institute of 

Technology, (2009) 

27.  I. A. Varfolomeev et al., in Proceedings of the 

SPE Russian Petroleum Technology Conference 

and Exhibition (Society of Petroleum Engineers, 

2016) 

28.  I. A. Varfolomeev et al., VKIT [In Russian] (7), 

3–9 (2019) 

29.  D. M. W. Powers, ArXiv:2010.16061 (2010) 

30.  G. Ke et al., in Advances in Neural Information 

Processing Systems (2017), 3149–3157 

31.  Y. Boykov et al., Pattern Analysis and Machine 

Intelligence, IEEE Transactions On 23, 1222–

1239 (2001) 

32.  O. Ronneberger et al., in Medical Image 

Computing and Computer-Assisted Intervention – 

MICCAI 2015 (Springer, Cham, 2015), 234–241 

33.  Ö. Çiçek et al., ArXiv:1606.06650 (2016) 

34.  M. Lai, ArXiv:1505.02000 (2015) 

35.  I. J. Goodfellow et al., ArXiv:1406.2661 (2014) 

36.  P. Isola et al., in IEEE Conference on Computer 

Vision and Pattern Recognition – CVPR (2017), 

5967–5976 

37.  Y. D. Wang et al., Water Resources Research 56, 

e2019WR026052 (2020) 

38.  L. Mosser et al., in Proc. of 80th EAGE 

Conference and Exhibition (EAGE, 2018), 1–5 

 
Fig. 20. The comparison of the segmentation quality scores. 


