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Abstract 

Recent numerical developments in digital rock physics, known as Generalized Network Modelling (GNM) 

[25], allow to reconstruct an upscaled version of the 3D segmented image of a rock in the form of a network 

of pore elements where the single-phase flow conductances in each pore are derived by solving the Stokes 

equation in the original geometry. In engineering terms, this hybrid solution allows to capture relevant flow 

information from the original Micro-CT image whilst keeping the overall cost of multi-phase computation 

manageable. In this work, OpenFOAM is called for the Stokes flow solution inside a pore network extraction 

platform called GNextract developed with Imperial College, London, during a 8-year collaboration [25], and 

TOTAL’s pore-scale network simulator DynaPNM [27] is used in quasi-static mode after having been made 

fully parallel. All codes are run on TOTAL’s supercomputer PANGEA.  

In the first part of this paper we give an overview of TOTAL’s two-phase flow simulation workflow. We then 

continue on the physics side reporting a new major finding with respect to assumptions that have been used 

so far by the majority of authors for the modelling of water layers in mixed-to-oil wet rocks. This is seen to 

have a very large impact on simulation accuracy, especially in terms of relative permeability trends versus 

wettability. Subsequently, we validate our simulation workflow against three relative permeability 

experiments performed on microplugs and against a SCAL dataset. The comparison against all datasets gave 

satisfactory results. On the computational side, we describe how we are able to extract and simulate large 

networks thanks to a newly developed stitching algorithm and to the parallelization of our pore scale 

simulator. This allowed us to perform large uncertainty studies (thousands simulations / day) on images as 

large as (8480x8480x10000) voxels representing a rock volume of 46 cm3. Being able to simulate large 

networks allowed us to study the impact of the image size on the spread of the simulated residual oil saturation. 

We show that simulations on images as small as 1200x1200x1200 are dominated by finite size effect and 

result on large variability of the simulations. This finite size effect is drastically reduced by simulating much 

larger images, greatly improving the precision of the numerical result. 

 

1- Introduction 

Digital Rock Physics (DRP) has been an appealing 

technology to the oil and gas industry in the last 25 years.  

In fact, oil and gas companies have dreamt of using DRP 

as a mean to predict multi-phase properties of Reservoir 

Rocks (such as Kr and Pc) numerically without the need 

to perform SCAL experiments. However, the problem has 

proved more complex than what researchers have 

expected, and the weakest points of the technology have 

been the limitation of image resolution [29], rock/fluids 

wettability characterization [7, 32] and sometimes an 

over-simplification of the physics. DRP could also be 

criticized for computing properties on usually small rock 

volumes without proving neither that the Representative 

Elementary Volume (REV) for single phase and two-

phase flow is reached nor that the simulations are not 

dominated by finite size and boundary effects. 

 

 
* Corresponding author: regaieg.mohamed@gmail.com 

Advances in Micro-CT imaging have allowed the 

characterization of wettability from images of multiphase 

flow experiments. Andrew et al [4] have measured the 

contact angles manually in scCO2-Brine-Carbonate 

system by tracing vectors tangential to the solid surface 

and the scCO2–brine interface. This was done at 300 

locations on an image of scCO2 trapped as a residual 

phase in the pore-space of the scCO2. In more recent 

works, other researchers have developed automatic 

contact angle computation methods [3, 30]. These 

methods were used to compute contact angles either at 

residual oil saturation Sor [2] or after stabilization of co-

injection of water and oil [13]. 

Several simulation techniques have been developed to 

study single and two-phase flow in porous media. Direct 

numerical simulation (DNS) methods such as finite 

volume method and Lattice Boltzmann have been widely 

used to compute petrophysical properties of rocks directly 

on Micro-CT images [24, 35]. However, these methods 
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are computationally expensive for two-phase and 

capillary dominated flow regime which characterizes 

most oil reservoirs. Pore Network modelling (PNM) 

technique, on the other hand, simplifies the pore structure 

and idealizes its geometry through a pore network 

extraction [10] that is later used in a pore network 

simulator to compute single and two-phase flow 

properties [26]. The latter technique is very efficient 

computationally and can be used to simulate larger 

volumes [27]. However, the older models [22, 34] used 

empirical models and geometry simplifications to 

compute the node to node conductivities which is a 

critical parameter in petrophysical properties 

computations. In this work, we take the best of both 

approaches. First, a single-phase DNS simulation is 

performed on the rock image and coupled with a pore 

network extraction. This results in a pore network with 

conductivities measured on the original geometry [25]. 

Subsequently, PNM simulations are used to perform two-

phase flow simulations using TOTAL’s quasi-static pore-

scale network simulator DynaPNM [27]. The film flow 

physics in oil and mixed-wet scenarios have been 

revisited compared to the models used by most of the 

authors [28, 34] that can have a major impact on relative 

permeability. Furthermore, DynaPNM has been 

parallelized allowing us to simulate large volumes and 

thus to avoid finite size effects and to get as close as 

possible to the REV for single and two-phase flow.  

 

In this paper, we describe TOTAL’s DRP workflow based 

on 1) GNM technique to extract a pore network with 

conductivities computed on the rock image, 2) a network 

stitching code that allows the extraction of larger 

networks and 3) TOTAL’s fully parallelized inhouse tool 

DynaPNM that can simulate several million networks 

with several million pore elements extracted from images 

as large as 8480*8480*10000 voxels. During the 

simulation exercise, we perform sensitivity studies that 

vary the uncertain parameters of the simulations. 

Thousands of different realizations are used to produce 

P10, P50 and P90 relative permeability sets. This 

workflow is then applied to several outcrop and reservoir 

rocks and allows us to conclude of the state of the art of 

this technology.  

 

2 Description of the simulation workflow  

2.1 Pore network extraction 

In contrast to some digital rock physics methods, pore 

network models do not involve two-phase direct flow 

simulation in a 3D CT image or a reconstructed digital 

rock. Instead, it needs a pore network that is extracted 

from 3D reconstructions. Various algorithms exist to 

extract the skeleton of the 3D model that carries the 

essential geometric and topological information of the 

underlying pore system. In this work, we use a pore 

network extraction platform called GNextract developed 

with Imperial College, London, during an 8-year 

collaboration [25]. GNextract is first used to reconstruct 

an upscaled version of the 3D segmented image of a rock 

in the form of a network of pore elements where the 

single-phase flow conductances in each pore are derived 

by solving the Stokes equation in the original geometry 

using OpenFOAM. Unfortunately, the extraction code 

needs large amount of memory to extract large images 

(more than 60 GB of RAM for 1500 3 voxels image). 

Furthermore, although OpenFOAM simulations are 

parallelized, they are computationally expensive and 

require a large amount of resources and/or simulation time 

for large images. Therefore, to overcome these 

limitations, a stitching process has been developed on 

networks extracted from overlapped sub-volume of a 

given image (Figure 1). Figure 1 illustrates the stitching 

process and shows that the stitched network is formed by 

a first part conserved from PNM1, a second part 

conserved from PNM2 and a third part obtained on a 

transition zone where rules inspired from the ones used by 

GNextract are defined to choose the elements to conserve 

--some elements being obtained from PNM1 whilst others 

from PNM2. In the transition zone, if several pore 

elements are obtained to describe the same feature, only 

the largest pore bodies and largest pore throats are kept. 

This is motivated by the fact that the extraction algorithm 

computes each element size from the largest inscribed 

sphere in the porous space. Therefore, the extraction 

algorithm tends to naturally choose the widest space 

available for determining element size. If a large 

extraction is required, several stitching operations are 

performed thus reducing the memory usage and 

accelerating the computations.  

 
Figure 1 : An illustration of the pore network stitching process 

 
Figure 2: Illustration of the validation of the stitching code 

 

In order to validate the stitching algorithm, we have 

compared waterflood relative permeability curves from a 
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reference case in which we extract a pore network from 

the full image to a stitched pore network from the same 

image with varying transition length (Figure 2). For the 

tested rocks (Figure 2), the absolute permeability varied 

by less than 5% and the waterflood relative permeability 

in the stitched networks agreed well with the reference 

network (Figures 4 and 5). In the simulations of Figures 4 

and 5, an image 2000x1000x1000 have been used 

corresponding to network sizes of 10000 nodes and 

100000 nodes respectively for rock A and B, An overlap, 

from 200 to 1600 voxels have been used and constant 

contact angles were considered ( 140° for OW and 50° for 

WW). 

 

 

 

 

 
Figure 3 : Micro-CT images of Sandstone Reservoir Rocks used 

in this paper, clean sandstone that we call Reservoir Sandstone 

A (a) and Sandstone with clay that we call Reservoir Sandstone 

B (b) 

 

2.2 Pore network flow simulator 

2.2.1 DynaPNM: a parallel pore network simulator  

Once a pore network is extracted with the corresponding 

conductance values from single phase DNS simulation, 

we go on to perform two-phase flow simulations. These 

simulations are performed using DynaPNM, TOTAL’s 

inhouse pore network simulator [27], that we use in 

quasi-static mode as all the cases that we study in this 

paper are capillary dominated. 
 

 

 

 

 

 

 

 

 

 
Figure 4 : Comparison of waterflood relative permeability 

curves of the stitched (black) and reference (red) pore networks 

for an oil-wet scenario for Reservoir Sandstone A (a) and 

Reservoir Sandstone B (b) 

 

 

Figure 5 : Comparison of waterflood relative permeability 

curves of the stitched (black) and reference (red) pore networks 

for a water-wet scenario for Reservoir Sandstone A (a) and 

Reservoir Sandstone B (b) 

 

  

The physical rules implemented in the simulator are 

broadly similar to the ones used in [22, 34] with the 

exception of a major change in the film flow model which 

is presented in the next section. The geometry of the pore 

network is simplified into an ensemble of pore bodies 

connected through pore throats during the pore network 

extraction step. As the invasions are totally controlled by 

the geometry, there is no need to compute the pressure 

gradients. The invasion order is determined through the 

(a) 

(b) 

(b) 

(b) 

(a) 

(a) 
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capillary entry pressure of each element and the trapping 

is determined through a clustering algorithm. For every 

relative permeability point computation, the phases are 

isolated, and a pressure drop is applied to the network. 

The pressure is then solved, the corresponding production 

rate is computed, and effective permeability of each phase 

is determined through Darcy’s law. 

The network is initially filled with water. A primary 

drainage is first simulated in order to establish irreducible 

water saturation, Swi. As the network is assumed water-

wet, oil injection follows an invasion percolation regime. 

Water layers in pore elements with corners make water 

trapping very difficult and allow to achieve very low Swi 

values. 

Primary drainage is then followed with a waterflood after 

an aging process where oil filled pore wettability is 

changed — water filled pores remain water-wet. We note 

here that we enter receding contact angle distributions in 

primary drainage and advancing contact angle 

distributions in waterflood. First, water spontaneously 

fills the water-wet part of the network through piston like 

displacement and snap-off. In this phase the smallest 

pores are filled first, then the next smallest are filled, and 

so on. The defending oil phase can escape by flowing 

through oil-filled pores. Once spontaneous imbibition 

ends, the invading water is over pressured by applying a 

negative capillary pressure. Now, the largest pore 

elements are filled first, and oil can escape to the outlet 

either by flowing through the center of oil filled pores or 

through oil films. Once all the oil is trapped, the 

simulation stops.  

The simulator has been parallelized to allow the 

simulation of large systems. First, the domain is 

decomposed, each processor is allocated memory and 

performs the computations of a subdomain. Each 

processor needs also information from the neighboring 

subdomains and this information is stored by each 

processor. The pore bodies and throats inside each 

subdomain of a processor are named local elements while 

the pore bodies and throats from neighbor subdomains are 

named ghost elements. Synchronization of the 

information of the ghost elements is performed after each 

capillary pressure step or after a maximum change in the 

network phases saturations. This communication is made 

using Message Passing Interface library MPI [14]. 

Furthermore, a parallel clustering algorithm has been 

implemented in order to determine if the defending phase 

is trapped and parallel linear solver library [6] is used for 

permeability and relative permeability computations.  

We propose to test the accuracy and the robustness of our 

parallel pore network simulator for several networks and 

wettability scenarios. We consider two pore networks, the 

first is extracted from a Reservoir sandstone that we call 

Reservoir Sandstone B (320000 pore elements) and from 

a very heterogenous carbonate network that we call 

Reservoir Carbonate C (1 million pore elements). 

Subsequently, we perform waterflood simulations for oil-

wet and water-wet wettability scenarios for sequential and 

distributed computations. Finally, we compare the relative 

permeability curves obtained from distributed 

computations to the reference relative permeability 

obtained from sequential simulations.  

Figure 6 and Figure 7 show that the relative permeability 

curves obtained from distributed computations were in 

good agreement with the reference sequential simulation 

for both networks and for the considered wettability 

scenarios. However, we point out that the parallelization 

introduces a small discrepancy with the sequential runs 

close to Sor for the water-wet cases. This is expected as 

Sor is controlled by the trapping in this case and a small 

perturbation of the filling order induced by the 

parallelization would impact the Sor. For the oil-wet case, 

there was a good agreement in the Sor between the 

sequential and parallel runs, as for this wettability 

scenario, the Sor is mainly controlled by the collapse of 

oil layers which is directly linked to the Pc value. In the 

formulation of our parallel algorithm, we took cautious 

care to have the same Pc in all the parallel process and 

thus we could achieve a good agreement in Sor for this 

case. Nevertheless, we observe a small discrepancy in the 

Krw for low water saturations in the parallel runs 

compared to the reference run. This could be explained by 

the fact that, waterflood in an oil-wet rock is a physical 

drainage process, leading to an invasion percolation 

waterflood regime. It is well known that invasion 

percolation is an unstable invasion process where the 

injected fluid goes into the pore elements with the lowest 

capillary entry pressure and unlike imbibition processes 

where the waterfront is stabilized with cooperative pore 

filling, a capillary fingering flow regime is obtained. This 

flow regime creates a fast increase of the water relative 

permeability once water finger reaches the outlet. A small 

perturbation of the filling order caused by the temporary 

decoupling of the computations during the parallelization 

can lead to discrepancy we observe in Krw. 

Although a small discrepancy was observed between the 

sequential and parallel runs, a very good agreement was 

observed in the presented cases. We highlight that the 

presented validation cases are not the simplest for the 

parallelization as the networks were relatively small 

(comparing to the ones used in the paper) and were 

divided into relatively small domains (down to 7800 

elements per CPU). In this work, we will use larger 

subnetworks for each CPU to have more efficient 

parallelization and to keep higher accuracy of the results.  
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Figure 6: Comparison between waterflood kr for a WW case 

with a varying number of CPUs for Reservoir Carbonate C (a) 

and Reservoir Sandstone B (b) 

 

 
Figure 7 Comparison between several waterflood kr for a OW 

case with a varying number of CPUs for Reservoir Carbonate C 

(a) and Reservoir Sandstone B (b) 

 

2.2.2 Change of film flow hypothesis 

Wettability is a key parameter in two-phase flow in 

porous media. Therefore, it is critical that any pore scale 

simulation technique can reproduce, at least qualitatively, 

the trends of the effects of a wettability change on relative 

permeability. Craig [8] presented the key features of 

strongly oil-wet and strongly water-wet relative 

permeability curves and their typical shapes. He showed 

that water relative permeability is higher in the strongly 

oil-wet case compared to the strongly water-wet case. 

Moreover, he exposed that oil relative permeability in the 

oil-wet case is lower than that in the water-wet case. We 

would like to emphasize here that these are rules of 

thumbs for extreme wettability conditions. Several SCAL 

subsequent studies have agreed with these rules [18, 19, 

21, 23] and the same qualitative behavior was observed 

between extreme wettability conditions. However, the 

PNM literature showed otherwise, and the behavior of the 

oil-wet water relative permeability curves was very 

different from the behavior and shape of the SCAL 

curves. In fact, in several modelling studies in the 

literature [1, 7, 36] , the relative permeability of water in 

oil-wet scenarios was seen to stay very low until high 

water saturations. This is not consistent with experimental 

SCAL studies of relative permeability in strongly oil-wet 

scenarios [18] and it can cause a counter-intuitive trend 

leading to having relative permeability of water in 

strongly oil-wet scenario lower than the one in water-wet 

case [7, 36] which is inconsistent with Craig’s rules and 

the experimental studies that have confirmed them. 

McDougall and Sorbie [20] studied the impact of 

wettability on the relative permeability and their 

simulations were consistent with Craig’s rule. They have 

seen that strongly oil-wet water relative permeability 

curves were higher than strongly water-wet ones. They 

have also observed that the opposite behaviour occurs for 

oil relative permeability. Unlike the previously cited PNM 

models McDougall and Sorbie [20] did not use the 

sandwiched layer model [15, 22, 34], they used instead a 

simpler pore network bonds model statistically generated 

with simplified layer physics. Besides, they started their 

simulations with no initial water in their network.  

We propose that the inconsistency is caused by a 

historical modelling artefact in most PNM models which 

led to studies that showed the counter-intuitive behavior 

in Krw in oil-wet systems.  

Most of the models in the literature use the sandwiched 

oil layers model in which water layers remain in the 

corners in oil-wet pores after aging. This means that the 

water from Swi is connected to the inlet through these 

layers which allows invasions starting from the Swi. 

These invasions would increase the water saturation in the 

system during a waterflood without increasing the 

connectivity of the water between inlet and outlet thus 

resulting in very low water relative permeability curves 

until water saturations of 70% -80% (not observed 

experimentally). However, these layers have very small 

conductivity and are not able to transport large quantities 

of water.  

 

This issue has been fixed in DynaPNM by disabling the 

connections of the water through the films in oil-wet pores 

and throats. This change in the layer modelling hypothesis 

had a large impact on water relative permeability in oil 

wet simulations (as we can see in the example of Figure 

8). The water relative permeability increases very early in 

waterflood. 

(a) 

(b) 

(a) 

(b) 
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Figure 8 :Comparison between waterflood relative permeability 

curves for an oil-wet simulation on Reservoir Sandstone A 

network using the old (red) films connectivity hypothesis and the 

new one (blue)  

 

2.2.3- Statistical uncertainty workflow 

Sorbie and Skauge [32] have explained that several input 

parameters of pore network simulation are uncertain and 

presented the wettability assignment step as the most 

complex and least validated stage of the DRP workflow. 

There are other uncertain parameters of the DRP such as 

the amount of clay and the network used in the simulation 

(i.e. for some rocks, selected networks from different 

locations could give different simulation results). These 

uncertainties have been used by some researchers in the 

past in order to “tune” the simulation results to SCAL 

relative permeability curves. However, if one wants to be 

predictive, s/he should not know the result a priori and this 

makes choosing the uncertain parameters tricky. 

Therefore, we have developed a statistical uncertainty 

workflow in which we vary the uncertain pore network 

simulation parameters (wettability distribution, contact 

angle spatial location, clay volume, pore network …). 

First, thousands of DynaPNM input files are generated in 

an experimental design phase using WSP method [31]. 

Subsequently, flow simulations are run on TOTAL’s 

supercomputer PANGEA. This is followed by a 

simulation ranking exercise based on the oil production 

after a given amount of water injected corresponding to 

each Kr curve and allows us to define three scenarios: 

• P10: an optimistic scenario in which only 10% of the 

simulations produce more than this case 

• P50: a median scenario in which 50% of simulations 

produce more than this case 

• P90: a pessimistic scenario in which 90% of the 

simulations produce more than this case 

2.2.4- Contact angles in the simulations 

Contact angle is a key input for PNM simulation as it 

controls the capillary entry pressures in the network. 

Several measurement techniques to characterize contact 

angles exist. Contact angle measurements from Micro-CT 

images of multiphase flow experiment has been very 

attractive recently. However, as these measurements use 

the 3 phase contact line for the computations, they are 

very sensitive to the image resolution and insufficient 

image resolution leads to contact angle values close to 90 

degrees with very large standard deviation [33]. 

Furthermore, automated contact angle measurements, 

take into consideration the pinned menisci which are 

different from the contact angle input needed by a PNM 

simulator. Therefore, we propose in this paper a different 

methodology to define the contact angle input. We use 

qualitative information about wettability to determine 

possible contact angle distributions to be used. This 

information feeds our uncertainty analysis approach 

described previously and therefore the simulation 

produces an envelope of relative permeability curves. 

Unfortunately, this can lead to large envelopes of relative 

permeability especially in Mixed-Wet scenarios where the 

contact angle distribution and the spatial assignment of 

contact angles can have an important impact on the 

results. In order to decrease this uncertainty and to 

constrain our wettability input further, we propose to 

perform a fast microplug scale DRP experiment in which 

we reach the residual oil saturation state. The Micro-CT 

image at Sor is then used to constrain the simulation 

wettability input by removing all the realizations/ 

wettability inputs that are not in agreement with the Sor 

measured from the image. As it is well documented that 

Sor is correlated to wettability input [37], we think that 

this experiment helps us to obtain less uncertain 

simulation results. In the future, we plan to use additional 

information from the fast microplug scale experiment in 

order to constrain even further our PNM model. 

Recent observations [11] have shown that wettability is 

correlated in space, and the pores having similar 

wettabilities are likely to be close. Furthermore, the same 

study has provided indications that contact angle is rather 

distributed following two distributions in aged samples. 

Therefore, we consider a fractional wettability model 

having two contact angle distributions with spatial 

correlation in our mixed-wet simulations. 

 

3- Results  

3.1. Wettability impact on relative permeability 

Having built the DRP workflow, we proceed to its 

validation. As a first test, we would like to test if the PNM 

simulations agree with the widely used Craig’s rules of 

thumbs [8]. As mentioned earlier in the paper, unlike the 

SCAL literature, the PNM literature provides different 

trends and we think that it is the result of a historical 

modelling artefact. We run strongly water-wet and 

strongly oil-wet simulations on several networks. We 

report in Figure 9 and Figure 10 two examples of our 

results for Reservoir Sandstone A and Reservoir 

Sandstone B. We notice that our simulations reproduce 

well the Craig’s rule of thumb. Water relative 

permeability was higher in the strongly oil-wet simulation 

compared to the strongly water-wet one. Moreover, oil 

relative permeability was lower in the oil-wet case 

compared to the water-wet simulation. 
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Figure 9 : Comparison between waterflood kr of strongly water-

set with constant contact angle equal to 50° (blue) and strongly 

oil-wet with constant contact angle equal to 150° (red) 

simulations on Reservoir Sandstone A pore network  

 
Figure 10 : Comparison between waterflood kr of strongly WW 

with constant contact angle equal to 50° (blue) and strongly OW 

with constant contact angle equal to 150° (red) simulations on 

Reservoir Sandstone B pore network 

 

3.2. Validation of DRP workflow against microplug 

experiments 

 

In the last years, new techniques to perform steady-state 

relative permeability experiments at microplug scale have 

been developed [5, 12, 13, 16] allowing Kr measurements 

simultaneously with imaging of the fluids. These datasets 

are very suitable to validate pore scale simulators as they 

enable the simulation of the same volume used in the 

experiment. Furthermore, this data is rich and helps 

understand the limitations of the DRP simulation in case 

of discrepancy. We simulate three microplug simulations 

in this section in order to validate the physics in our 

simulator. In the three datasets, only a 1 cm long section 

was scanned at a resolution a priori acceptable for PNM 

simulations. Therefore, we propose to perform the 

simulations on this section and compare the simulation 

results to relative permeability curves estimated using 

DNS from the experiment multiphase images (called 

‘experimental’ Kr in this section). Although the computed 

relative permeabilities would be limited by the image 

resolution, they allow us to compare simulated and 

‘experimental’ Kr curves from the exact same volume and 

prevent discrepancies caused by the heterogeneity of the 

samples and/or by differences in the aspect ratios between 

the experiment and the simulated system.  

To estimate the ‘experimental’ relative permeability 

curves from the multiphase flow images, we first segment 

the images to identify the voxels filled with oil, water and 

grain. This step has some uncertainty as a segmentation is 

biased by user decisions. Then, a pressure gradient is 

applied between the inlet and outlet for each phase 

separately, and single phase OpenFOAM simulations are 

performed. The computed flow rate obtained for each 

phase is then used to compute the effective permeability 

of each phase using Darcy’s law and finally relative 

permeability curves are obtained by dividing the effective 

permeabilities by the absolute permeability. When the raw 

images of the experiments are available, we perform an 

uncertainty analysis on the segmentation to have an idea 

about the ‘experimental’ uncertainty. 

Wettability is a key input for a PNM simulation and as 

discussed previously we use qualitative wettability 

information from the experiment as a first input to our 

experimental design usually resulting in large envelope of 

relative permeability curves especially for mixed-wet 

scenarios. Then, we constrain this input by only selecting 

the realisations that agree with the Sor of the steady-state 

experiments.  

The first dataset that we consider is Reservoir Sandstone 

rock A without aging. The microplug experiment showed 

water-wet (WW) behavior characteristics [13]. Therefore, 

we have used the wettability input in Table 1. In our 

experimental design, 10000 realizations have been 

generated and simulated (with varying the seeds numbers, 

the parameters of the contact angle distributions as 

described in table 1 and wettability spatial correlation 

parameters). Next, only the realizations in agreement with 

Sor ( difference less than 5%) have been kept. Finally, the 

results have been ranked at 10 PV injected and, P10, P50 

and P90 scenarios were established. Figure 11 shows that 

the simulated relative permeabilities agree well with the 

experimental curves. We point out that the experimental 

Swi depends on the segmentation of the experimental 

images. As we performed an experimental uncertainty 

analysis that takes into account the various segmentations, 

we could find a range of Swi values. For simplicity, we 

only considered Swi in the simulation (as an input 

parameter) from the base case experimental images 

segmentation. 

 

Table 1 : Waterflood wettability parameters used in 

simulations of WW Reservoir Sandstone A  

 Value/Range 

WF advancing contact angle 

distribution 

Normal 

distribution 

WF advancing contact angle standard 

deviation 

1°-10° 

Mean advancing WF contact angle 
50°-80° 
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Figure 11: Comparison between simulated and ‘experimental’ 

(computed from experimental images at several fw) relative 

permeability curves for WW Reservoir Sandstone A  

Then, we simulate a second dataset of Reservoir 

Sandstone A with aging. The microplug experiment 

showed mixed-wet (MW) behavior characteristics [13]. 

We have then used the simulation workflow described 

above and the wettability input of Table 2. Figure 12 

shows that the simulated oil relative permeability is within 

the experimental envelope. The water relative 

permeability is in good agreement with the experimental 

curve for low and medium saturation values but is slightly 

higher close to Sor.  

 

Table 2 : Waterflood wettability parameters used in 

simulations of MW Reservoir Sandstone A 

 Value/Range 

WF advancing contact angle distribution Normal 

distribution  

WF dist1, advancing contact angle 

standard deviation 

1°-10° 

Mean advancing WF dist1 contact angle 
100°-130° 

 

WF dist 2 advancing contact angle 

distribution 

normal 

WF dist2, advancing contact angle 

standard deviation 

5°- 20° 

Mean advancing WF dist2 contact angle 
91°-100° 

 

Fraction of distribution 2 0.35-0.75 

Correlation length 3-5 

 
Figure 12: Comparison between simulated and ‘experimental’( 

computed from experimental images at several fw) relative 

permeability curves for MW Reservoir Sandstone A 

Finally, we simulate a dataset of Bentheimer with aging. 

The microplug experiment showed mixed-wet behavior 

characteristics [17]. We have then used the simulation 

workflow described above and the wettability input of  

Table 3. Figure 13 shows that the simulated water relative 

permeability is in good agreement with the experiment. 

The simulated oil relative permeability is however 

slightly higher than the experimental values. 

Unfortunately, we didn’t have access to the grey scale 

images of this experiment and therefore could not 

establish the experimental uncertainty for this dataset.  

Overall, the agreement was satisfactory between the three 

datasets and our simulation results.  

 

Table 3 : Waterflood wettability parameters used in 

simulations of MW Bentheimer 

 Value/Range 

WF advancing contact angle 

distribution 

Normal 

distribution  

WF dist1, advancing contact angle 

standard deviation 

5°-20° 

Mean advancing WF dist1 contact 

angle 

110°-140° 

 

WF dist 2 advancing contact angle 

distribution 

normal 

WF dist2, advancing contact angle 

standard deviation 

5°- 10° 

Mean advancing WF dist2 contact 

angle 

75°-100° 

 

Fraction of distribution 2 0.5-0.65 

Correlation length 4-6 

 



The 35th International Symposium of the Society of Core Analysts 

 

 
Figure 13: Comparison between simulated and ‘experimental’ 

(computed from experimental images at several fw) relative 

permeability curves for MW Bentheimer 

 

3.3. Large scale simulations 

We present in this section an example of large-scale 

simulations on Bentheimer. We start from an image of 

Bentheimer (560*560*10000) acquired at 4 microns 

resolution. We extract a pore network from this image 

from 13 extractions stitched together. This results in a 

pore network with 242k elements (Figure 14). Although 

this network is not small, our PNM simulator can handle 

much larger volumes. Therefore, we perform several 

PNM duplications by periodicity in the lateral direction in 

order to achieve large volumes. The original and 

duplicated networks are linked together via newly 

generated throats with Delaunay triangulation algorithm 

[9]. After 16 duplications in each lateral direction, we 

obtain a pore network having 63 million elements, 

representing an image of 8480*8480*10000 voxels and 

representing a physical volume of 46 𝑐𝑚3 which is a 

typical size of plugs used in MICP measurements.  

 
Figure 14 : Bentheimer pore network obtained by 13 stitched 

extractions from 560*560*10000 voxels image  

 
Figure 15 : Bentheimer pore network obtained from lateral 

multiplication of network of Figure 14. This network represents 

an image of 8480*8480*10000 voxels 

 

The parallelization of our flow simulator resulted in faster 

computations and made large networks simulations 

possible. For instance, simulating a primary drainage, 

followed by waterflood with Kr computations on the large 

Bentheimer network (Figure 15) took 6.5 hours with 81 

CPUs. This simulation was two orders of magnitude faster 

than a sequential simulation on the same network. Figure 

16 shows the simulation time evolution by varying 

number of CPUs used. We see that the simulation time 

decreases very fast with more CPUs to reach an optimal 

speed-up for 81 cores. Then, it stabilizes and starts 

increasing meaning that the number of pore elements in 

each core domain becomes too small to take advantage of 

the parallelization.  

These are, to our knowledge, the largest PNM simulations 

(in terms of number of pore elements) ever reported in the 

literature. We think that we can even simulate larger 

networks as we did not reach yet the limits of our PNM 

simulator. 

 
Figure 16 : Simulation time on 21 million pore bodies network 

(representing 46cm3 volume) as a function of the number of 

CPUS 

Being able to simulate large volumes enables us to 

investigate the impact of image size used in DRP on the 

dispersion of the results. We crop several networks from 

a large Bentheimer network obtained as described above. 

4 cm 

4 cm 

3.4 cm 

3.4 cm 
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Subsequently, we simulate primary drainage and 

waterflood on several realizations of each cropped pore 

network. Figure 17, Figure 18 and Figure 19 show that the 

larger the image/network the smaller the variability. This 

reduction of the dispersion is both due to the reduction of 

the finite size effect as the number of elements in the 

network increases and by the fact that more heterogeneity 

is taken into account in the larger pore networks being 

closer to REV. However, it is difficult to speak about REV 

for this case as we are limited by the information available 

from the image.  

  

 
Figure 17: Evolution of the Sor dispersion with varying size of 

Bentheimer cubic image for an oil-wet system 

 
Figure 18: Evolution of the Sor dispersion with varying size of 

Bentheimer cubic image for a water-wet system 

 
Figure 19 : Evolution of the Sor dispersion with varying size of 

Bentheimer cubicimage for a mixed-wet system 

 

3.4. Validation of DRP workflow against SCAL 

experiment 

 

Having validated our PNM simulations against microplug 

experiments, we perform a comparison against a SCAL 

experiment performed on Reservoir Sandstone B. We 

acquired an image of size 1300*1300*6358 voxels at 1.5 

microns resolution and extracted a pore network having 

1.7 million pore elements. To avoid adding bias to our 

simulations, we propose to use the same aspect ratio as the 

experiment (equal to 5), and we avoid making network 

duplications along the flow direction. As our image has 

the same aspect ratio as the experiment, the largest 

network that we could use is the network extracted from 

the full image. First, we check if we reach reasonable 

dispersion using this network. The full sample image is 

equivalent to a 22003 image and we observe that for OW 

and WW the Sor value had stabilized and that the 

dispersion became reasonable.  

 
Figure 20 : Evolution of the Sor dispersion with varying size of 

Reservoir Sandstone B cubic image for an oil-wet system 
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Figure 21 : Evolution of the Sor dispersion with varying size of 

Reservoir Sandstone B cubic image for a water-wet system 

The SCAL experiment has shown water-wet or mixed-

wet with large water-wet characteristics. In fact, the oil 

production was fast and the Sor was high. Therefore, this 

qualitative information has been used in the simulation. 

An experimental design was used to generate 1996 

realizations. These were run using DynaPNM, the 

simulated relative permeability curves were ranked at 10 

PV injected and, P10, P50 and P90 scenarios were 

subsequently established. We did not have a microplug 

experiment for this dataset, therefore we did not use the 

Sor image to discard some realizations and we report here 

all the simulated 1996 realizations. Figure 22 shows that 

the simulated relative permeabilities is in good agreement 

with the experimental Kr curve. Furthermore, Figure 23 

shows that the simulated Sor was close to the 

experimental residual oil saturation. This gives us 

confidence of the robustness of our simulation workflow. 

Although, the agreement was good between the 

simulations and experiment for this sample without using 

Sor image of a fast experiment to constrain the wettability 

input in the simulation, we do not think that this result is 

guaranteed and we believe that for different cases – 

especially for mixed-wet cases with more oil-wet fraction, 

that an experimental input is needed to keep the 

uncertainty of the PNM simulations reasonable.  

 

Table 4 : Wettability parameters used in the simulation of the 

SCAL experiment performed on Reservoir Sandstone B 

 Value/Range 

WF advancing contact angle 

distribution 

Normal 

distribution  

WF dist1, advancing contact angle 

standard deviation 

4°-8° 

Mean advancing WF dist1 contact 

angle 

100°-120° 

 

WF dist 2 advancing contact angle 

distribution 

normal 

WF dist2, advancing contact angle 

standard deviation 

4°- 8° 

Mean advancing WF dist2 contact 

angle 

40°-75° 

 

Fraction of distribution 2 0.65-0.99 

Correlation length 1-6 

 
Figure 22 : Comparison between simulated and SCAL 

experimental relative permeability curves for Reservoir 

Sandstone B 

 

 
Figure 23: Comparison between simulated (blue) and 

experimental (orange) Sor value for Reservoir Sandstone B 

 

4- Conclusions  

In this paper, we have presented TOTAL’s DRP 

workflow for multiphase flow simulation and relative 

permeability estimation. First, an upscaled version of the 

segmented image was built in the form of a pore network 

with single phase Direct Numerical Simulation performed 

to compute the conductivities of the pores. This allows us 

to get the accuracy of DNS and the computational 

efficiency of PNM. The network extraction was then 

completed by a stitching algorithm that allows the 

extraction of larger volumes and overcome the memory 

limitations of the extraction code. This network feeds our 

in-house pore network simulator DynaPNM. The 

parallelization of DynaPNM unlocked the simulations on 

networks with tens of million pore elements in few hours 

and made possible the simulation of plug scale volumes 

(with few microns resolution). These simulations are to 

our knowledge the largest PNM simulations (in terms of 

number of pore elements) ever reported in the literature.  

 

We have made a change in the way to model water films 

in oil-wet pores to correct a historical modeling artefact in 

Sor exp=0.31 
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PNM which is seen to have a very large impact on 

simulation accuracy in oil-wet and mixed-wet scenarios.  

 

After this change, we show that our simulation workflow 

reproduced the relative permeability trends with respect 

to changes of wettability that are consistent with the well-

known Craig’s rule. Subsequently, we have validated our 

simulations against three relative permeability 

experiments performed on microplugs and against a 

SCAL dataset. The agreement was satisfactory for all 

cases; however, more validation work is required to test 

further the robustness of the workflow for more rocks and 

wettability configurations.  

 

For the future, we plan to constrain further our PNM 

simulations in order to reduce the uncertainty and 

dispersion in our results. We would also like to have more 

heterogeneity information in our simulations by using 

larger rock images.  
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