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Abstract. Recent advances in drill-core scanning provide high-quality unwrapped core images that require similarly 

advanced methods for processing the produced images and extracting important information in an automatic and 

reliable manner. Unwrapped core images provide a detailed view of fractures that can be segmented and 

characterized in terms of depth, dip angle, dip direction, aperture, and roughness. Despite the availability of 

advanced machine learning techniques for instance segmentation, obtaining accurate segmentation of the fractures 

from high-resolution images is challenging. For Mask Region-based Convolutional Neural Network (Mask R-

CNN), a common instance segmentation model, the capacity of the segmentation branch is limited which, in turn, 

limits the segmentation quality of large objects especially those with fine details, such as the fractures. We propose 

a two-stage segmentation approach using Mask R-CNN to improve fracture segmentation. We use two CNN models: 

the first model processes full-size unwrapped core images to detect and segment fractures; the second model 

performs a more detailed segmentation by processing smaller regions of the images that include the fractures 

detected by the first model. We investigate using the standard Mask R-CNN architecture and a new architecture of 

Mask R-CNN with a Point-based Rendering (PointRend) neural network module. The method is evaluated on ~47 

m of core and results in an increase in the average intersection-over-union by 0.25 from the baseline (one-stage 

segmentation with standard Mask R-CNN). 

1 Introduction  

Unwrapped core images are two-dimensional representations 

of the core surface. The images are taken by scanning the core 

in a 360° mode, i.e., by rotating the core and capturing the 

surface from different angles [1–3]. Modern core scanners 

provide high-resolution unwrapped core images with 

resolution up to 40 pixel/mm and can scan approximately 

three meters of core in 1 minute [2]. The images provide a 

detailed view of the core surface and the structural features, 

such as fractures.  

Fractures appearing in unwrapped core images are in-

volved in a variety of fracture analysis practices [4, 5]. The 

fractures, especially those with high dips, are used as match-

ing features during core re-orientation by correlating them 

with the fractures from borehole image logs, allowing for a 

low-cost and indirect core orientation method [1]. Moreover, 

integrating unwrapped core images and borehole image logs 

(acoustic or resistivity images) are necessary for accurate 

fracture characterization [3]. 

 In recent work [6], fractures from high-resolution un-

wrapped core images were used to automatically estimate the 

degree of fracture roughness and mismatches between frac-

ture edges. The authors computed the joint roughness coef-

ficient (JRC) for each fracture based on statistical estimators. 

The mismatch was based on the standard deviation of fracture 

apertures and the correlation between fracture profiles. They 

validated the results according to a standard scale of the JRC 

[7]. The study, however, used pre-digitized fractures that 

were traced manually to obtain fracture profiles. 

Developing automated and accurate fracture segmenta-

tion from unwrapped images can significantly facilitate the 

characterization process. Accurate and reliable fracture seg-

mentation can be particularly beneficial for detailed fracture 

analyses, such as estimating fracture roughness or aperture 

sizes. Such segmentation approaches have not been devel-

oped yet due to there being limited research in this area. Pre-

vious work [7, 8] used classic image processing algorithms to 

identify fractures from core tray images, which provided only 

a limited view of the fracture surface compared to unwrapped 

images.  In addition, several methods have been established 

to detect fractures from borehole image logs, which range 

from using edge detection and image processing algorithms 

to using machine learning (ML) based methods [9–12] with 

variable results.  Thus, more research is needed to explore the 

feasibility of developing automated and accurate fracture seg-

mentation from unwrapped core images.  

Modern ML approaches can provide high-quality image 

analysis including instance or semantic segmentation [14, 

15]. Instance segmentation is distinctly different from the 

more commonly used semantic segmentation in digital core 

analysis. With semantic segmentation objects of the same 
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category are segmented as a single object while for instance 

segmentation objects are detected separately. An example ap-

plication for instance segmentation, using the Mask Region-

based Convolutional Neural Network (Mask R-CNN), is pro-

vided in Figure 1a where features in a street-level image are 

identified and segmented. Such technologies are an important 

step towards the operation of autonomous vehicles. So, can 

this technology be translated to core analysis applications? 

The aim would be to develop an instance segmentation algo-

rithm that identifies important core structural features. The 

focus of our work is displayed in Figure 1b where Mask R-

CNN is applied to core images for fracture identification. 

With this technology fractures could be segmented and char-

acterized on a per fracture basis in an automated way. The 

efficacy of the method for core analysis, however, remains to 

be tested.  

The accuracy of object segmentation by ML models de-

pends on the size of the object compared to the resolution of 

the output raw mask, which is usually limited by computa-

tional and memory requirements (e.g. [14]). In high-resolu-

tion core images, the fractures appear as large objects that 

span the entire width of the image, but their apertures are finer 

features that require high-resolution images. The segmenta-

tion of such features is directly affected by the trade-off be-

tween field-of-view (computational and memory require-

ments) versus image resolution. We propose that the segmen-

tation of fractures from high-resolution core images can be 

enhanced using a two-stage segmentation method. 

 

 
(a) 

 

 
(b) 

Fig. 1. Original application of Mask R-CNN for natural image from 

COCO test dataset [15] in (a), and the application of the model for 

fracture segmentation from unwrapped core images in (b), showing 

result from two-stage segmentation using Mask R-CNN + 

PointRend.  

 

Two-stage segmentation has been applied in various ap-

plications where there are multi-scale features present in an 

image. [16] developed a two-stage segmentation framework 

using two 3D U-Nets to enhance segmentation of organs from 

computed tomography images. The first U-Net segments the 

whole image and the second U-Net segments a small part of 

the image that includes the organ of interest detected by the 

first model.  A similar approach was used by [17] to refine 

segmentation of ultrasound breast images, which resulted in 

an improved average Dice score, a segmentation metric [18], 

of up to 14% approximately. Alternatively, [19] introduced a 

Point-based Rendering (PointRend) module to produce high-

resolution masks from semantic segmentation and instance 

segmentation models with only a minor increase in the 

memory requirement.  

 Herein, we evaluated the standard Mask R-CNN and 

Mask R-CNN with the PointRend module (Mask R-CNN + 

PointRend) in a two-stage segmentation approach. The first 

stage detects full-size fractures in the input image. The second 

stage provides finer segmentation by processing small 

regions of the image that include detected fractures. We train 

the models with images from two boreholes and evaluated the 

method on new data including images from new boreholes. 

The results are evaluated using the intersection-over-union 

(IoU) between manual and predicted segmentation of 

fractures in new core images. 

2 Data and methodology  

This section is divided into two sub-sections. Section 2.1 

provides a description of the unwrapped core images used in 

our work and the preparation of the datasets for training and 

testing the segmentation models. Section 2.2 introduces the 

proposed two-stage procedure, the tested architectures of the 

instance segmentation models, the training process of the 

models, and the evaluation metrics used.  

2.1 Data preparation  

The core images were obtained from four boreholes located 

at the Norwegian Barents Sea and North Sea. The boreholes 

were 7220/6-1, 7220/11-3 16/2-17 B, and 16/2-18 S. The 

images were acquired from Lundin Energy [20]. 

 Boreholes 7220/6-1 and 7220/11-3 are located on the 

Loppa High in the Barents Sea whereas boreholes 16/2-17 B 

and 16/2-18 S are from Johan Sverdrup field and are located 

on the Utsira High in the North Sea. Core intervals and net 

lengths of the images used in our work from each borehole 

are summarised in Table 1. The sections from boreholes 

7220/6-1 and 7220/11-3 were from the Ørn formation that is 

dominated by carbonate rock while the sections from 16/2-17 

B and 16/2-18 S were taken from the Asgard formation 

composes mainly of claystones, marlstones, and limestone, 

and from the basement group that comprises highly fractured 

granite [21]. 
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Table 1. Details of the core images from each borehole, showing 

images resolution, depth intervals and the net lengths of the core 

used in the study. 

Borehole Image 

resolution 

(pixels/mm) 

Core images 

interval  

(m) 

Net core 

length 

(m) 

7220/6-1 2.6  1149.00–1203.00 52.88 

7220/11-3 9.0 1852.20–1944.00 47.19 

16/2-17 B 9.0 2130.70–2140.37 5.40 

16/2-18 S 9.0 2130.70–2140.37 8.21 

 

 The training and validation images were selected from 

two boreholes as detailed in Table 2, with an initial number 

of 100 images that included 204 fractures. We used data 

augmentation to expand this number to 1200 images that were 

divided into 1000 images for training and 200 images for 

validation. The augmentation included blurring, altering the 

brightness and contrast, and horizontal and vertical flipping.  

 For evaluating the method, the test images were selected 

from the four boreholes (two blocks) to include the images 

from boreholes 16/2-17 B and 16/2-18 S obtained from new 

regions and formations. The test dataset included a total of 72 

images that have 160 fractures (Table 2).  

 

Table 2. Number and core length of training, validation, and test 

images prior to data augmentation. 

 Training & validation Test 

Borehole Number Length (m) Number Length (m) 

7220/6-1 35 33.33 17 13.86 

7220/11-3 65 33.60 30 19.28 

16/2-17 B –––– –––– 11 5.39 

16/2-18 S –––– –––– 14 8.21 

Total 100 66.93 72 46.74 

 

 Fractures in the training, validation and test images were 

manually labelled using the Supervisely annotation online 

tool [22]. The images were 811–2905 pixels high and 356–

8980 pixels wide with resolution of 2.6–9 pixels/mm as 

shown in Table 1.  To build the model for the second stage of 

segmentation, we created three smaller images from each 

fracture in the training and validation datasets following a 

similar procedure as explained in Section 2.2.1. The resulting 

images were 144–1057 pixels high and 74–3457 pixels wide. 

 Before inputting the images into the models during each 

stage of segmentation, the images were resized to the default 

size of Mask R-CNN (discussed in Section 2.2.3). After 

resizing, the full-size images (i.e., the inputs of the first 

segmentation stage) had an average resolution of 2.1 

pixels/mm while the small images (i.e., the inputs of the 

second segmentation stage) had a higher average resolution 

of 11.2 pixels/mm.  

 

2.2 Methodology  

2.2.1 Two-stage approach 

The overall procedure involved using two instance 

segmentation models, as displayed in Figure 2. Model-A 

received a full-size image and output a mask for each fracture, 

like the ordinary implementation of an instance segmentation 

model. Model-B was then used to segment small regions of 

the image to enhance the masks produced by model-A.  

 As demonstrated in Figure 2, three regions were cropped 

from each fracture and segmented by model-B. The cropping 

included an overlapping ratio of 5% of the fracture height. 

We also tested dividing the fracture into four regions instead 

of three, but it did not provide further improvement from the 

three-region division.  

 Next, the resulting high-resolution masks by model-B at 

each location of the fracture replaced the original mask from 

model-A at that location. In some cases, model-B yielded 

more than one mask for a single image when it included parts 

of nearby fractures. To decide on the correct mask for such 

images, we used the mask with the highest IoU with the 

primary mask from model-A at the corresponding location, as 

shown in Figure 3. See Section 2.2.4 for the definition of IoU.  

 

 

 
 

Fig. 2. Workflow of the two-stage segmentation method using two 

instance segmentation models (for clarity only a single continuous 

fracture segment is shown). Solid lines show the main flow and 

dashed lines show additional transitions. 
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Fig. 3. Process of updating primary masks from model-A showing a 

case of multiple outputs by model-B. The mask with the highest IoU 

(40%) was selected to update region C in the primary mask instead 

of the mask with 1% IoU that belongs to a nearby fracture.  

2.2.2 Experimented architectures of Mask R-CNN 

To define the architecture of model-A and model-B, we 

evaluated two recognized instance segmentation 

architectures: (1) standard Mask R-CNN and (2) Mask R-

CNN + PointRend.  

 The main components of the Mask R-CNN architecture 

are the region proposal network (RPN), a deep CNN for 

feature extraction (backbone), the RoIAlign layer, followed 

by the branches for bounding box detection, classification, 

and mask segmentation [14].  

 The purpose of the RPN is to propose candidate object 

regions, i.e., anchors, in the input image of different sizes and 

height-to-width ratios. The RoIAlign layer crops features 

extracted by the backbone of the proposed regions and resizes 

them to a uniform shape, e.g., 7 × 7 or 14 × 14 pixels2. Then 

the detection and classification branches yield a classification 

score and bounding box coordinates for each region of 

interest (RoI). In parallel, the segmentation branch outputs a 

binary mask for each RoI.  

 A common architecture of Mask R-CNN includes a 

backbone with a feature pyramid network (FPN) [23] like 

what was used in this study. In this architecture, the 

segmentation branch receives RoIs of 14 × 14 pixels2 and 

yields 28 × 28 pixels2 masks. The branch consists of four 

convolutional layers, a deconvolutional layer, and an output 

layer.  

 Due to the small size of the output masks, segmentation 

of large objects has limited accuracy and fine details at the 

object boundaries are usually not segmented properly. 

However, increasing the capacity of the segmentation branch 

would require significantly more computational time and 

memory. Therefore, an alternative method is required.   

 The PointRend module was developed by [19] to refine 

the segmented masks generated by instance segmentation 

models, such as Mask R-CNN, with a minor increase in the 

memory requirement. In Mask R-CNN, PointRend can 

increase the resolution of the output masks to 224 × 224 

pixels2 with nearly 30 times less memory and computational 

time than what would be required by the original 

segmentation branch to yield the same resolution. The 

module predicts higher-resolution masks from both lower-

resolution masks as well as features of selected points from 

the masks by sampling points of low uncertainty. The pixel-

wise prediction is performed by a multi-layer perceptron [19]. 

 In Mask R-CNN + PointRend, the mask head predicts 7 

× 7 pixels2 for each RoI then the PointRend module refines 

the prediction to 224 × 224 pixels 2 through multiple iterations 

of point sampling and mask resolution enhancement. The 

mask resolution in each iteration is 72, 282, 562, 1122, and 2242 

pixels2, respectively. An illustration of the mask refinement 

process is provided in Figure A1 of Appendix A. 

 For both standard Mask R-CNN and Mask R-CNN + 

PointRend, we used ResNet-50-FPN as the backbone. We 

also added height-to-width ratios of 4:1 and 6:1 to the original 

ratios of 2:1, 1:1, and 1:2 that define the RPN anchors in 

model-A to match the shapes of the fractures. The rest of the 

architectures were left as the defaults used in [15, 19]. 

2.2.3 Training implementation 

We used the Mask R-CNN and Mask R-CNN + PointRend 

implementations from Detectron2 [24]. We started the 

training with pretrained models on Microsoft COCO images 

[25]. The input images were resized to the default size of 

Mask R-CNN to have a maximum of 1333 pixels on the large 

edge [24]. We trained the models for 30,000 iterations using 

a batch size of 2 and 4 images for model-A and model-B, 

respectively using an NVIDIA GeForce RTX 2080 Ti GPU 

with 11GB of memory.  We defined an initial learning rate of 

0.01 and this rate was halved every 10,000 iterations. All 

other training parameters were like the default values used in 

Detectron2 [24].  

The training loss converged as shown in Figure 4, and the 

precision of the segmented validation images converged as 

shown in Figure 5. The details of these results are discussed 

in Section 3. The segmentation loss was calculated as the 

average binary cross-entropy loss [14]. The precision was 

calculated using Eq. 1, where true positives are determined 

by a specific IoU threshold between the objects segmented by 

the model and the true objects. Commonly, an average 

precision is calculated at different IoU thresholds (0.5–0.95). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 .  (1) 
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Fig. 4. Training loss for mask segmentation using standard Mask 

R-CNN and Mask R-CNN + PointRend architectures for model-

A (top) and model-B (bottom). 

Fig. 5. Validation statistics during training of standard Mask R-CNN 

and Mask R-CNN + PointRend, for model-A (top) and model-B 

(bottom). 

 

2.2.4 Evaluation of the two-stage method 

We evaluated the fracture segmentation using the two-stage 

method and the PointRend module both statistically and 

visually. We used IoU to compare the ground truth and 

predicted segmentation. The IoU between two objects is 

defined as the ratio of the overlap area between the objects to 

the total area of both objects. IoU is defined in Eq. 2 where 

𝑜𝑏𝑗𝑒𝑐𝑡𝐴 and 𝑜𝑏𝑗𝑒𝑐𝑡𝐵 can be ground truth and predicted 

masks, respectively. IoU ranges from 0 (no match) to 1 (a 

perfect match); for the fractures that appear in the core images 

as detailed thin objects, IoUs around 0.5 can indicate good 

predictions, as shown in Section 3. 

𝐼𝑜𝑈 =  
𝑜𝑏𝑗𝑒𝑐𝑡𝐴 ∩  𝑜𝑏𝑗𝑒𝑐𝑡𝐵

𝑜𝑏𝑗𝑒𝑐𝑡𝐴 ∪  𝑜𝑏𝑗𝑒𝑐𝑡𝐵
. (2) 

 

We evaluated the effect of mask improvement on the 

accuracy of fracture aperture calculation, for a group of eight 

sample fractures (discussed in Section 3.2). Fracture aperture 

was calculated from the binary masks segmented manually 

and by the model, following the procedure in Appendix A. To 

evaluate aperture calculations by the model, we computed the 

absolute error as the difference between aperture 

measurements from ground truth and predicted masks.  

We also assessed the quality of the segmentation through 

visual inspection, including comparing the one-stage and 

two-stage segmentations as well as comparing standard Mask 

R-CNN and Mask R-CNN + PointRend segmentations. 

 

3 Results and discussion  

The training and validation statistics of segmentation in 

Figure 4 and 5 demonstrate the following. 

(1) Mask R-CNN + PointRend had lower training loss and 

significantly higher validation precision than standard 

Mask R-CNN in both model-A and model-B, suggesting 

that the PointRend module can enhance fracture 

segmentation by Mask R-CNN. 

(2) Model-B had more accurate segmentation than model-

A as the segmentation precision increased from 4% for 

the full-size images (model-A) to 16% for the small 

images (model-B) in standard Mask R-CNN, and from 

25% to 48% in Mask R-CNN + PointRend.  
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The results after integrating model-A and model-B in the two-

stage method from the 72 test images (Table 2) are discussed 

in the next sections. 

3.1 Results from IoU calculation 

Based on the calculation of IoU between predicted and 

ground truth fractures in the test images, the two-stage 

method showed improvement in the segmentation from the 

one-stage method by both the standard Mask R-CNN and 

Mask R-CNN + PointRend models.  The IoUs increased on 

average by 0.14 and up to 0.34 using standard Mask R-CNN, 

and on average by 0.11 and up to 0.27 using Mask R-CNN + 

PointRend, as shown in Table 3 and Figure 6. The 

segmentation of the test images from block 7220, which was 

used in the models training, was better than that of the images 

from block 16; however, the latter showed slightly more 

improvement by the two-stage method (Table 3). As 

demonstrated in Figure 6, the distributions of the IoU 

obtained by the two-stage method shifted towards the right 

side of the X-axis, i.e., higher IoUs. 

Table 3. Comparison between the average IoU of 160 fractures in 

the test images from blocks 7220 and 16 (see Table 2), using the 

one-stage and the two-stage method. 

Architecture Block 
One-stage 

method 

Two-stage 

method 

Standard Mask R-CNN 
7220 0.34 0.47 

16 0.18 0.33 

Mask R-CNN + PointRend 
7220 0.47 0.56 

16 0.34 0.45 

The method provided a significant increase in the 

percentage of fractures segmented with IoU greater than 0.5. 

The percentage increased from 7% in the one-stage method 

to 31% in the two-stage method using standard Mask R-CNN 

(Figure 6, top). Similarly with using Mask R-CNN + 

PointRend, the percentage of fractures with IoU > 0.5 almost 

doubled by the two-stage method, increasing from 33% to 

62% (Figure 6, bottom).  

Standard Mask R-CNN gained more improvement from 

the second stage of segmentation than Mask R-CNN + 

PointRend as the standard architecture provided poor 

segmentation of the full-size images in the first stage, due to 

its limited mask resolution, compared with Mask R-CNN + 

PointRend. 

Overall, the best segmentation, in terms of the IoU, was 

obtained by the two-stage segmentation using Mask R-CNN 

+ PointRend. It resulted in a greater than 0.5 average IoU for 

160 fractures with 62% of the IoUs greater than this average. 

This represented a 0.25 increase in the IoU from the baseline 

of the one-stage segmentation using standard Mask R-CNN.  

 
 

  
 

Fig. 6. Improvement in IoUs gained by the two-stage method for 160 

fractures in the test images. Dashed lines show average values for 

each distribution. The distribution after the second stage of 

segmentation (in red) shifted to the right and the average IoU 

increased from 0.27 to 0.41 using standard Mask R-CNN (top) and 

from 0.41 to 0.52 using Mask R-CNN + PointRend in (bottom). 

 

3.2 Improvement in aperture calculation 

We evaluated the potential increase in the accuracy of the 

fracture aperture calculation that resulted from the enhanced 

segmentation by the two-stage method using both tested 

architectures. We focused on a group of eight fractures as 

shown in Table 4.  

The third and fourth columns in Table 4 list absolute 

errors of aperture calculation based on the one-stage and two-

stage segmentation, respectively. The errors were the average 

values of roughly 60 aperture measurements for each fracture 

(more details in Appendix A). The absolute error decreased 

by 0.46 mm (i.e., 46%) on average for the eight samples by 

using the two-stage method. Note that the image resolution of 

the samples was 2.6–9 pixels/mm. The absolute error 

decreased by 0.52 mm (i.e., 41%) and 0.40 mm (i.e., 50%) for 

the samples of standard Mask R-CNN and Mask R-CNN + 

PointRend, respectively. The results also showed that IoUs > 

0.5 yielded an average aperture error of 0.61 mm compared 

to 0.93 mm from IoUs < 0.5. 

Sample 3 showed a significant reduction in the error of 

0.74 mm (i.e., 56%) following an increase in the IoU from 

0.51 to 0.74. A detail demonstration for 63 aperture 
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measurements of Sample 3 is provided in Figure 7, indicating 

the improvement in each measurement using the two-stage 

standard Mask R-CNN.  The mismatch between the ground-

truth and estimated apertures have noticeably decreased in the 

improved segmentation (Figure 7, bottom) compared to the 

mismatch in the initial segmentation (Figure 7, top).  

Thus, it can be concluded that enhancing fracture 

segmentation using the proposed two-stage segmentation 

approach can result in a substantial increase in the accuracy 

of aperture calculation.  

 
Table 4. Absolute error for fracture aperture calculation for eight 

samples, showing the reduction in error after the second stage of 

segmentation (column 4) compared to initial results in column 3.  

 

  Absolute error (mm) 

 Sample  
One-stage 

method 

Two-stage 

method 

Standard 

Mask R-

CNN 

1 0.68 0.46 

2 1.81 0.93 

3 1.31 0.57 

4 0.86 0.64 

Mask R-

CNN with 

PointRend 

5 0.68 0.26 

6 0.8 0.4 

7 0.87 0.4 

8 0.81 0.52 

 

 

  
 

Fig. 7. Improvement in aperture accuracy for Sample 3 in Table 4 

from calculation based on initial mask (top) to enhanced mask after 

a second segmentation (bottom), using standard Mask R-CNN. 

 

3.3 Visual inspection results 

Visual inspection of the predicted fracture masks proved that 

the two-stage method provided more accurate fracture 

segmentation than the one-stage method using both Mask R-

CNN architectures. The proposed method showed visual 

improvement in the segmentation accuracy of fractures in the 

test images. The fracture masks can be observed in Figure 8. 

For standard Mask R-CNN (Figure 8a), enhancement in the 

fracture segmentation can be noticed in the mask obtained 

from the second stage of segmentation with a 0.38 IoU 

compared to the initial mask with a 0.15 IoU. Similarly, for 

Mask R-CNN + PointRend (Figure 8b), the two-stage method 

yielded a more detailed segmentation for the fracture than that 

provided by the one-stage method, as indicated by the IoU 

increasing from 0.40 to 0.68 

 From the visual comparison of the results from both 

architectures, we observed that Mask R-CNN + PointRend 

segmented the fractures more accurately than the standard 

Mask R-CNN, in particular for fine fractures, such as the 

fracture shown in Figure 9. This observation agreed with the 

IoU-based evaluation, which indicated that Mask R-CNN + 

PointRend offered more accurate fracture segmentation, i.e., 

higher IoUs than the standard Mask R-CNN.  We attribute 

this to the mask refinement process by the PointRend module 

as introduced in Section 2.2.2 and Figure A1 of Appendix A. 

 

 

 
 
Fig. 8. Visualization of fracture masks enhancement by the two-

stage segmentation using (a) standard Mask R-CNN and (b) Mask 

R-CNN + PointRend. 
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Although Mask R-CNN + PointRend showed noticeably 

better segmentation when evaluated both quantitively and 

qualitatively than the standard architecture, it introduced an 

issue when segmenting adjacent or overlapped fractures. In 

some cases, Mask R-CNN + PointRend failed to distinguish 

between the main fracture and other fractures present within 

the detected region. A prime example is shown in Figure 10. 

We found that this problem, on the other hand, appeared 

much less often in the results from standard Mask R-CNN. 

 

 

 
Fig. 9. Fine fracture in test image from block 16 (a) segmented more 

accurately by Mask R-CNN + PointRend (b) than standard Mask R-

CNN (c). 

 

 

  
 

Fig. 10. Visualization of Mask R-CNN + PointRend problem in 

segmenting adjacent fractures compared to correct segmentation by 

standard Mask R-CNN. 

Overall, the visual evaluation of the results confirmed that 

the second stage of segmentation improved the results 

significantly for both architectures. It also demonstrated that 

Mask R-CNN + PointRend did not always provide better 

fracture segmentation than standard Mask R-CNN as it was 

sensitive to the complexity level of the fractures and the 

presence of adjacent or overlapped fractures. 
 

4 Conclusion  

We proposed a two-stage segmentation method to improve 

fracture segmentation from unwrapped core images and 

enable detailed fracture characterization. The method relied 

on using two instance segmentation models that segmented 

the image at different scales. We tested two architectures of 

Mask R-CNN with and without the PointRend module.  

Fracture segmentation results from the test images were 

assessed quantitively and qualitatively. Quantitative analysis 

showed that the two-stage segmentation can increase the IoU 

by up to 0.34 and 0.27 using standard Mask R-CNN and Mask 

R-CNN + PointRend, respectively. Enhancing fracture 

segmentation can potentially obtain a 46% increase in the 

accuracy of aperture calculation.  The quantitative analysis 

was confirmed by visual evaluation of the results that 

demonstrated an improvement in the fracture segmentation, 

which was noticeable for both tested architectures. 

The comparison between standard Mask R-CNN and 

Mask R-CNN + PointRend demonstrated that the latter 

provided more accurate and detailed segmentation than the 

former, but it was affected by overlapping and neighboring 

fractures.  

Instance segmentation is a powerful tool for the 

identification and characterization of image features where its 

utility has been readily realized for various applications. For 

core analysis, instance segmentation provides a platform for 

the identification of core features. While the current study is 

limited to fracture identification, future works can build on 

this platform to provide a spate of tools for the automated 

analysis of core images. Overall, we envisage a “Digital 

Geologist” machine learning platform based on deep learning 

and convolutional neural networks.   
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List of abbreviations 

Mask R-CNN Mask region-based convolutional neural 

network 

PointRend Point-based rendering 

JRC  Joint roughness coefficient 

ML Machine Learning 

Mask R-CNN Mask R-CNN with the PointRend 

+ PointRend module 
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IoU Intersection-over-union 

RPN Region proposal network 

FPN Feature pyramid network 

RoI Region of interest 
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Appendix A 

1. PointRend module 

 

 
 
 

 

Fig. A1. Mask refinement in PointRend module–incorporated in 

Mask R-CNN’s segmentation branch– through multiple iterations. 

Red dots represent the selected uncertain points. At each iteration, a 

low-resolution mask and points features from the CNN were used to 

predict a higher resolution mask. The visualization of the intermedi-

ate masks was based on [24]. 

 

 

 

2. Fracture aperture calculation 

 
Fracture aperture was calculated from the binary masks pro-

duced by the models or by manual segmentation.  

For each fracture, the aperture was measured at over 60 

locations by moving a small window along the fracture with 

a vertical step of 5 mm as shown in Figure A2, then we im-

plemented the following steps at each location: 

a) Extracting fracture points from fracture skeleton at 

that location. 

b) Finding the line of best fit to the extracted points. 

c) Finding a line perpendicular to the best-fit line. 

d) Calculate fracture aperture in pixels, represented by 

the white pixels along the perpendicular line. 

e) Converting the measurement from pixels to mm us-

ing the scale of the unwrapped core image.  

 

 

Fig. A2. Demonstration of fracture aperture calculation from a 

binary mask, showing the process at the highlighted location.  

 

  

 


