
SCA2021-028 

*
 Corresponding author: bo.gong@chevron.com   

Rock Image Enhancement Using Super-Resolution Neural Networks 

Bo Gong* and Paul Duke  

Chevron, 1500 Louisiana St, Houston, TX 77002, USA 

Abstract. Pore-scale rock properties can be estimated from core images through image-based calculation or 

numerical simulation. However, accuracy of the estimation is directly limited by the resolution of the applied 

imaging technique, leading to uncertainties in interpretations. Imaging at an extremely high resolution can be 

time-consuming and expensive, and hence is usually done on selected samples, but the imaged area or volume 

is often not large enough to represent the formation heterogeneity. The method presented in this work helps 

resolve the trade-off between image scale and resolution in heterogeneous rocks. By training and applying a 

super-resolution convolutional neural network, pore-scale details can be effectively learned and reconstructed 

using relatively low-resolution images acquired in large rock volumes. Backscattered electron microscopy 

images and microCT images were acquired at multiple resolutions, and used for training and testing the 

models. Results showed that a properly trained model could increase image resolution by up to eight times, 

even when the training images appeared to be significantly different from the test images. Compared to 

bicubic interpolation techniques, the presented method resulted in more realistic visualization, as it better 

preserved the sharp edges of pore spaces.  

1 Introduction  

Rock imaging techniques, like X-ray computed 

tomography (CT), microtomography (microCT), 

scanning electron microscopy (SEM), and confocal 

microscopy, allow earth scientists to visualize and analyze 

rock samples in extremely fine detail. The ability to 

characterize micrometer- and nanometer-scale features, 

such as pore size, grain surface roughness, and mineral 

composition, is critical for understanding fluid flow 

behaviors in subsurface reservoirs, which in turn impacts 

reservoir production forecast and development decisions. 

With digital rock physics techniques, numerical 

simulations can be conducted on 2D or 3D images to 

study static and dynamic properties of the imaged rock 

systems. 

Typically, the physical size of rock samples being 

imaged is directly linked to the resolution of the image: 

higher-resolution images are usually acquired on samples 

with smaller sizes, as they are relatively more expensive 

and time-consuming to acquire on large samples. Lower-

resolution data (coarser images) are more available on 

larger volumes, which may be more statistically 

representative for the properties of interest, but accuracy 

of the resulted interpretations could be compromised 

because of the loss of fine details.  

In heterogeneous rocks with complex pore systems, 

properties estimated with any image-processing-based 

methods could be especially sensitive to the image 

resolution. An example is demonstrated in Fig. 1. A 

backscattered scanning electron microscopy (BSEM) 

image of a carbonate rock sample was down-sampled by 

2 times (2x), 4 times (4x), 8 times (8x) and 16 times (16x). 

The original image has a resolution of 1 μm per pixel. The 

reduction of image quality by down-sampling can be seen 

from the comparison of Fig. 1(a) and Fig. 1(b), where a 

section of the original (1x) image and the 16x down-

sampled image are shown. 

Pore size distribution was estimated on the original 

and all four down-sampled images using the maximum 

inscribed sphere method (modified for 2D images) 

described in [1]. As shown in Fig. 1(c), pore size 

distribution is strongly impacted by the reduced 

resolution. The pore sizes estimated from the 8x and 16x 

down-sampled images failed to maintain the bi-modal 

distribution seen on the original image, whereas the 4x 

down-sampled image showed a shifted left peak, because 

small pores close to or below the degraded resolution 

were clustered into larger, artificial “pores”. This exercise 

suggests that even the same rock sample imaged at 

different resolutions could result in very different 

interpretations on pore space geometries, introducing high 

uncertainties into reservoir quality prediction. This effect 

was further discussed in [2] and [3].  

Numerous methods have been explored in the past to 

improve the perceptual image quality [4]. Standard 

interpolation methods can reduce the pixelation effect on 

the low-resolution images, but they do not preserve high-

frequency features very well and result in blurry images. 

Statistical methods like [5] and [6] aim to improve the 

preservation of sharp details, but often rely on image 

priors like gradient profiles and total variation, the 

extraction of which may be time-consuming.  

To help resolve the trade-off between image scale and 

resolution in heterogeneous rocks, we present a new 

workflow to digitally enhance image resolution with a 
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minimal amount of acquisition.  By training and applying 

a super-resolution convolutional neural network, high-

resolution images can be reconstructed from low-

resolution images, while preserving details like pore 

throats and angular corners of pore spaces. We first apply 

the method to synthetically generated low-resolution 

BSEM images, and then test it on manually acquired 

BSEM and microCT images. Besides using the traditional 

metric, means squared error (MSE), to compare the pixel-

by-pixel similarity of the predicted and the target images 

[7], we also calculate pore size distribution to demonstrate 

the impact of the enhancement on petrophysical 

interpretations. 

 

 

 

Fig. 1. Pore size distribution estimated from images of different 

resolutions show very different characteristics. (a) A section of 

the original image (1x); (b) The same section of the original 

image down-sampled by 16 times (16x). (c) Pore size 

distribution computed from the original image and four down-

sampled images. Microporosity (left peak) is no longer captured 

on 8x and 16x images.  

2 Image super-resolution using deep learning 

Super-resolution refers to the process of reconstructing a 

high-resolution image based on one or more low-

resolution images [4]. The objective is to recover details 

that have been lost during data compression, transmission, 

or low-resolution acquisition. Due to the non-unique 

nature of the problem, multiple solutions exist for the 

same low-resolution image. Therefore, the reconstruction 

requires the guidance of certain a-priori knowledge, 

which could be obtained either through feature extraction 

beforehand, or through example-based learning. Deep 

learning algorithms have made automatic learning 

possible, so a trained model could approximate the 

mapping from low-resolution images to high-resolution 

with minimal user intervention.  

Convolutional neural network (CNN) is a type of 

deep-learning algorithms that are commonly used for 

image recognition and classification. Designed to handle 

2D data, CNNs can effectively optimize the mapping 

from input images to output images by changing the 

weights between different layers of nodes (“filters”), 

based on the tasks they are trained on. Super-Resolution 

Convolutional Neural Network (SRCNN) [8] was 

specifically designed for image restoration using the basic 

architecture of CNNs. With low-resolution images paired 

with the corresponding high-resolution images, the model 

could learn the non-linear relationship between inputs and 

targets, and establish the rules to enrich image quality 

without creating anything inconsistent with the context. 

Information in the high-resolution images helps constrain 

the reconstructed rock texture, so that the enhanced 

images resemble the sampled rock facies. Different 

variants of SRCNN models were applied to synthetically 

down-sampled microCT images in [9], which showed 

high enhancement accuracy at a scale factor of 4.    

U-Net is a CNN model type originally developed for 

medical image segmentation [10]. One challenge with 

plain CNNs is that certain information gets lost as it goes 

deeper into the network, e.g., the spatial relationship 

among different edges and corners is not maintained, so it 

may encounter issues with feature localization. Such 

problems are overcome in U-Net through the use of 

shortcut connections between corresponding layers, 

preserving spatial information as much as possible. As a 

result, U-Net is capable of delivering good performance 

with a relatively small training data set. This is especially 

beneficial for core image analysis, where data acquisition 

is usually costly. [11] shows that U-Net can be modified 

for image super-resolution with better performance than a 

simpler SRCNN. 

In this study, we experimented with both SRCNN and 

U-Net for core image enhancement and compared their 

performances.  

3 Super resolution on synthetically generated 

low-resolution images 

3.1 Data preparation 

We first used synthetically generated images to explore 

the enhancement limit, since arbitrary resolutions can be 

created for the training data. 

Two BSEM images of a carbonate rock, S-01 and S-

02, were selected for building and evaluating the models, 

as shown in Fig. 2. Each image has 32,768×32,768 pixels, 

with a resolution of 0.25 μm. We used only S-01 to create 

the training set, and reserved S-02 as a blind test image.  

S-01 was first down-sampled, or coarsened, to lower-

resolution images. Four levels of low-resolution images 

(2x, 4x, 8x and 16x) were created as input images of the 

training data. Each low-resolution image was then up-

sampled to create a blurred image which matches the 

number of pixels with the original high-resolution image 

using bicubic interpolation. Because of the large size of 

the BSEM images, the blurred images and the original 

image were sectioned into sub-images, each having 



The 35th International Symposium of the Society of Core Analysts 

 

128×128 pixels. This process and the resulted sub-images 

are illustrated in Fig. 3 and Fig. 4. Each level yielded 

65,536 sub-images.  

3.2 Model training and results 

Two approaches were taken with the SRCNN method. In 

the first scenario, we built separate, fit-for-purpose 

models to enhance specific resolutions. Each model was 

exclusively trained on images of a certain resolution. 

Those models were then tested on the corresponding low-

resolution images they were designed for. In the second 

scenario, a single model was trained with all levels of 

input images, this is referred to as the “mixed model”. In 

practice, a mixed model would be more desirable than 

separate models, because it offers flexibility in the 

resolution of input images. This is essential when images 

are acquired in different batches or stages, and the 

resolutions are inconsistent. With a mixed model, one 

does not need to train a new network each time when new 

images of a different resolution become available. 

Considering the practicality and efficiency of the 

mixed-model approach, we trained two mixed models, 

one with SRCNN, the other with U-Net. The MSEs of the 

reconstructed images for the different models are plotted 

in Fig. 5. . A bicubic baseline was also included for 

reference. With the architecture of SRCNN, although the 

separate models performed slightly better than the mixed 

models on each level, the latter produced promising 

results, with a much higher accuracy than bicubic 

interpolation. The U-Net mixed models outperformed the 

SRCNN separate models on all levels except for 2x, 

where they produced similar results.  

The advantage of the U-Net mixed model can also be 

seen in Fig. 6, where the 16x enhanced images from both 

mixed models are shown. Even though many of the details 

are lost beyond the recovery limit because of the high 

scale factor, the U-Net model seems to have better 

preserved the edges of the pore spaces than the SRCNN 

model (see features in the red boxes).  

With the U-Net mixed model, we investigated the 

limit for image recovery with CNNs. Fig. 7 shows the 

enhancement results of the U-Net mixed model from 

different levels of down-sampled images. For the 2x and 

4x enhancement, the reconstructed images are very close 

to the original, with little details missing. On the 8x 

enhanced image, some small pores start to disappear (red 

boxes) or cluster with nearby pore spaces (blue boxes), 

but most of the edges and corners of larger pore spaces are 

still well preserved. On the 16x enhanced image, pore 

spaces are further rounded, and the microporosity seen on 

the original image is visibly lost. An 8x enhancement 

appears to be the limit of reliable resolution recovery with 

CNNs, based on visual assessment. Beyond that level, 

small features like pore throats and angular pore spaces 

are smoothed out to an unacceptable degree, which would 

lead to biased interpretations. 

 

 

 
(a) 

 

 
(b) 

 

Fig. 2. Two visually different BSEM images were selected for 

building and evaluating the models. (a) S-01, image used to 

create the training set; (b) S-02, image reserved for out-of-

sample testing. 

 

 

 

 
 

Fig. 3. Creating input and target images for the training set by degrading the original image. 
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Fig. 4. Sub-images (128×128 pixels) created for model training. 

 

 

 
 

Fig. 5. Mean squared error (MSE) of enhanced images from 

different models, implemented on test image S-02. 

 

 

Fig. 6. Comparison of images enhanced with SRCNN and U-

Net mixed models. 

 

Besides the perceptual image quality, it is also 

important to examine the impact of the enhancement on 

the properties derived from the images, because the 

ultimate goal for core image enhancement is not pixel-by-

pixel recreation, but the maximum preservation of the 

rock properties of interest. As an example of 

petrophysical properties, pore size distribution was 

calculated to evaluate the effectiveness of the feature 

reconstruction, using the method described in [1]. The 

results are plotted in (a)8. 

 

 

 

Fig. 7. A 170 μm × 170 μm section of target image, with the same area of four enhanced images at 2x, 4x, 8x and 16x. The enhanced 

images were reconstructed from down-sampled images with a U-Net mixed model. 
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(a) 

 
(b) 

 
(c) 

Fig. 8. Comparison of pore size distribution calculated with 

down-sampled, interpolated, and U-Net reconstructed images, 

compared with the original (1x). (a) Images down-sampled by 

8x and 16x, and segmented by thresholding. (b) Images down-

sampled by 8x and 16x, and interpolated to match the original 

image size. (c) Images down-sampled by 8x and 16x, and 

reconstructed with the U-Net mixed model.   

 

(a)(a) shows the pore size distributions calculated on 

two down-sampled images (8x and 16x), compared with 

the original (1x). Impacted by the image degradation, not 

only a large amount of the microporosity (left peak) was 

missing on the down-sampled images, but the secondary 

porosity (right peak) was also smoothed out due to the 

resolution reduction. (b)8(b) shows the results calculated 

from images that were first down-sampled by 8x and 16x, 

and then interpolated to match the original image size. 

The 8x interpolated image recovered the location of the 

left peak, but failed to capture a large portion of the pores 

smaller than 2 μm (radius smaller than 1 μm). A larger 

amount of microporosity is lost on the 16x interpolated 

image. Moreover, the location of the left peak is shifted to 

the right, with the peak radius almost doubled. Both the 

8x and 16x interpolated images resolved the right peak 

better than the down-sampled images, but a smoothed-out 

effect can still be seen.   

In contrast, the U-Net reconstructed images showed a 

better performance, as shown in Fig. 8). The 8x enhanced 

image preserved the bi-modal pore size distribution very 

well, with only a small difference on the pores that have 

radius less than 1 μm. This indicates that the statistical 

impact on pore sizes is insignificant. The 16x enhanced 

image did not fully recover the left peak, but its location 

is almost identical to the original. Both the 8x and the 16x 

enhanced images produced the right peak with a good 

resolution.  

For core image interpreters, it is essential to determine 

what level of recovery is truly necessary, since different 

applications call for different precisions. In this example, 

if it is known that pores smaller than 2 μm play a critical 

role in the studied rock, the 8x enhancement would be 

preferable to the 16x. However, if a task only requires the 

identification of the local maxima, a 16x enhancement 

would be sufficient. These varying criteria to judge the 

enhancement performance distinguish the image super-

resolution applications in digital rock physics from some 

of the other fields, which may have lower tolerance for 

errors.     

4 Super resolution on manually acquired low-

resolution images 

4.1 Application on BSEM images 

We then tested the workflow with BSEM images 

manually acquired at different levels. 

Two levels of BSEM images were acquired on 

multiple carbonate rock samples, with one resolution 

roughly 5 times as high as the other. For each low-

resolution image, a high-resolution image was positioned 

in its centre for the ease of registration, as shown in Fig. 

9. Consequently, the high-resolution images covered a 

much smaller area of the rock samples. Because of the 

limitation of the imaging speed, it would not be practical 

to scan the entire surface of the cores at the high 

resolution. 

Images of the two resolutions were then registered 

with an internally developed software. The low-resolution 

images were trimmed to match the areas covered by the 

high-resolution patches. Once aligned, each image was 

divided into sub-images with 128x128 pixels, and pairs of 

low-resolution/high-resolution sub-images were used as 

training data, containing 86,400 examples. Images from 

different rock samples outside of the training data were 

reserved as a testing dataset of the same size.   
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Fig. 9. BSEM images acquired at two resolutions of roughly 5 

times difference. The high-resolution image was acquired in the 

central section of the low-resolution image. 
 

A new U-Net-based model was trained and applied to 

enhance the low-resolution BSEM images. An example of 

the results is shown in Fig. 10. The enhancement 

effectively sharpened the edges of the pore spaces, and 

preserved small pores and pore throats well. A reduction 

in noise was also seen as a by-product of the enhancement. 

The White grain boundaries seen on the high-resolution 

images were not captured by the enhancement, likely due 

to their low color contrast compared with the background.    

Fig. 6 shows the pore size distribution calculated on 

an image before and after a 5x enhancement. A bi-modal 

distribution can be clearly seen from the reconstructed 

image, but was not captured by the low-resolution image 

due to the resolution limit. The existence of the 

microporosity peak was further confirmed by mercury 

injection capillary pressure (MICP) data, measured on the 

same rock sample (Fig. 12). 

This exercise confirms that the presented workflow 

not only applies to synthetically generated low-

resolution/high-resolution image pairs, but can also be 

trained with images actually acquired at two different 

resolutions. 

4.2 Application on microCT images 

The same workflow was trained with and applied to 

microCT images on a slice-by-slice basis. Two levels of 

images were acquired on the same rock sample at 22.5 μm 

per voxel and 6.6 μm per voxel. The training was done in 

a similar manner to the BSEM super-resolution model, 

with low-resolution and high-resolution images registered 

and paired. The training dataset contains about 135,000 

samples, and the testing dataset has about 20,000. All the 

sub-images are 128x128 pixels.   

The enhancement results are shown in Fig. 8. 

Compared with the high-resolution image, many details 

were recovered from the low-resolution image. Noise 

level was also suppressed during the enhancement. 

5 Conclusion  

Super-resolution convolutional neural networks provide a 

low-cost solution to increase the accuracy of image-based 

rock property evaluation with a minimal amount of high-

resolution image acquisition. With images digitally 

enhanced on samples of larger sizes, interpretations would 

be more representative of the rock heterogeneity, which 

helps resolve the incompatibility between imaging 

resolution and scale.  

With synthetically generated images, we 

demonstrated that U-Net based models are more suitable 

for the super-resolution task than traditional SRCNNs. 

One could train a single mixed model with images of 

multiple resolutions instead of multiple fit-for-purpose 

models, since the sacrifice in performance is insignificant. 

Results have shown that pore structures can be well 

preserved for images coarsened by up to 8x, whereas local 

maxima of the pore size distribution could be correctly 

identified from a 16x enhancement. We also confirmed 

that the presented workflow is equally applicable to 

training data consisting exclusively of manually acquired 

images, including BSEM and microCT images. The 

enhanced image quality could be beneficial for any 

following digital rock workflows, leading to more reliable 

observations of pore-scale rock properties and less 

uncertainties in rock texture analysis.

 

 

 

 

 

 
 

Fig. 5. Comparison of an enhanced image (middle) with manually acquired low-resolution and high-resolution BSEM images. 
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Fig. 6. Pore size distribution of a low-resolution image and its 

enhanced image. The enhanced image exhibited a bi-modal 

distribution. 

 

 

Fig. 7. Mercury injection capillary pressure (MICP) data 

confirms the presence of the microposity revealed from 

enhanced image.

 

Fig. 8. Comparison of an enhanced image (middle) with manually acquired low-resolution and high-resolution microCT images. 
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