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Abstract. Since the pioneering work of Oren et al. [1] several attempts have been made to predict relative 
permeability curves with Digital Rock Physics (DRP) technique. However, the problem has proved more 
complex than what researchers have expected, and these attempts failed. One of the main issues was the 
high number of uncertain parameters especially for the wettability input and this gets worst in mixed-
wet scenario as the number of parameters is higher than in water-wet and oil-wet cases.  In fact, Sorbie 
and Skauge stated that wettability assignment is the most complex and least validated stage in DRP 
simulation workflow. Similarly, Bondino et al. [2] concluded that “genuine prediction” of multi-phase 
flow properties will remain not credible until important progress is achieved in the area of wettability 
characterization at the pore scale.   

In this work, we propose a pragmatic approach to tackle this problem. First, we develop an innovative 
fast anchoring experiment imaged by microCT scanner, that helps to determine several wettability 
parameters needed for the DRP simulation (including the fraction of oil-wet /water-wet pores, any spatial 
or radius correlation of oil wet pores …). This experiment also provides an estimation of residual oil 
saturation that is an important parameter and helps to anchor the pore scale simulations and further 
reduce the uncertainty. In addition to help reducing the uncertainty of the simulation, this experiment 
provides a fast (compared to Amott Harvey test) estimation of the wettability of the system. Images 
representing large volumes with low resolution are, first, improved with Enhanced Super Resolution 
Generative Adversarial Networks (ESRGAN) to obtain a large image with high resolution.  Then, a pore 
network is extracted, and TotalEnergies parallel pore network simulator is used for multiphase flow 
simulations considering the constraints from the anchoring experiment to reduce the uncertainty. Finally, 
we compare our simulations against high quality SCAL experiment performed in-house and we assess 
the predictive power of our DRP workflow.  

1- Introduction 

Wettability input is key for DRP simulation as it 
controls the capillary forces and hence the invasion 
order. Unfortunately, it is not easy to characterize, and 
things become more complicated in mixed-wet scenario 
where fraction of oil-wet, water-wet, the spatial 
distribution of oil-wet pores and their correlation to the 
radii of the pores are important parameters needed to be 
indicated to the model. If one fails to do so, the model 
would have too many degrees of freedom and genuine 
predictions are not easy to achieve. In fact, [3] have 
stated that wettability assignment is the most complex 
and least validated stage in DRP simulation workflow. 
Similarly, [2] have concluded that “genuine prediction” 
of multi-phase flow properties will remain not credible 
until important progress is achieved in the area of 
wettability characterization at the pore scale.  

Contact angle measurements from Micro-CT images of 
multiphase flow experiment has been very attractive 
recently [4]. However, as these measurements use the 3-
phase contact line for the computations, they are very 
sensitive to the image resolution and insufficient image 
resolution leads to contact angle values close to 90 
degrees with very large standard deviation [5]. 
Furthermore, automated contact angle measurements 
take into consideration the pinned menisci which are 
different from the contact angle input needed by a PNM 
simulator.   
Recent observations [6,7] showed that wettability is 
correlated in space, and the pores having similar 
wettabilities are likely to be at a close spatial location. 
However, verifying that this correlation exists for a 
particular system and measuring the correlation length 
is not straightforward, requires one to perform a 
multiphase flow experiment and have several menisci in 
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neighboring pores which is not always easy to achieve. 
Then, image processing is needed in order to quantify 
the correlation length [7] which is not ideal for an 
industrial workflow.  
Dixit et al. [8] proposed that wettability could be 
correlated to the size of the pores and proposed three 
models: Fractional-Wet model (i.e.  contact angles are 
not correlated to the size of the pores), Mixed-Wet 
Large (i.e. where large pores are oil wet and small pores 
are water-wet) and Mixed-Wet Small (i.e. small pores 
are oil-wet and large pores are water-wet). They used 
this theory and PNM simulations to better interpret the 
differences between Amott-Harvey and USBM indices 
and proposed that the differences between these 
indicators could give an indication of the type of the 
wettability model. 
[9] have demonstrated that fractional wet, mixed-wet 
large and mixed-wet small models are all possible 
theoretically. They also acquired Scanning Electron 
Microscopy (SEM) and Environmental Scanning 
Electron Microscopy (ESEM) images used to analyze 
mineralogy and local wetting properties. The ESEM 
used condensation of water to visualize if water 
appeared as drops on the surface (less water-wet), or as 
a water film condensed on the surface (water-wet). The 
water film was seen as whitening of the edges of the 
solid surface due to refraction of the water films. They 
also mentioned that they needed to analyze many 
images to be conclusive. Again, this is not practical in 
an industrial workflow where we aim to have a fast 
wettability characterization and feed it to a DRP model 
to be able to predict relative permeability curves 
quickly.  
To solve the issues described above, we propose an 
innovative DRP simulation anchoring fast experiment 
that is easy to implement in an industrial workflow. It 
allows us to characterize the wettability of the sample, 
the fractions of OW and WW pores, determine the type 
of the wettability correlation to the radius of the pores, 
if there is any, and finally identifies if there is a 
wettability spatial correlation and allows the 
computation of this correlation length.   
In this paper, we first describe TotalEnergies’s DRP 
workflow based on 1) ESRGAN method to enhance the 
resolution of an image with a large field of view 2) 
GNM technique to extract a pore network with 
conductivities computed on the rock image, 3) a 
network stitching code that allows the extraction of 
large networks and 4) TotalEnergies’ fully parallelized 
inhouse tool DynaPNM that can simulate flow in 
networks with several million pore elements.  
Subsequently we describe and present the results of our 
wettability anchoring experiment that allows us to find 
the simulation wettability input as well as measure 

experimental parameters, such as 𝑆𝑆𝑜𝑜𝑜𝑜 and 𝐾𝐾𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 𝑆𝑆𝑜𝑜𝑜𝑜   
that allow us to constrain our simulations.  
Then, we present the sensitivity study where the 
uncertain simulation parameters are varied and only the 
realisations in agreement with the wettability anchoring 
experiment results are kept. Hundreds of different 
realizations are used to produce P10, P50 and P90 
relative permeability sets. 
Finally, the simulated relative permeability curves are 
compared to an in-house SCAL experiment to assess the 
predictive potential of our simulation workflow.  
 
2- Description of the simulation workflow  
2.1. Enhanced Super resolution Generative Adversarial 
Networks (ESRGAN) 
Acquiring micro-CT images of a rock is the first step in 
DRP simulation. This is then followed by segmenting 
the images to distinguish the rock from the pore space, 
and finally flow simulations are performed to compute 
advanced rock properties such as relative permeability 
and capillary pressure.  [10]   have proved that when the 
geometry of the pore space is well characterized, the 
flow simulators perform well.  
However, the geometry of a real rock is not always well 
characterized, notably due to the lack of image 
resolution which in turn introduces uncertainty in the 
pore/throat geometry and consequently introduces 
errors in rock properties computation. Furthermore, 
during image acquisition a compromise is often made 
between the speed of the image acquisition, the size of 
the scanned volume and the resolution obtained: 
generally, increasing the resolution decreases the field 
of view, in turn limiting the quantity of information 
obtained from the image and thus making DRP 
simulations less representative. 
In this work, we have implemented the ESRGAN 
method proposed by Wang et al. [11]  .  This method is 
based on two phases of training: PSNR step where the 
L1 loss function is minimized during the training of the 
generator. In this stage, the borders of the pores are 
improved but the texture of the rock is not captured. The 
weights of the trained generator are used as the starting 
point of the second stage of the training that we call 
GAN training. Pretraining with PSNR helps the GAN to 
have more visually pleasant results.  The loss function 
of the second stage has three terms: the adversarial loss, 
the perceptual loss and the content loss. For the 
adversarial loss, Wang et al [11] proposed to use a 
relativistic average GAN [12] where loss function does 
not optimize discriminator to distinguish data real or 
fake. Instead, RaGAN's discriminator distinguishes that 
"real data isn’t like average fake data" or "fake data isn’t 
like average real data". According to Wang et al [11], 
this helps to learn sharper edges and more detailed 
textures.  The perceptual loss helps the network to 
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capture perceptually relevant differences like textures 
or the clays in the rock images.  These are determined 
from features maps obtained from VGG19 before the 
activation. We do not use the weights of the pre-trained 
VGG19 network, instead we re-train it with rock  micro-
CT images in order to have more relevant features and 
we have observed an improvement of the results after 
that. Finally, the content loss is the L1 pixel-by-pixel 
between the generated and the high-resolution images. 
The loss for the generator is therefore 

𝐿𝐿𝐺𝐺 = 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜆𝜆𝐿𝐿𝐺𝐺𝑅𝑅𝑅𝑅 + 𝜂𝜂𝐿𝐿1 
 
where 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the perceptual loss, 𝐿𝐿1 is the 1-norm 
distance between recovered image G(xi) and the 
ground-truth y, and λ (equal to 5 x 10−3 ), η (equal to 1 
x 10−2 ) are the coefficients to balance different loss 
terms. 
We have made the training parallel using multiple nodes 
and multiple GPUs in each node. The training is 
performed using two scans of the same small volume 
(1.45 microns image and 5.8 microns image), 3000 
crops of 384*384 pixels images are made to form the 
training dataset. Training was performed using 36 
GPUs and took 2 days. Afterwards, the trained model 
was applied to a second full low-resolution dataset of 
Bentheimer from another acquisition. An up-sampling 
in the Z direction was done on the low-resolution image 
that was next passed to the trained neural network. The 
generator was applied slice by slice on 2D images with 
796 x 820 pixels to generate a 3D image of 3184 x 3280 
x 12928 with voxel size of 1.45 microns. Then, we 
consider a subset from super resolution image, and we 
compare it to a high-resolution zoom of the same 
volume. Very good agreement was obtained when 
compared super resolution to high resolution images 
visually (Fig 2). Fig 3 presents permeability and 
porosity computations for low resolution, high 
resolution and super resolution images for an ensemble 
of realistic segmentations.  
 
 

 
       (a) 

 
       (b) 

Fig 1 :  Example of the several segmentation hypotheses 
considered in this work for a low-resolution image (a) and a 
high resolution image (b)  

 

As segmenting the images could bias the results, we 
propose to perform for each image three realistic 
segmentations that a user is likely to consider. We 
choose a ‘Min’ segmentation with slightly 
underestimating the pore space comparing to the other 
segmentations, a ‘Max’ segmentation where pores are 
larger and a ‘Base’ segmentation between the ‘Min’ and 
‘Max’ cases.  We use machine learning based trainable 
Weka segmentation [13] where several classifiers are 
trained according to the scenarios defined above Fig 1 
We observe that permeability and porosity 
computations are closer and have less uncertainty with 
super resolution. Next, we check the bodies and throat 
sizes distributions for high resolution, low resolution, 
and super resolution images. We clearly observe that the 
estimation of pore and throat radii is considerably 
improved with super resolution (Fig 4). Fig 5 presents 
simulated capillary pressure curves using low 
resolution, high resolution and super resolution images. 
We note we have tried to use several realistic 
segmentations for each case to illustrate the uncertainty 
related to this step and therefore we present envelopes 
of capillary pressure curves.  We can clearly notice that 
ESRGAN makes our simulated primary drainage 
capillary pressure curves more accurate. Having 
validated the ESRGAN approach we propose to use it 
in the next part of the paper. However, these large 
images are challenging to handle in DRP simulation, 
and we expose in the next sections our strategy to enable 
using them in our numerical study.  
 

  

Base Max Min Micro-CT 
(a) 

100 µm 
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Fig 2 : comparison between super resolution (a), low resolution (b) 
and high resolution (c) images 

 

 

 
Fig 3 : Comparison of permeability using Openfoam (a) and 
porosity (b) for low, high and super resolution images for several 
realistic segmentations (max and min segmentation for each case) 

  
 

 
 

Fig 4 : Comparison between pore size distribution for bodies using 
Maximum Ball Algorithm (a) and throats (b) using 3 images: low 
resolution (red), super resolution (blue) and high resolution (green) 

 

  
Fig 5 :Comparison between computed capillary pressure curves 
with TotalEnergies DRP simulation tools and  using 3 images with 
several realistic segmentation: low resolution (red), super 
resolution (blue) and high resolution (green) 
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2.2. Pore Network Extraction 

 
Fig 6 : An illustration of the pore network stitching process 

 
In contrast to some digital rock physics methods, pore 
network models do not involve two-phase direct flow 
simulation in a 3D digital rock. Instead, it needs a pore 
network that is extracted from 3D reconstructions. 
Various algorithms exist to extract the skeleton of the 
3D model that carries the essential geometric and 
topological information of the underlying pore system. 
In this work, we use a pore network extraction platform 
called GNextract developed with Imperial College, 
London [14] . GNextract is first used to reconstruct an 
upscaled version of the 3D segmented image of a rock 
in the form of a network of pore elements where the 
single-phase flow conductances in each pore are derived 
by solving the Stokes equation in the original geometry 
using OpenFOAM. Unfortunately, the extraction code 
needs a large amount of memory to extract large images 
(more than 60 GB of RAM for 1500 3 voxels image). 
Therefore, to overcome this limitation, a stitching 
process has been developed on networks extracted from 
overlapped sub-volume of a given image. Error! 
Reference source not found. illustrates the stitching 
process and shows that the stitched network is formed 
by a first part conserved from PNM1, a second part 
conserved from PNM2, and a third part obtained on a 
transition zone where rules inspired from the ones used 
by GNextract are defined to choose the elements. More 
details of the stitching process could be found in [15].  
 
2.3. Pore network flow simulator 
Once a pore network is extracted with the corresponding 
conductance values from single phase DNS simulation, 
we go on to perform two-phase flow simulations. These 
simulations are performed using DynaPNM, 
TotalEnergies’ inhouse pore network simulator [16], 
that we use in quasi-static mode as all the cases that we 
study in this paper are capillary dominated.  
The physical rules implemented in the simulator are 
broadly similar to the ones used in [1,17] with the 
exception of a major change in the film flow model [15]. 
The geometry of the pore network is simplified into an 
ensemble of pore bodies connected through pore throats 

during the pore network extraction step. As the 
invasions are totally controlled by the geometry, there 
is no need to compute the pressure gradients. The 
invasion order is determined through the capillary entry 
pressure of each element and the trapping is determined 
through a clustering algorithm. For every relative 
permeability point computation, the phases are isolated, 
and a pressure gradient is applied to the network. The 
pressure on each node is calculated, the corresponding 
production rate at the outlet is computed, and effective 
permeability of each phase is determined through 
Darcy’s law. 
The network is initially filled with water. A primary 
drainage is first simulated to establish irreducible water 
saturation, Swi. As the network is assumed water-wet, 
oil injection follows an invasion percolation regime. 
Water layers in pore elements with corners make water 
trapping very difficult and allow to achieve very low 
Swi values. 
Primary drainage is then followed with a waterflood 
after an aging process where oil filled pore wettability 
is changed. First, water spontaneously fills the water-
wet part of the network through piston like 
displacement and snap-off. In this phase the smallest 
pores are filled first, then the next smallest are filled, 
and so on. The defending oil phase can escape by 
flowing through oil-filled pores. Once spontaneous 
imbibition ends, the invading water is over pressured by 
applying a negative capillary pressure. Now, the largest 
pore elements are filled first, and oil can escape to the 
outlet either by flowing through the center of oil filled 
pores or through oil films. Once all the oil is trapped, 
the simulation stops.  
The simulator has been parallelized to allow the 
simulation of large systems. First, the domain is 
decomposed, each processor has allocated memory and 
performs the computations of a subdomain. Each 
processor also needs information from the neighboring 
subdomains. The pore bodies and throats inside each 
subdomain of a processor are named local elements 
while the pore bodies and throats from neighbor 
subdomains are named ghost elements. Synchronization 
of the information of the ghost elements is performed 
after each capillary pressure step or after a maximum 
change in the network phases saturations. This 
communication is made using Message Passing 
Interface library MPI [18]. Furthermore, a parallel 
clustering algorithm has been implemented in order to 
determine if the defending phase is trapped and parallel 
linear solver library [19] is used for permeability and 
relative permeability computations. This parallelization 
allows us to simulate large networks with tens of million 
elements in few hours [15] . 
 
2.4. Statistical analysis 
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Several input parameters of pore network simulation are 
uncertain, especially the ones linked to the wettability 
input. These uncertainties have been used by some 
researchers in the past to “tune” the simulation results 
to SCAL relative permeability curves. However, if one 
wants to be predictive, she/he should not know the result 
a priori and this makes choosing the uncertain 
parameters tricky. Therefore, we have designed a 
wettability anchoring experiment (described in the next 
section) to help us better estimate these wettability 
parameters. Subsequently, we have developed a 
statistical uncertainty workflow [15]  in which we vary 
the uncertain pore network simulation parameters 
within the ranges determined from the experiment. 
First,  thousands of DynaPNM input files are generated 
in an experimental design phase using WSP method 
[20]. Subsequently, flow simulations are run on 
TotalEnergies’ supercomputer PANGEA. Then, a 
selection exercise is performed on these realisations to 
only keep the ones in agreement with 𝑆𝑆𝑜𝑜𝑜𝑜 and 𝐾𝐾𝑟𝑟𝑟𝑟 at 
𝑅𝑅𝑜𝑜𝑜𝑜 measured from the wettability anchoring 
experiment.  This is followed by a simulation ranking 
exercise based on the oil production after a given 
amount of water injected corresponding to each Kr 
curve and allows us to define three scenarios: 
• P10: an optimistic scenario in which only 10% of 

the simulations produce more than this case 
• P50: a median scenario in which 50% of simulations 

produce more than this case 
• P90: a pessimistic scenario in which 90% of the 

simulations produce more than this case 
 
 
3- Wettability anchoring experiment 
Wettability is one of the main inputs of PNM simulation 
and unfortunately it is difficult to characterize a-priori. 
Moreover, even if a qualitative assignment of 
wettability is done and water-wet, oil-wet, or mixed-wet 
scenario is identified, a high number of uncertain 
parameters remains especially for mixed-wet case as the 
contact angles, the fractions of OW and WW pores, 
wettability spatial correlation and wettability 
correlations to pore radii (i.e., Do we have MWS, MWL 
or FW model) are all important parameters that could 
impact the simulation results. Considering all the 
possible values of these simulation inputs results in 
large simulation uncertainty which is not satisfactory.  
Besides, performing a classical wettability test like the 
Amott Harvey or USBM needs a lot of time and does 
not provide all the information needed by the 
simulation. 
Therefore, we have designed a fast wettability 
anchoring experiment imaged by micro-CT scanner that 
provides us with crucial data for our wettability input as 

well as some measurements that will help us constrain 
our simulation and thus reduce the uncertainty. We first 
test this approach on a Bentheimer sample as described 
in the next section.  
 
3.1. Description of the experiment 
We start our experiment by mounting a 6 mm diameter 
Bentheimer sample in a flow cell with confining 
pressure of 50 Bars, the experimental set-up is 
illustrated in Fig 7. First, we establish Swi using viscous 
displacement using mineral oil (Marcol52) where the 
same conditions (e.g., capillary number, same fluids …) 
are used comparing to the validation SCAL experiment 
described in the next section. This is followed by 
replacing the mineral oil with toluene then with dead 
crude oil and aging the sample for 2 weeks at 80° C in 
a similar protocol (e.g. injected pore volumes, rate, …) 
used by the SCAL laboratory. After the aging, Kro(Swi) 
was measured and a decrease of 30% of the Kro was 
obtained. This was followed by injection of 2.5 Pore 
volumes of decaline to remove the dead oil without 
impacting the actual plug’s wettability. Next, mineral 
oil (Marcol52) was injected to replace decaline. We 
note that fluids replacement was performed at low flow 
rates to ensure that we do not change the initial water 
saturation. An image acquisition is performed after 
aging at Swi and this is followed by the start of a 
spontaneous imbibition phase. We use one end opened 
protocol where water enters the sample and oil leaves it 
from the same side in counter-current imbibition 
process. Very low capillary number (8E-09) was used 
for the leaching process that aims to remove the 
produced oil from the diffuser without forcing the flow 
of water into the sample. 
 

 
Fig 7 : Experimental set-up of the wettability anchoring experiment. 
In spontaneous imbibition c and d are closed, a and b are opened. In 
spontaneous drainage a and b are closed, c and d opened. 

 
We only perform the spontaneous imbibition process 
for a week as we have observed that it was sufficient for 
water to imbibe in the first part of the sample to have a 
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fast experiment, but if time permits it can be interesting 
to continue the process for a longer time. Then, water is 
injected into the sample in a forced imbibition with the 
same maximum capillary number used in our SCAL lab. 
Finally, using a similar protocol we perform a 
spontaneous drainage in the other face of the sample. 
Micro-CT acquisitions are made at the end of each 
phase of the experiment. 
The main objective of this test is to identify water-wet 
and oil-wet pores. It is obvious that water would imbibe 
to the water-wet pores in spontaneous waterflood and to 
the oil-wet pores in spontaneous drainage. This helps to 
map these pores and as a consequence analyze the 
volumes imbibed, the spatial correlation of wettability 
and the wettability correlations to the radii of the pores.  
 
3.2. Analysis of the results 
3.2.1- Wettability characterization and quantification of OW 
fraction 
Fig 8 shows that water has imbibed during spontaneous 
imbibition and the comparison between the Swi image 
and the image at the end of spontaneous imbibition 
clearly shows some of the water-wet pores. Similarly, 
Fig 9 shows that oil has imbibed during spontaneous 
drainage and the comparison shows some of the oil-wet 
pores. We point out here the water/oil have only access 
to the connected water-wet/oil-wet pores and that we 
did stop the spontaneous imbibition/drainage phase on 
purpose after a week as discussed previously. 
Water has imbibed until the middle of our sample 
during spontaneous imbibition and oil entered to a 
length of 800 slices during the spontaneous drainage. In 
order to have a consistent analysis and to compare the 
imbibed volumes, we perform our analysis on the first 
800 slices of the sample (i.e. from inlet side in 
spontaneous imbibition and from outlet side in 
spontaneous drainage) as we would like to compare the 
imbibed volumes.   
We observed that in the first 800 slices of the sample 
the water saturation increased by 7.5%. Similarly, we 
observed that the oil saturation has increased by 2.3% 
on the same length from the outlet side. This confirms 
that we have a mixed-wet sample. However, it can be 
misleading as oil advances in spontaneous drainage 
meaning that receding contact angles will be the 
effective angles in this process. We may have a situation 
where a pore has an oil-wet advancing contact angle but 
a lower than 90° receding contact angle. These would 
not be accounted for in the imbibed oil volume. 
Furthermore, oil has not access to the already oil-filled 
pores at Sor that could be oil-wet. The analysis of the 
imbibed volumes demonstrates that the system is 
mixed-wet but we cannot yet compute the oil-wet 
fraction in the system. 

  

  
 

   
Fig 8 : Image of a slice from the experiment at Swi (a), after 
spontaneous imbibition (b) and the image after spontaneous 
imbibition with some water-wet pores highlighted in blue (c) 

 

  

(a) 

(b) 

(c) 

(a) 
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Fig 9 : Image of a slice from the experiment at Sor (a), after 
spontaneous drainage (b) and the image after spontaneous drainage 
with some oil-wet pores highlighted in red (c) 

 

 
Fig 10 : Oil saturation profile at Sor (blue) and after spontaneous 
drainage (red). Injection performed from left to right. 

 
The saturation profile of the oil at Sor Fig 10 shows a 
capillary end effect which is an indication that the 
system is not water-wet. Furthermore, this provides us 
with important information about the oil saturation at Pc 
equal to zero that was 55%. This helps us to characterize 
the oil-wet fraction in the system that is needed to 
achieve this. We estimate it to 53-63% of oil-wet 
fraction after a fast PNM sensitivities study where the 
Pc=0 was reached at Sw~0.45. We also note that by 
considering the oil profile at the center we are able to 
estimate the residual oil saturation that we use in the 
selection exercise later. Moreover, we have measured 
the Krw at ROS in this experiment that should be close 
to Krw at Sor. We then add an uncertainty to this 
measurement and use it as a constraint in the selection 
exercise described later. 

Finally, the fact that the imbibed water volume was 
much higher than the imbibed oil volume for the same 
duration and at the same sample length gives us an 
indication that the receding contact angle was lower 
than 90° in a considerable amount of the oil-wet pores. 
This is an interesting information that we keep in mind 
when we choose the oil-wet contact angles input of the 
simulation. 
 
3.2.2- Wettability correlation to the radii of the pores 
As discussed previously, [7] proposed that wettability 
could be correlated to the size of the pores and proposed 
3 models: Fractional-Wet model (i.e.  contact angles are 
not correlated to the size of the pores), Mixed-Wet 
Large (i.e., where large pores are oil wet and small pores 
are water-wet) and Mixed-Wet Small (i.e., small pores 
are oil-wet and large pores are water-wet). Identifying 
the wettability model (i.e. FW, MWS or MWL) is 
important for PNM simulation as it impacts the invaded 
pores and the residual oil saturation [9] . Oil that 
imbibes into the system in spontaneous drainage does 
not have access to the full rock as a part of the porosity 
is already filled with oil. Therefore, we propose to 
perform this analysis on the water-wet pores that had 
access to all the pore space during the spontaneous 
imbibition.  
A pore network has been extracted from the images and 
used to analyze the experimental results.  Fig 11 
presents the pore radii distribution of the water-wet 
pores and Fig 12 shows the volumetric fraction of 
water-wet pores as a function of the pore radii. We can 
observe a clear correlation between the pore radius and 
the percentage of water-wet pores in the system that 
demonstrates that for this system large pores are more 
likely to be water-wet. We conclude then that we are in 
a MWS wettability model. 

 

 
Fig 11 : The pore radii distribution obtained after extracting a pore 
network (blue) and the water-wet pore size distribution obtained 

from analyzing the pores occupancy (red) 

(b) 

(c) 
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Fig 12 : The water-wet volumetric fraction as a function of the 

pore radius obtained after extracting a pore network and analyzing 
the fluids occupancies 

 
Fig 13 : Radii of oil filled pores at residual oil saturation, oil remains 
in the small pores 

 
Fig 13 shows the oil filled pores at residual oil 
saturation, we observe that oil remains in the small 
pores which is what we expect in a MWS scenario as 
during waterflood water will first invade the water-wet 
pores then the larger oil-wet pores as the fluids will 
enter first the pores with lower capillary entry pressure 
in a drainage process [9]. This makes us more confident 
in the results of our analysis. 
 
3.2.3- Spatial correlation of wettability  
In this section, we investigate whether the wettability is 
correlated in space with clumps of more oil-wet and 
water-wet pores. This is an important parameter for the 
simulation and could have significant implications of 
the phase’s connectivity especially through the flow in 
layers which would impact the relative permeability 
curves and the residual oil saturation. We propose to 
analyze spatial correlation using the water-wet pore’s 
location determined from the extracted pore network 
because water had access to the full pore space during 
the spontaneous imbibition as explained in the previous 
section. 

A common way of visualizing the spatial 
autocorrelation of a variable is a variogram plot (Fig 14) 
The correlation length can be regarded as a measure for 
the stationarity of a specific parameter distribution in 
space. In this case, the semi variance becomes stationary 
at a correlation length of 500 µm that represents for this 
rock 6 node to node lengths. This could be an important 
parameters for the simulations and in some cases it is 
not possible to match experimental observations if 
spatial correlation is not quantified properly [6] 
 

 
Fig 14 :  Variogram plot for the water-wet pores using scikit-gstat 
[21]. It shows a correlation length of 500 µm 

To summarize, the wettability experiment provides us 
with: 

1- The fractions of oil-wet and water-wet pores 
obtained from the analysis of the capillary end 
effect 

2- An indication of the contact angles in the oil-
wet pores from the comparison of the volumes 
imbibed during spontaneous waterflood and 
spontaneous imbibition. For instance, if there is 
50% oil-wet pores but nothing imbibes in 
spontaneous drainage it means that advancing 
contact angles are higher than 90° and receding 
contact angles are lower than 90°. Then, when 
we choose our contact angles we will select 
angles not too far from 90°. Similarly, if we 
have 50% oil-wet pores and similar volumes 
imbibed in the spontaneous imbibition and 
spontaneous drainage this means that even the 
receding contact angle in all pores is still higher 
than 90° then we know that we need higher 
contact angles in the oil-wet part. 

3- The mapping of the water-wet pores provides 
us with a computation of the spatial correlation 
length 

4- The mapping of the water-wet pores provides 
us with information of the wettability 
correlation to the pore radii (i.e.: MWS, MWL 
or FW)   
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4- Validation of DRP simulation workflow 
Having built the DRP workflow, we proceeded to its 
validation. First, we took a low-resolution Bentheimer 
image at 5.8 microns that we enhance using ESRGAN 
to improve its resolution by a factor 4 and obtain an 
image with 3184x3280x12928 voxels. This image has 
the same aspect ratio as the SCAL experiment described 
below to avoid any differences created by different 
aspect ratios. Then, a stitching process was applied on 
the super-resolution image described previously. The 
image was divided into several subvolumes (2*2*9 
along X, Y and Z) and networks were extracted from 
each sub-volume and stitched together. A network with 
3.6 million elements was generated. After that, we 
create our experimental design to vary the simulation 
parameters within the uncertainty ranges. The input of 
the wettability anchoring is key at this stage and allows 
us to reduce the ranges of our parameters and hence 
have a smaller dispersion in our simulation results. In 
our experimental design, 3000 realizations have been 
generated and simulated (with varying the seeds 
numbers, the parameters of the contact angle 
distributions as described in table 1 and wettability 
spatial correlation parameters…) and mixed-wet small 
wettability model has been used in all the simulations. 
More details of our simulation input parameters can be 
found in Table 1 . We note that we have used two 
contact angle distributions: the first in the oil-wet part 
of the sample and the second in the water-wet pores. 
The choice of these pores was made to be consistent 
with a mixed-wet small wettability model and 
considering spatial auto-correlation of pores with 
similar wettability.  The wettability anchoring 
experiment did not provide us with direct information 
about contact angles. However, it gave indirect 
information about the oil-wet contact angles. In fact, 
imbibed water volume was much higher than the 
imbibed oil volume for the same duration and at the 
same sample length gives us an indication that the 
receding contact angle was lower than 90° in a 
considerable amount of the oil-wet pores. Therefore, we 
chose medium to low oil-wet contact angles to be 
consistent with this observation. 
 
Table 1 : Simulation parameters used in Mixed-Wet Bentheimer 
simulations 

Parameters Value/Range 

PD receding contact angle distribution Normal distribu-
tion  

PD receding contact angle standard devia-
tion 

4°-8° 

Mean receding PD distribution 
20°-30° 

 

WF dist1 (oil-wet) advancing contact an-
gle distribution 

Normal distribu-
tion 

WF dist1 (oil-wet), advancing contact an-
gle standard deviation 

4°-8° 

Mean advancing WF dist1 (oil-wet) con-
tact angle 

115°-135° 
 

WF dist 2 (water-wet) advancing contact 
angle distribution 

Normal distribu-
tion 

WF dist2 (water-wet), advancing contact 
angle standard deviation 

4°- 8° 

Mean advancing WF dist2 (water-wet) 
contact angle 

70°-89° 
 

Fraction of distribution 2 (water-wet frac-
tion) 

0.37-0.47 

Correlation length 5-7 pores 

Wettability model Mixed-Wet Small 

Initial water saturation  0.12-0.13 

 
We observed that after aging in the anchoring 
experiment, several water droplets appeared on the 
center of the pores (Fig 15). We think that these 
correspond to some water layers that got disconnected 
after aging and that fall in the center of the pores. We 
measured that the oil relative permeability decreased by 
30% during the aging, we apply therefore this reduction 
by scaling our simulated oil relative permeability. This 
reduction of permeability would not impact the water 
relative permeability since pores are filled with a single 
phase after the water invades them during waterflood.  
 

 
 

 
Fig 15 : Multiphase CT images at Swi after aging (a) and at Sor (b). 
It shows that water (dark grey) droplets were blocking an oil (black) 
filled pore at Swi and that the same pore becomes fully filled with 
water at the end of waterflood. 

 

(a) 
 

(b) 
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In order to reduce the uncertainty further, we use the 
measured parameters in the anchoring experiment and 
only keep the realizations that agree with the 
measurements from the wettability anchoring 
experiment.  Therefore, we only keep simulations that 
have: 

• Pc=0 between Sw=0.4 and Sw=0.5 
• 0.1<Krw (Sor)<0.2 
• 0.18<Sor<0.26 

 
After performing our blind simulation test, we compare 
the results to a high quality unsteady-state experiment 
performed in-house.  The SCAL experiment was 
performed on a 5 cm diameter Bentheimer plug with 20 
cm length. The plug had a porosity of 24% with an 
absolute brine permeability of 2.3D. Primary drainage 
was achieved through oil flooding using a displacement 
with viscous oil to target a low Swi exempted from 
capillary end-effect. A homogeneous Swi profile of 
average 12.1% was obtained. To make the plug mixed-
wet, the same dead oil used on the anchoring wettability 
experiment was used to replace the mineral oil and 
perform 15 days of dynamic ageing process at 80°C to 
alter wettability of the SCAL plug. Afterwards, multi-
rates waterflood at 80°C was performed. Initial flow 
rates were sized to fit Hagoort criteria [22] to avoid 
viscous fingering. It started at around 0.3ft/day. Oil 
production-pressure gradient vs time, and transient to 
equilibrium saturation profiles through 2D X-ray 
imaging internal devices were acquired during the 
experiment and numerical interpretation was performed 
using the software CYDAR® to find the best couple 
(Kr/Pc) matching oil production, pressure gradient and 
saturation profiles (transient and equilibrium).  
 
Fig 16 shows our simulated relative permeability curves 
with all realizations and the P10, P50 and P90 scenarios 
obtained after ranking the oil production after 1 pore 
volume injected. We observe that our curves were in 
very good agreement with SCAL relative permeability 
that was presented by an envelope to consider the 
associated uncertainty. In fact, in an unsteady-state 
relative permeability experiment, the production data 
are then inverted in order to determine relative 
permeability curves. This inversion is non-unique and 
therefore we represent the SCAL relative permeability 
curve with an envelope of possible inversions of 
production data.  This makes us confident about the 
predictive potential of DRP simulation when well 
informed with experimental data.  
 

 

      
Fig 16 : Comparison between the simulated relative permeability 
curves: all realization (grey), P10 (green), P50 (yellow) and P90 
(red) and experimental data (blue). We present the plots in linear (a) 
and log scales (b)   

 

5- Conclusions 
In this study we have applied TotalEnergies’ DRP 
simulation workflow to predict the relative permeability 
in a Mixed-Wet Bentheimer. First, we augmented a 
low-resolution image using ESRGAN in order to have 
an image with a large field of view and fine resolution. 
Then, we extracted a pore network from this image 
using a stitching methodology.  
Wettability input has been the weakest point of DRP 
simulation in the last few decades as it is difficult to 
quantify the values of contact angles, the wettability 
model and the spatial distribution of contact angles 
leading to having high number of degrees of freedom. 
Therefore, we have designed an innovative fast 
experiment that helps us to characterize wettability and 
have more reliable PNM simulations.  With this 
experiment we could characterize that we have a mixed-
wet system and identify the wettability model. In fact, 
we clearly observed that wettability in our sample was 
correlated to the radius and that the large pores were 
water-wet and the small oil-wet. The pore radii of the 
oil filled pores at residual oil saturation confirmed our 
observation as oil remained in the small pores which is 
a characteristic of mixed-wet small model. We could 

(a) 

(b) 
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also observe a spatial correlation of wettability and the 
correlation length had 6 pores length. 
Having obtained all this information, we could run 
several hundreds of realizations of our simulations 
using our parallel PNM simulator where we varied the 
parameters within the identified uncertainty ranges.  
Furthermore, this experiment provided us with 
important measurements that helped us better constrain 
our simulations and we only kept the realizations that 
agreed with the measured data. Afterwards, our 
simulations were compared to a high quality in-house 
SCAL experiment performed with the same rock, same 
fluids and similar conditions. A very good agreement 
was obtained between the simulated and experimental 
data.   
This study provided very promising results that, if 
confirmed by similar validation tests, would indicate 
that DRP simulation coupled with our pragmatic 
approach to characterize wettability is ready to be used 
in operational studies.  
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