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Abstract. NMR transverse relaxation responses in porous media provide a sensitive probe of the micro-structure 
yet are influenced by a set of factors which are not easily detangled. Low-field T2 transverse relaxation 
measurements can be carried out quickly and are frequently used to derive pore size distributions and determine 
derivate parameters like movable fluid volumes or permeability. Here we present an inverse solution workflow 
extracting related intrinsic physical parameters of the system by tightly fitting experiment and numerical 
simulation(s). We propose a Bayesian optimization approach that determines five T2 related properties associated 
with two values of temperature simultaneously. This concurrent optimization (CO-OPT) utilizes Gaussian process 
regression to determine the intrinsic physical parameters leading to a match to experiment with a minimal number 
of function evaluations. A multi-modal search strategy is employed to identify non-unique solution sets of the 
problem. The workflow is demonstrated on Bentheimer sandstone, identifying five intrinsic physical parameters 
simultaneously, namely the surface relaxivity of quartz and the effective diffusion and relaxation times of the clay 
regions at 20∘C and 60∘C, providing the temperature-dependent quartz surface relaxivity and effective clay 
parameters. Given the generality of the method, it can easily be adapted to transverse relaxation experiments, or 
dynamic conditions where e.g., a change in wettability is monitored by intrinsic NMR parameters. 

 
 

1 Introduction  
NMR relaxometry has proven its high value both for 
laboratory and field petrophysical applications for estimation 
of pore size distributions [1], saturation of fluids [2], wetting 
conditions [3] and permeability [4]. 
 The underlying assumption behind – relaxation occurs in 
fast diffusion regime (a surface governed process) in isolated 
or weakly coupled pores – must be valid, which is typically 
the case. This allows representing the observed relaxation rate 
in saturated rocks 1/𝑇𝑇2 as a linear sum of three rate processes: 
bulk fluid relaxation rate 1/𝑇𝑇2𝑏𝑏, surface relaxation rate 1/𝑇𝑇2𝑆𝑆 
and diffusion in the internal field 1/𝑇𝑇2𝐷𝐷 [5]  

1
𝑇𝑇2

=
1
𝑇𝑇2𝑏𝑏

+
1
𝑇𝑇2𝑆𝑆

+
1
𝑇𝑇2𝐷𝐷

 . (1) 

Here 𝜌𝜌2 is transverse surface relaxivity, 𝑆𝑆 and 𝑉𝑉 are surface 
area and volume of an individual pore. In diamagnetic and 
weakly paramagnetic rocks, the surface relaxation term, i.e.,  

1
𝑇𝑇2𝑠𝑠

= 𝜌𝜌2
𝑆𝑆
𝑉𝑉

,  (2) 

is the primary relaxation mechanism, thus relating the 𝑇𝑇2 
distribution to pore-sizes. Typically, surface relaxivity is 
evaluated by matching a 𝑇𝑇2 distribution’s mode to that of a 
pore-aperture distribution obtained using mercury intrusion 

capillary pressure analysis. However, this approach is not 
entirely problem free, since pore-space geometry and the 
mode value are practically insensitive to temperature 
variations in the order of 50∘ C, while the value of  𝑇𝑇2 
relaxation distribution mode would noticeably change. It is 
well known that surface relaxivity is sensitive not only to pore 
geometry, but also to types of solid and fluid pair, wetting 
state, and temperature. The latter is also important in the 
context of calibration of field data with laboratory acquired 
data.  Godefroy et al. [6] developed, and supported 
experimentally, a theoretical framework describing a surface 
relaxivity temperature dependency. They established that 
with increase of the temperature the surface relaxivity of 
quartz to water in a water-wet sandstone is increasing. Similar 
observations were reported by [7]. In this work we seek to test 
further the rarely reported temperature-dependent surface 
relaxivity behavior in sandstone rocks with the aid of an 
inverse problem formulation enabling to deduce surface 
relaxivity and accounting for several temperature effects 
unaccounted for in the past. 

Micro-CT based random walk NMR relaxation simulation 
allows to easily incorporate effects of faster fluid diffusion at 
higher temperature, accounts for corresponding change of 
diffusion governed magnetization exchange, longer bulk 
water relaxation time etc., as long as corresponding inputs are 
known (measured). We here exclude from consideration the 
temperature effect on magnetic susceptibility primarily for 
the sake of simplicity, but also reasonably assuming
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Fig. 1. Flowchart of CO-OPT for the estimation of intrinsic physical parameters from 𝑇𝑇2 relaxation responses at two different temperatures. 
 
insignificance of associated effects since the sample rock is 
diamagnetic, made of mostly of quartz.  The magnetic 
susceptibility of the latter is practically constant in the 
temperature interval of interest [8]. We note that numerical 
simulations assign mineral-specific intrinsic properties like 
surface relaxivity at the pore scale [9-11] while matching 
distribution modes of experiments results in an effective [12] 
or apparent surface relaxivity [13; 14]. 

Given the significant advances in numerical techniques, 
the temperature-dependent intrinsic parameters can be 
regarded as unknown and later determined when good 
matches are achieved between simulations and measurements 
but is hindered by a practical issue: expensive function 
evaluations prohibit the enumeration of all configurations of 
unknown physical parameters in the multi-dimensional 
solution space. Luckily, the issue of computational burden 
has been successfully addressed by Bayesian optimization, 
for which only statistically optimum solutions are proposed 
for function evaluations, while balancing exploration and 
exploitation in the solution space. The advantage of Bayesian 
optimization has been leveraged to recover physical, 
geometrical, or structural parameters where expensive cost 
functions are involved [15-17], and in particular, complex 
multi-physics, multi-parameter, multi-modal problem arising 
in NMR relaxometry [11]. Furthermore, Bayesian 
optimization has been integrated with transfer learning for 
multi-objective optimization, and in particular, for by 
simultaneous optimization of 𝑇𝑇1 and 𝑇𝑇2 distributions [18]. In 
both studies, a multi-modal search strategy, comprising a 
multi-start L-BFGS-B optimizer searching for local optimum 
solutions, and a global optimizer social-learning particle 
swarm optimizer (SL-PSO) for global optimum solutions, are 
applied to recover all (major) local optimal solutions, i.e., 
potentially identifying multiple physically valid solution sets. 

In this study, we adapt the dual-task inverse solution 
workflow (DT-ISW) developed for simultaneous fitting of 𝑇𝑇1 
and 𝑇𝑇2  distributions in [18] to the context of simultaneous 
optimization of 𝑇𝑇2  distributions associated with various 
values of temperature, referred to as concurrent optimization 
(CO-OPT). We demonstrate the performance of CO-OPT on 
a Bentheimer sandstone sample by the identification of five 
intrinsic parameters controlling the NMR relaxation 
response: one shared quantity, i.e., the tortuosity in clay 
regions, together with four unique quantities, i.e., transverse 
surface relaxivity of quartz and effective transverse relaxation 
time in clay regions, at two values of temperature 𝜏𝜏1 and 𝜏𝜏2. 
We also provide the SEP as the reference for which the 
physical quantities related to two values of temperature are 
separately identified ignoring the constraints that tortuosity is 
a constant value for a given structure. Finally, we provide the 
Pareto optimal solutions (POS), which allows operators to 
balance the preference of 𝑇𝑇2  data fits at two values of 
temperature for the slightly conflicting objectives. 

2 Methodology  

2.1. Concurrent optimization  

As adapted from DT-ISW introduced in [18], CO-OPT is 
composed of five components: (a) observables, (b) NMR 
forward solver, (c) cost-function, (d) Bayesian optimization, 
and (e) solution analysis. Fig. 1 demonstrates CO-OPT using 
two values of temperature as an example. We briefly 
summarize these components as itemized list below, while 
detailed descriptions follow in the next section: 

a) Measure the NMR transverse relaxation decays 𝐦𝐦𝑡𝑡,exp
(𝜏𝜏1)  

and 𝐦𝐦𝑡𝑡,exp
(𝜏𝜏2)  at temperatures 𝜏𝜏1 and 𝜏𝜏2. 
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b) Simulate the decays 𝐦𝐦𝑡𝑡,sim
(𝜏𝜏1)  and 𝐦𝐦t,sim

(𝜏𝜏2)  for the chosen 
sets of unknown intrinsic parameters 𝐱𝐱(𝜏𝜏1) and 𝐱𝐱(𝜏𝜏2) on 
the segmented tomographic images (example: 
transverse surface relaxivities of the resolved phase: 
quartz, tortuosity of clay region, effective transverse 
relaxation times of clay regions), while honoring known 
quantities like porosity 𝜙𝜙 , volumetric magnetic 
susceptibility 𝜒𝜒𝜈𝜈, bulk physical properties of water, and 
matching the physical kernel (see Eq. (3)) and 
regularization parameter 𝜆𝜆. 

c) Acquire the 𝑇𝑇2  distribution using both simulated and 
measured decays, i.e., 𝛇𝛇sim

(𝜏𝜏1)(𝑇𝑇2) and 𝛇𝛇exp
(𝜏𝜏2)(𝑇𝑇2). Evaluate 

the cost-function and calculate the sum of the L2 norm 
of the fitting residuals for the 𝑇𝑇2 distributions. 

d) Jointly model the 𝑇𝑇2  objective functions at the two 
values of temperature using the vector-valued Gaussian 
Process (GP) with correlation captured, followed by 
inference of model hyperparameters using maximum 
likelihood estimation; then the EI acquisition function is 
maximized to identify the promising candidates 𝐱𝐱(𝜏𝜏1) 
and 𝐱𝐱(𝜏𝜏2) . Finally, solutions within sparsely explored 
regions are evaluated using exact simulation. 

e) Model the objective functions with the updated model 
hyperparameters upon depletion of the optimization 
budget and divide the solution space into various unique 
partitions (UPs) associated with different modes of the 
objective function using the solution space partitioning 
(SSP) introduced in [11]. For each UP the top three 
solutions and the POS are reported. 

2.2 Materials, measurements, and NMR simulations 

2.2.1 Rock Sample  

Experimental reference NMR responses were obtained for a 
Bentheimer sandstone cylindrical core plug (25 mm diameter 
and 50 mm long) of 23.9% porosity saturated with 3 wt.% 
NaCl brine. This rock is composed primarily by quartz (96%) 
with remaining fraction represented equally by feldspar and 
kaolinite. The sample has volumetric magnetic susceptibility 
-7.45 × 10-6 (SI units). 

2.2.2 𝑇𝑇2 Reference Data 

We acquire transverse relaxation response of saturated 
sandstone rock using the standard Carr, Purcell, Meiboom 
and Gill (CPMG) pulse sequence [19; 20]. The NMR 
measurements were carried out using a Magritek Rock Core 
Analyzer operating at 2 MHz proton resonance frequency. 
Acquired echo-trains were 40,000 echoes long, with echo-
time interval 250 us. Summation of 4 scans following phase 
cycling sequence resulted in a signal-to-noise ratio of around 
50. The magnetization decays are treated as multi-
exponential sum with unknown distribution of amplitudes 
𝜁𝜁(𝑇𝑇2)representing a Fredholm integral equation of the first 
kind: 

𝑚𝑚𝑇𝑇2(𝑡𝑡) = ∫ 𝜁𝜁(𝑇𝑇2)∞
0  𝑒𝑒−𝑡𝑡/𝑇𝑇2d𝑇𝑇2 + 𝜂𝜂𝑛𝑛(𝑡𝑡), (3) 

where 𝑚𝑚𝑇𝑇2(𝑡𝑡)  is the transverse magnetization decay as 
function of time 𝑡𝑡  and 𝜂𝜂𝑛𝑛  is additive white noise, and the 
objective is the estimation of the probability density function 
of 𝑇𝑇2, i.e., 𝜁𝜁(𝑇𝑇2). 

Practically, the 𝑇𝑇2 distribution are obtained using a non-
negative least squares (NNLS) algorithms, which minimizes 
the residual sum between the known left-hand size signal and 
right-hand side prediction, at the same time retaining a degree 
of control over distribution shape (smoothness) with a 
penalty/weight term (known as regularization parameter)  
[21-23]. All experimental and simulated decays were inverted 
using the algorithm [21] with resulting solutions identically 
binned across 256 logarithmically spaced 𝑇𝑇2 intervals. 

2.2.3 Digitized Image 

A Bentheimer sandstone plug of 5mm diameter was imaged 
in double helix mode on the UNSW Tyree X-ray CT facility 
with a total acquisition time of 12h, resulting in a 
reconstructed tomogram with a resolution of ϵ = 2.16 μm. 
The grey-scale tomogram was segmented into pore-space, 
quartz, clay region (a micro-porous effective phase), feldspar 
and an iron-rich dense mineral phase. For details of the 
segmentation process see [25], which uses the same sample. 
Fig. 2 depicts a slice through the tomogram and resultant 
phase segmentation. Statistics of the Bentheimer sandstone 
segmentations for the calculation of the internal magnetic 
field at lattice resolution ϵ that follows are listed in Table 1 
and Table 2. The micro-CT image was segmented taking into 
account XRD data reported in [24], though there is a slight 
difference in between possibly due to mineralogy variation at 
the mm scale. Basic mineral composition from XRD data and 
segmented CT image (in brackets) are quartz 96% (96.6%), 
feldspar 2.4% (1.7%), kaolinite 1.4% (1.6%), others 0.2% 
(0.15%). 

Table 1. Statistics of the Bentheimer sandstone segmentations. 
Segmented image porosity used in simulation (𝜙𝜙sim) is calculated as 
𝑓𝑓p + 0.5𝑓𝑓c [24], domain size is in voxel, 𝜖𝜖 denotes voxel size, and 𝑓𝑓𝑖𝑖 
are phase fractions (𝑓𝑓p: resolved porosity, 𝑓𝑓c: clay region, 𝑓𝑓q: quartz, 
𝑓𝑓f: feldspar, 𝑓𝑓h: high-density).  

 phase fractions 

𝜙𝜙sim 𝑓𝑓p 𝑓𝑓c 𝑓𝑓q 𝑓𝑓f 𝑓𝑓h 

0.2373 0.2252 0.0241 0.7369 0.0126 0.0011 
 

Assuming quartz, feldspar and kaolinite are all iron-free 
and having similar elemental composition are likely to exhibit 
similar magnetic susceptibility, susceptibility of bulk 
sandstone is decomposed into four separate values. Quartz 
and feldspar are indeed typically reported in a similar range, 
e.g., Hunt reported -13~-17 ×  10-6 SI for both [25]. We 
measured 𝜒𝜒𝜈𝜈 of fluid and bulk rock only. In particular, 𝜒𝜒𝜈𝜈 for 
distilled water and 3% NaCl brine are -8.90 and -9.12 × 10-6 

SI, respectively, while for convenience we typically use in 
simulations -9.0 ×  10-6 SI for aqueous phase [26]. The 
balance value required to match the average bulk is attributed 
to a volumetrically small fraction of the high-density minerals 
assumed to be iron-rich.  
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Table 2. Measured average volumetric magnetic susceptibilities 𝜒𝜒𝜈𝜈, 
known values for NaCl brine, clay region, quartz, feldspar, and 
inferred value for high-density using material balance. 

volumetric magnetic susceptibilities (SI, multiply by 106) 

𝜒𝜒𝜈𝜈 𝜒𝜒𝜈𝜈,w 𝜒𝜒𝜈𝜈,c 𝜒𝜒𝜈𝜈,q 𝜒𝜒𝜈𝜈,f 𝜒𝜒𝜈𝜈,h 

-7.45 -9 �𝜒𝜒𝜈𝜈,w + 𝜒𝜒𝜈𝜈,k�/2 -12 -12 1900 

2.2.4 𝑇𝑇2 Simulation 

Given the naturally discretized segmented tomogram, the 
NMR responses are simulated via a lattice random walk 
algorithm following [9-11]. The simulation is carried out in 
multiple stages: first, the internal magnetic field is calculated 
in the dipole approximation via a convolution of the 
susceptibility field as defined by the individual phase 
susceptibilities given in Table 1 with a dipole field; second, 
the random walks are carried out on the segmented tomogram 
with a sub-lattice spacing of ϵ/10 (low temperature) or ϵ/15  
 

 

 
Fig. 2. Slice through the grey-scale tomogram and corresponding 
five-phase segmentation. Domain size: 12403 voxel, voxelsize ϵ =
2.16 μm. Blue: pore, indigo: clay, green: quartz, brown: feldspar, 
red: high-density phase. 

(high temperature); random walks are started with a 
probability linearly related to the porosity of each voxel with 
each simulation consisting of about 80,000 random walks, 
dephasing according to the internal fields, with surface 
interactions lumped into the surface relaxivity for resolved 
phases, or into a local effective relaxation time for clay 
regions. Local internal magnetic field values at the required 
discretization level are derived via tri-linear interpolation 
from the coarse-scale internal field (resolution of ϵ). Third, 
the resultant magnetization decay is transformed to the T2 
distribution via an inverse Laplace transform (ILT) [22]. In 
the optimization framework the phase susceptibilities and the 
bulk properties of the saturation brine (diffusion coefficient 
and 𝑇𝑇2 bulk relaxation time, see Table 3) are considered as  

Table 3. Bulk diffusion coefficient and transverse relaxation time of 
water for the two temperatures considered. 

𝜏𝜏 / Celsius 𝐷𝐷0/(cm2/s)   𝑇𝑇2b,w / s 
20 2.03 × 10−5 2.27 
60 4.76 × 10−5 5.26 

 
constants. The other pore-scale physical parameters, namely 
the surface relaxivity of quartz 𝜌𝜌2,q , the effective 𝑇𝑇2 
relaxation time of clay regions (𝑇𝑇2e,c ), and the effective 
diffusion coefficient of clay regions ( 𝐷𝐷e,c ) at different 
temperatures, in the following noted by superscripts (𝜏𝜏1) and 
(𝜏𝜏2), are the target of the proposed optimization effort. The 
surface relaxivity of minority phases is set to the surface 
relaxivity of quartz. 

2.3 Minimization of 𝑻𝑻𝟐𝟐  objective under various 
temperatures 

For notational simplicity we describe only two temperatures 
here, i.e., 𝜏𝜏1 and τ2. The problem of minimization of the sum 
of the L2 norm of the fitting residuals for 𝑇𝑇2  distributions 
acquired at 𝜏𝜏1 and 𝜏𝜏2 can be formulated as: 

minimize𝑓𝑓(obj)(𝐱𝐱) = 𝑓𝑓(𝜏𝜏1)�𝐱𝐱(𝜏𝜏1)� + 𝑓𝑓(𝜏𝜏2)�𝐱𝐱(𝜏𝜏2)�, (4) 
where    𝐱𝐱 = �𝐱𝐱(𝜏𝜏1), 𝐱𝐱(𝜏𝜏2)�, (5) 

𝐱𝐱(𝜏𝜏1) = �𝜌𝜌2,q
(𝜏𝜏1),𝑇𝑇2e,c

(𝜏𝜏1),𝐷𝐷e,c
(𝜏𝜏1)�, (6) 

𝐱𝐱(τ2) = �𝜌𝜌2,q
(𝜏𝜏2),𝑇𝑇2e,c

(𝜏𝜏2),𝐷𝐷e,c
(𝜏𝜏2)�, (7) 

subject to 𝐷𝐷e,c
(𝜏𝜏1)/𝐷𝐷0

(𝜏𝜏1) = 𝐷𝐷e,c
(𝜏𝜏2)/𝐷𝐷0

(𝜏𝜏2), (8) 
𝐱𝐱l ≤ 𝐱𝐱 ≤ 𝐱𝐱u. (9) 

where 𝐱𝐱l and 𝐱𝐱u are the lower and upper bounds of the pre-
specified search domain and 𝑓𝑓(𝜏𝜏1) and 𝑓𝑓(𝜏𝜏2) are L2 norm of 
the fitting residuals for 𝑇𝑇2  distributions acquired at 
temperatures 𝜏𝜏1 and 𝜏𝜏2, respectively, expressed as 

𝑓𝑓(𝜏𝜏1)�𝐱𝐱(𝜏𝜏1)� = ||𝛇𝛇sim
(τ1)�𝑇𝑇2�𝐱𝐱(𝜏𝜏1)� − 𝛇𝛇exp

(𝜏𝜏1)(𝑇𝑇2)||22, (10) 
𝑓𝑓(𝜏𝜏2)�𝐱𝐱(𝜏𝜏2)� = ||𝛇𝛇sim

(𝜏𝜏2)�𝑇𝑇2�𝐱𝐱(𝜏𝜏2)� − 𝛇𝛇exp
(𝜏𝜏2)(𝑇𝑇2)||22, (11) 

with weights for all data points of the 𝑇𝑇2 distribution being 
equally 1. Each lower-dimension component 𝐱𝐱(𝜏𝜏𝑖𝑖), 𝑖𝑖 ∈ {1,2} 
is associated with a specific temperature and therefore Eq. (5) 
specifies the complete solution. The constraints Eq. (8) apply 
due to Archie's Law, i.e., 
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1
𝒯𝒯

=
𝐷𝐷e

𝐷𝐷0
, (12) 

where 𝒯𝒯  is the tortuosity. We assume that for a given 
structure the 𝒯𝒯  is independent of temperature and Eq. (12) 
holds under both values of temperature. 

2.3.1 Scalar-Valued Gaussian Processes 

GP is a distribution over functions, and is characterized by its 
mean function 𝑚𝑚(𝐱𝐱) and covariance function 𝑘𝑘(𝐱𝐱, 𝐱𝐱′) as [11; 
27] 

𝑓𝑓(𝐱𝐱) ∼ 𝒢𝒢𝒢𝒢�𝑚𝑚(𝐱𝐱), 𝑘𝑘(𝐱𝐱, 𝐱𝐱′)�, (13) 

where 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐷𝐷)⊤ is a candidate in 𝒳𝒳 of dimension 
D × 1, 𝑓𝑓(𝐱𝐱) is the process evaluated at location 𝑥𝑥. In GP, the 
prior distribution over 𝑓𝑓 is expressed as 

𝐟𝐟 |𝑋𝑋 ∼ 𝒩𝒩 �𝐦𝐦0,𝐾𝐾𝑓𝑓(𝑋𝑋,𝑋𝑋)�, (14) 

where 𝒩𝒩  denotes normal distribution, 𝐦𝐦0 ∈ ℛ𝑛𝑛×1  denotes 
the mean vector for observations, (𝑋𝑋, 𝐲𝐲) = {𝐱𝐱𝑖𝑖, yi}𝑖𝑖=1𝑛𝑛  and 
(𝐱𝐱∗,𝑦𝑦∗) denotes observed and predicted candidates 
respectively, and 𝐾𝐾𝑓𝑓(𝑋𝑋,𝑋𝑋)  denotes the 𝑛𝑛 × 𝑛𝑛  covariance 
matrix for 𝐟𝐟, with the (𝑝𝑝, 𝑞𝑞) entry expressed by 𝑘𝑘�𝐱𝐱𝑝𝑝,𝐱𝐱𝑞𝑞�. 
Accommodating the noise using Gaussian likelihood function 
yields 𝐲𝐲|𝐟𝐟 = 𝒩𝒩(𝐟𝐟,𝜎𝜎𝑛𝑛2𝐼𝐼), and the posterior distribution for a 
single predicted candidate becomes 

𝑦𝑦∗| 𝐱𝐱∗,𝑋𝑋, 𝐲𝐲,𝜽𝜽𝑠𝑠 ∼ 𝒩𝒩�𝜇𝜇(𝐱𝐱∗),𝜎𝜎2(𝐱𝐱∗)�, (15) 

where 𝒩𝒩  is normal distribution, 𝜽𝜽𝑠𝑠  is the model 
hyperparameters for the scalar-valued GP, and 

𝜇𝜇(𝐱𝐱∗) = 𝑚𝑚0
∗ + 𝐾𝐾𝑓𝑓(𝐱𝐱∗,𝑋𝑋)�𝐾𝐾𝑓𝑓(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼�

−1(𝑦𝑦
− 𝑚𝑚0), 

 

𝜎𝜎2(𝐱𝐱∗) = 𝐾𝐾𝑓𝑓(𝐱𝐱∗, 𝐱𝐱∗) + 𝜎𝜎𝑛𝑛2

− 𝐾𝐾𝑓𝑓(𝐱𝐱∗,𝑋𝑋)�𝐾𝐾𝑓𝑓(𝑋𝑋,𝑋𝑋)
+ 𝜎𝜎𝑛𝑛2𝐼𝐼�

−1𝐾𝐾𝑓𝑓(𝑋𝑋, 𝐱𝐱∗). (16) 

2.3.2 Vector-Valued Gaussian Processes 

GP with multiple outputs can be represented by the vector-
valued GP indicates. 𝑄𝑄 = 2 applied throughout this study, 
indicating that there are two correlated tasks. The GP kernel 
in Eq. (13) has to be replaced by a vector-valued GP kernel 
taking into account the correlation between the 𝑄𝑄 outputs of 
𝐟𝐟, with 𝐟𝐟 expressed as [28; 29] 

𝐟𝐟(𝐱𝐱) ∼ 𝒢𝒢𝒢𝒢�𝐦𝐦(𝐱𝐱),𝐊𝐊(𝐱𝐱, 𝐱𝐱′)�, (17) 

where 𝐦𝐦(𝐱𝐱) ∈ ℛ𝑄𝑄×1  denotes the stacked mean function 
{𝐦𝐦𝑞𝑞(𝐱𝐱)}𝑞𝑞=1

𝑄𝑄  for each output and 𝐾𝐾 denotes a matrix-valued 
function whose entries �𝐊𝐊(𝐱𝐱, 𝐱𝐱′)�

𝑞𝑞,𝑞𝑞′
 express the correlation 

between the input-pairs 𝐱𝐱 and 𝐱𝐱′, and between the outputs-
pairs 𝑓𝑓𝑞𝑞(𝐱𝐱)  and 𝑓𝑓𝑞𝑞′(𝐱𝐱) . We account for the noisy 
observations using a Gaussian likelihood, i.e., 𝐲𝐲|𝐟𝐟 =
𝒩𝒩(𝐟𝐟, Σ𝑛𝑛 ⊗ 𝐼𝐼) , where Σ𝑛𝑛 = diag(𝜎𝜎𝑛𝑛2)  is a 𝑄𝑄 × 𝑄𝑄  diagonal 
matrix incorporating task-dependent noise levels, and 𝜎𝜎𝑛𝑛2 =
�𝜎𝜎𝑛𝑛,1

2 , … ,𝜎𝜎𝑛𝑛,𝑄𝑄
2 �⊤ is a vector of noise variances. Similar with 

the case of scalar-valued GP, the predicted distribution for a 
single predicted candidate  𝐱𝐱∗ is expressed as 

𝐲𝐲∗| 𝐱𝐱∗,𝑋𝑋, 𝐲𝐲,𝜽𝜽𝑣𝑣 ∼ 𝒩𝒩(𝝁𝝁𝐱𝐱∗ , Σ𝐱𝐱∗), (18) 

where 𝐲𝐲∗ = �𝑦𝑦1∗, … ,𝑦𝑦𝑄𝑄∗ �
⊤

 concatenates 𝑄𝑄 outputs for 𝐱𝐱∗, 𝜽𝜽𝑣𝑣 
is a vector of model hyperparameters (𝑣𝑣 stands for vector-
valued GP), and 

𝝁𝝁𝐱𝐱∗ = 𝐦𝐦0
∗ + 𝐊𝐊𝑓𝑓(𝐱𝐱∗,𝑋𝑋)�𝐊𝐊𝑓𝑓(𝑋𝑋,𝑋𝑋) + Σ𝑛𝑛 ⊗ 𝐼𝐼�−1(𝐲𝐲

−𝐦𝐦0),  
 Σ𝐱𝐱∗ = 𝐊𝐊𝑓𝑓(𝐱𝐱∗, 𝐱𝐱∗) + Σ𝑛𝑛

− 𝐊𝐊𝒇𝒇(𝐱𝐱∗,𝑋𝑋)�𝐊𝐊𝑓𝑓(𝑋𝑋,𝑋𝑋) + Σ𝑛𝑛
⊗ 𝐼𝐼�−1𝐊𝐊𝑓𝑓(𝑋𝑋, 𝐱𝐱∗). 

(19) 

2.3.3 Candidate Proposal and Solution Analysis 

We use the standard EI acquisition function, which for the 𝑞𝑞th 
task is 

𝑎𝑎EI,𝜏𝜏𝑞𝑞(𝐱𝐱∗) = � �𝑦𝑦𝑞𝑞�𝐱𝐱𝑞𝑞−� − 𝑢𝑢�𝑝𝑝(𝑢𝑢)
𝑦𝑦𝑞𝑞�𝐱𝐱𝑞𝑞−�

−∞
 d𝑢𝑢, (20) 

where 𝐱𝐱𝑞𝑞− is the current best observed candidate for the  𝑞𝑞th 
objective and 𝑢𝑢 = 𝑦𝑦𝑞𝑞∗|𝑋𝑋, 𝐲𝐲, 𝐱𝐱∗,𝜽𝜽𝑣𝑣 is the Gaussian distributed 
variable given by Eq. (18). 

A promising candidate is proposed by joint maximization 
of 𝑎𝑎EI,𝜏𝜏1  and  𝑎𝑎EI,𝜏𝜏2  in the form of ∑ 𝑎𝑎EI,𝜏𝜏𝑞𝑞

2
𝑞𝑞=1  under equality 

constraints using sequential quadratic programming (SQP) 
[30]. The initial guesses are placed randomly in the feasible 
domain, ensuring that the multi-modal nature of the objective 
function is captured. 

When the optimization budget depletes, the model 
hyperparameters are updated and the 𝑇𝑇2 objectives associated 
with various values of temperature are jointly modelled using 
new hyperparameters settings. The solution space of Eq. (4) 
is then divided into various unique partitions (UPs) 
corresponding to various modes of the objective function. We 
referred to the solution with the lowest fitness value in each 
UP is as the local minimum (LM). For details see [11]. 
Meanwhile, the two objectives are expected to be slightly 
conflicting since measurements are corrupted by noise so that 
there is no solution that simultaneously achieves good 
matches for each objective. As a result, we provide the POS 
of the 𝑇𝑇2  data fits for the slightly conflicting objectives, 
which is defined as the set of solutions that is not dominated 
by any other solutions. Mathematically, 𝐱𝐱1  dominates 𝐱𝐱2 if 
𝐱𝐱1  beats or ties 𝐱𝐱2  for each of the two objectives, i.e., 
𝑓𝑓(𝑖𝑖)(𝐱𝐱1) ≤ 𝑓𝑓(𝑖𝑖)(𝐱𝐱2) , ∀𝑖𝑖 ∈ {1,2} , and 𝑓𝑓(𝑖𝑖)(𝐱𝐱1) < 𝑓𝑓(𝑖𝑖)(𝐱𝐱2) , 
∃𝑖𝑖 ∈ {1,2}. 

3 Results 
In this study, we determined the surface relaxivity of quartz 
and the effective transverse relaxation time and tortuosity for 
the clay region at two temperatures: 𝜏𝜏1 = 20∘C and 𝜏𝜏2 =
60∘C, respectively. We compared the speed of convergence, 
non-unique solution sets as well as the optimum solutions 
provided by CO-OPT, where tortuosity is a shared parameter 
for both temperatures and SEP - tortuosity at each  
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Table 4. The top three candidates in terms of 𝑓𝑓(obj) (or 𝑓𝑓(𝜏𝜏1) and 𝑓𝑓(𝜏𝜏2)  if 𝑓𝑓(obj) does not exist) within each UP, identified using the two 
approaches. UPs are sorted in ascending order of the best identified 𝑓𝑓(obj)  within the UP. 𝑇𝑇2  distributions corresponding to the LMs are 
displayed Fig. 3. Both 𝑙𝑙𝑙𝑙𝑙𝑙10 𝒯𝒯 and  𝒯𝒯 are reported for convenience. Numbers in the R column indicate the rankings of the solutions out of 200 
evaluated candidates in terms of 𝑓𝑓(obj), whereas numbers in the Step column indicate at which step those solutions are proposed. 

UP R 
𝜌𝜌2,q

(τ1) 𝜌𝜌2,q
(τ2)  log10[  log10[ log10 𝒯𝒯 𝒯𝒯 𝑓𝑓(𝜏𝜏1) 𝑓𝑓(𝜏𝜏2) 𝑓𝑓(obj) Step 

(μm/ s) (μm/ s) 𝑇𝑇2e,c
(τ1)(𝑠𝑠)] 𝑇𝑇2e,c

(𝜏𝜏2)(𝑠𝑠)] × 10−4 × 10−4 × 10−4 
 CO-OPT 

1 1  11.169 9.820 -1.889 -2.304 0.535 3.424 2.52  24.23  26.75  131 
  2  11.509 10.132 -1.722 -2.143 0.697 4.980 5.61  28.49  34.10  97 
  3  9.744 9.978 -1.811 -1.905 0.901 7.956 10.54  27.12  37.66  141 
2 4  12.075 9.398 -1.934 -2.530 0.341 2.194 6.45  32.15  38.61  140 
  5  12.058 12.103 -2.445 -2.602 0  1 13.13  27.03  40.16  60 
  6  12.042 12.100 -2.449 -2.602 0  1 13.31  27.03  40.34  58 

 SEP, 𝜏𝜏1 = 20∘C 
1 1 10.892 - -1.923 - 0.625 4.213 2.87  - - 84 
  2 11.008 - -1.943 - 0.593 3.919 3.44  - - 74 
  3 10.895 - -1.875 - 0.643 4.393 3.85  - - 196 
2 29 11.915 - -2.406 - 0  1 9.91  - - 72 
  30 11.949 - -2.397 - 0  1 9.91  - - 67 
  31 12.005 - -2.389 - 0  1 9.95  - - 69 

 SEP, 𝜏𝜏2 = 60∘C 
1 1 - 9.068 - -2.085 0.783 6.067 - 22.64  - 174 
  2 - 10.061 - -1.916 0.895 7.848 - 23.11  - 142 
  3 - 8.741 - -2.101 0.786 6.112 - 24.75  - 195 
2 6 - 12.089 - -2.601 0  1 - 27.03  - 169 
  7 - 12.130 - -2.594 0  1 - 27.05  - 149 
  8 - 12.003 - -2.606 0  1 - 27.08  - 172 

temperature is an independent parameter for optimization. 
Practically the base-10 logarithm of the effective relaxation 
time and of the tortuosity are employed since they usually 
vary across orders of   magnitude. The solution space is 
subject to the following bounds: 

 0 ≤ 𝜌𝜌2,q
(𝜏𝜏1)/(μm/ s),𝜌𝜌2,q

(𝜏𝜏2)/(μm/ s) ≤ 24, 

 −3 ≤ log10 �𝑇𝑇2e,c
(𝜏𝜏1)/ s� , log10 �𝑇𝑇2e,c

(𝜏𝜏2)/ s� ≤ 0, 

    0 ≤ log10 𝒯𝒯 ≤ 1.6.  

The solution space 𝒳𝒳 composed by such constraints is so 
large that a grid search or random search is intractable in 
consideration for the expensive simulation. The optimization 
budget is 200 function evaluations. 

For both approaches here, the multi-modal nature of the 
objective functions is well-catered, and the non-unique 
solution sets are identified using solution space partitioning 
(SSP), clustering all solutions to different UPs. Table 4 shows 
identified parameter values of the LMs for the two 
approaches. LMs with 𝑓𝑓(obj)  above 1× 10−2  are not listed. 
The problem of non-unique solution sets is encountered in 
both methods: UP 2 is identified as a mathematically sound 
solution set, though it is physically less likely since the 
inferred value for tortuosity reaches the lower bound of 1. 
Within the physically valid solution set, UP 1, we observe two 

trends for the variation of surface relaxivity with temperature: 
Both CO-OPT and SEP consistently show two different 
response patterns to increase of temperature. Group 1 shows 
a decrease of surface relaxivity 𝜌𝜌2,q  by about 15%, while 
group 2 shows a nearly constant surface relaxivity (increase 
of about 1%). Specifically, for CO-OPT there is a noticeable 
decrease in 𝜌𝜌2,q, as shown by UP 1, e.g., a decrease from 11.6 
µm/s to 9.8 µm/s (averaged over three solutions) while there 
is a light to no increase in 𝜌𝜌2,q, as shown by the UP 2, e.g., an 
increase from 12.0 µm/s to 12.1 µm/s. SEP shows the same 
trend, with surface relaxivity decreasing from 10.9 µm/s to 
9.3 µm/s, or increasing from 11.3 µm/s to 11.4 µm/s. We note 
that the solutions are of low fitness value for both objective 
functions and thus are considered mathematically correct. 
The trend is similar for SEP for which there is no constraint 
to keep tortuosity constant with temperature. As a result, the 
uncertainty in non-unique solution sets cannot be reduced by 
examining the quality of fit or the fitness value. 
 Fig. 3 shows the fit corresponding to the LMs in Table 4. 
From appearance, the fits for the 𝑇𝑇2 distribution at 𝜏𝜏1 = 20∘C 
are better than 𝜏𝜏2 = 60∘ C for both methods, leading to 
approximately 10 times larger fitness values at higher 
temperature. We assume that the larger misfit at higher 
temperature is mainly a function of increasing diffusion 
coupling emphasizing the effect of small micro-structural 
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Fig. 3. The 𝑇𝑇2 distributions corresponding to the LMs listed in Table 4: (a) CO-OPT, 𝜏𝜏1 = 20∘C, (b) CO-OPT, 𝜏𝜏2 = 60∘C, (c) SEP, 𝜏𝜏1 =
20∘C and (d) SEP, 𝜏𝜏2 = 60∘C. 

 

 
Fig. 4. Minimization of 𝑓𝑓(τ1) and 𝑓𝑓(τ2) using CO-OPT. Candidates 
in the bottom-left corner are preferred. Solid dots are Pareto 
optimum solutions; blue and orange dots correspond to UP 1 and UP 
2 of CO-OPT in Table 4, and the circles are the dominated solutions. 

features in the model.  
Here we did not address the mathematical validity for the 

selection of an optimum solution since the two objectives are 
slightly conflicting: the 𝑓𝑓(𝜏𝜏1) value of LM 2 is inferior to the 
second-best solution though it achieves better value for 𝑓𝑓(𝜏𝜏2), 
as shown in Fig. 4, where candidates in the bottom-left corner 

are preferred and considered as feasible solutions. Such 
conflict is also reflected in the result of SEP from Table 4 that 
if 𝑓𝑓(𝜏𝜏1) and 𝑓𝑓(𝜏𝜏2) are individually optimized, 𝐱𝐱(𝜏𝜏1) and  𝐱𝐱(𝜏𝜏2) 
will neither recover the same value of log10 𝒯𝒯 nor satisfy the 
constraints of Eq. (7). As a result, in situations where the 
uncertainty in measurement is high, or the conflict between 
the two objectives cannot be neglected, an optimum solution 
cannot be solely determined mathematically.  

Since it is difficult to visualize the possible solution sets 
in five-dimensional space, we show in Fig. 5 the isosurface 
plot of the two objective functions 𝑓𝑓(τ1) and 𝑓𝑓(τ2) for the CO-
OPT solution both in the three-dimensional space, as well as 
the correlation plot between 𝜌𝜌2,q  and log10 𝑇𝑇2e,c . From both 
isosurface plots and correlation plots we observe that there 
are multiple solution sets corresponding to both  𝑓𝑓(τ1)  and 
𝑓𝑓(τ2), which needs additional physical constraints to reduce 
such uncertainties. 

4 Discussion and Conclusions 
In this paper we analyzed the temperature dependent NMR 
relaxation responses and associated intrinsic physical 
properties of Bentheimer sandstone, namely the surface 
relaxivity of quartz and two effective clay parameters, the 
effective bulk relaxation time 𝑇𝑇2𝑒𝑒,𝑐𝑐 and the effective diffusion 
coefficient 𝐷𝐷𝑒𝑒,𝑐𝑐 of clay, the latter of which was reported as 
tortuosity to account for its geometric origin and accounting 
for the expectation that tortuosity remains a constant with 
respect to temperature. To achieve these aims we introduced  

(a) 

(b) 

(c) 

(d) 
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Fig. 5. The isosurface plot of (a) 𝑓𝑓(τ1) and (b) 𝑓𝑓(τ2) each in the three-dimensional space evaluated after the budget of 200 function evaluations 
is depleted, with contour plots (c) and (d) showing the correlation between  𝜌𝜌2,q − log10 𝑇𝑇2e,c as projections of the iso-surface plot on to the 
𝜌𝜌2,q − log10 𝑇𝑇2e,c plane. We display five levels of isosurfaces, corresponding to the minimum 0.01%, 0.1%, 1%, 3%, 5% of the scalar field. 
Blue colors indicate regions with higher probability that mathematically good solutions can be found. 

the CO-OPT workflow, which determines the temperature 
dependent transverse surface relaxivities and effective 
transverse relaxation time by joint minimization of the 
deviation between simulated and measured 𝑇𝑇2 distributions at 
two values of temperature: five parameters were identified by 
computationally producing 𝑇𝑇2  distributions almost identical 
with experiments for two values of temperature. 

The experimentally observed enhanced relaxation in 
Bentheimer sandstone with temperature increase agrees with 
literature reports. However, contrary to these reports, the 
mechanisms behind the observed faster relaxation does not 
require the involvement of a higher surface relaxivity of 
quartz. We established two solutions, one is that of practically 
constant surface relaxivity of quartz and another is negatively 
correlating to temperature (15% lower if temperature is 40 ºC 
higher). Both solutions enable matching the shift between 
experimental T2 distributions, apparently either solely due to 
faster bulk water diffusion or additionally aided by 
magnetization coupling between micro- and macro-porosity. 

The effective relaxation time of clay decreases by 30-40% 
with temperature increase. Though we are unable to conclude 
on specific values since multiple values within a fairly wide 
interval seem possible (approximately 3 to 15 ms), depending 
on the analysis method utilized. 

The prediction of clay tortuosity is the least certain out of 
five properties, primarily due to an inherent difficulty of the 
effective medium approach when applied to dispersed clay in 
sandstone (in particular for smaller clay pockets/regions). 

The effect of incorrect magnetization exchange due to 
unrealistic discontinuity between effective and bulk diffusion 
at the clay-macropore interface increases with faster 
diffusion, i.e. is also “temperature-dependent”, and may 
require a further refinement of numerical simulation. 

The results of this study are contrary to what we expected 
upon starting on this analysis, the target of which was the 
derivation of the temperature dependence of intrinsic physical 
properties relevant to NMR relaxation-diffusion responses in 
rock samples.  

We plan to further analyze this behavior in the future with 
resolved clay [29] and feldspar model structures and increase 
the resolution of micro-CT images, avoiding the introduction 
of an effective diffusion coefficient entirely. This should 
allow us to understand sensitivities and pinpoint the 
mechanism responsible for the observed behavior. We 
remark that resolving this issue may have direct implications 
to the interpretation of NMR responses in the context of 
wettability alteration, a subject of current intensive study 
[30]. 
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