
SCA18 

* Corresponding author: tao.lin@aramcoamericas.com 

Artificial Intelligence Assisted Quantitative Petrophysical Properties 
Analysis using Core Images and Well Logs 

Tao Lin1,*, Mokhles Mezghani2, Chicheng Xu1, and Weichang Li1 
1Aramco Americas: Aramco Research Center - Houston, 16300 Park Row Dr., Houston, TX 77084, USA 
2Saudi Aramco, Dhahran Heights, Building 9172, 31311 Dhahran, Saudi Arabia 

Abstract. Reservoir characterization requires petrophysical properties, such as porosity and permeability, to be 
populated in a 3D reservoir model. It is critical to quantitatively estimate the vertical profiles of petrophysical 
properties in each well. Traditional approaches are time consuming and labor intensive, and sometimes invasive to 
the core. To overcome these issues, we propose to apply image analysis and automated artificial intelligence (AI) 
workflow to improve high-resolution quantitative petrophysical characterization. The workflow estimates the 
continuous vertical profiles of petrophysical properties in each well, by integrating core plug measurements, core 
images and well logs with computer vision (CV) and machine learning (ML) techniques. We achieved reasonably 
good correlation and accuracy from the models. The approach enables core digitization, core preservation and 
reduces exploration risk, as well as providing petrophysical insights to assist core description.

 

1. Introduction 
Rock properties including petrophysical properties 
(porosity and permeability), geomechanical properties 
(Poisson’s ratio and Young’s modulus), and geochemical 
properties (Total organic carbon and kerogen volume) are 
critical for subsurface reservoir modeling. A critical step 
is to estimate the vertical profiles of petrophysical 
properties in each well based on core measurements and 
well logs [1, 2]. Traditionally, qualitative visual 
observations of depositional and diagenetic features are 
routinely recorded by geoscientists for geologic 
interpretation and petrophysical characterization. 
Quantitative core measurements are typically acquired in 
laboratory from core plugs at discrete depth levels. Both 
approaches are time consuming and labor intensive, and 
sometimes invasive to the core. Those petrophysical 
properties are then used to calibrate petrophysical models 
together with well logs. In very heterogeneous reservoirs, 
petrophysical properties can exhibit large variability on 
very small scale to be resolved by well logs. In addition, 
core analysis and other relevant information generate a 
large number of heterogeneous formats data, which can 
be difficult to integrate effectively into a single modeling 
framework. Therefore, integrating higher resolution 
measurements such as core scans or core images in an 
automated quantitative analysis workflow can improve 
petrophysical characterization at the cored interval 
resolution [3]. 

 

Core images are often used by geologists only on a 
descriptive basis for sedimentary (bedding, gain size, 
lithology), structural (dipping, deformation), and 
diagenetic features (fractures, vugs). It also has rich 
information about the subsurface rocks that can be 
extracted for quantitative characterization purposes. For 
example, different lithologies are often present in 
different brightness or colors. Shale or clay-rich rocks 
often appear darker in color than sandstones or 
limestones. For the same lithology, coarse-grained and 
porous intervals often exhibit different textures from the 
tight and fine-grained intervals, which is sometimes 
observable by human eyes. However, core-based visual 
information has not been routinely integrated into 
petrophysical models. Recent advances in computer 
vision and machine learning enable more quantitative use 
of core images in petrophysical characterization 
workflows with improved performances [3]. 

 
In this paper, we introduce an AI assisted 

quantitative workflow that estimates the continuous 
vertical profiles of petrophysical properties in each well, 
by integrating core plug measurements, core images and 
well logs with computer vision (CV) and machine 
learning (ML) techniques. We demonstrate that core 
images and well logs can be quantitatively integrated into 
petrophysical workflows to enhance estimation of 
petrophysical properties in cored intervals. 
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2. Data Preparation 
While drilling exploration or development wells, cores 
are extracted from the subsurface. These cores are an 
important source of information for subsurface 
characterization. After cores are extracted, they are placed 
in cylinders, usually 3-ft long, and then sent to the core 
laboratory for further analysis and visual examination. 
Some of these analyses are performed before slabbing the 
core and others are done after the slabbing. 

 
Before the slabbing, one of the core analyses is 

provided by the Gamma Ray measured with relatively 
small spacing ranging from 0.05 ft to 0.1 ft. Some of the 
analyses require the extraction of several samples (called 
plugs) from each core of 3 ft long. Plugs are generally 
used to measure different properties such as porosity, 
permeability, and grain density with a spacing ranging 
from 0.5 ft to 1.0 ft. An example of slabbed and plugged 
cores is shown in Figure 1. 

 

Figure 1. Slabbed and plugged geological cores. 

For visual examination, the core is slabbed in two 
parts, for example, 1/4 and 3/4 for 4 inches core diameter. 
On the slabbed core, a handwritten text is added to the 
slabbed face of the core to mark the extracted plug 
identifier and the core depth at every foot. Finally, a high-
resolution photo (approximately 100 pixels per 
centimeter) of the slabbed core is taken, as shown in 
Figure 2.  

 

Figure 2. High resolution core image. 

3. Core image features extraction 
Firstly, we want to prepare some image features from the 
core images, to model the petrophysical properties 
quantitatively. Hence, we pre-process and analyze the 
core images using computer vision (CV) techniques. 

 
Feature extraction is a core component of CV, both 

in traditional image processing, as well as the more recent 
deep learning frameworks. The traditional CV techniques 
have developed several approaches to extract image 
features from digital images or videos, so that a set of 
salient representations of the object of interest can be 
quantitatively captured. The features are chosen in a way 
sensitive to the target variables, to gain high-level 
understanding and perform model building and 
subsequent prediction. For instance, the color models 
provide simple yet useful characteristics about a rock 
description from image, represented in terms of the 
red/green/blue (RGB) color channels, as shown in Figure 
3. In addition, the color model can be converted to the 
hue/saturation/brightness (HSV) model, to emphasize 
different characteristics of the same image, as shown in 
Figure 4. In addition, image entropy such as the Shannon 
entropy can be computed as a statistical measure of 
randomness that can be used to characterize the texture of 
the input core image. 

 

Figure 3. RGB color representation of a core image. (left) 
original core image in white color; (R/G/B) separated color 
channels of core image, R=red, G=green, B=blue. 
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Figure 4. HSV color representation of a core image. (left) 
original core image in white color; (H/S/V) separated color 
channels of core image, H=hue, S=saturation, 
V=value/brightness. 

The petrophysical properties can also correlate to the 
texture of the core, thus it is desirable to further include 
the core image texture representation in the analytic. We 
represent the core image texture through the Haralick 
texture features [4]. These features are computed from the 
Gray Level Co-occurrence Matrix (GLCM), which counts 
the co-occurrence of neighboring gray levels in an image 
[5]. Haralick then introduced 14 statistics calculated from 
the GLCM to describe the texture of an image. Typically, 
the maximum correlation coefficient is not calculated due 
to computational instability, so this feature is skipped in 
our analysis. The core images are partitioned into patches 
before calculating the GLCM and extracting the Haralick 
features from each image patch. Figure 5 shows an 
example of Haralick texture features extracted from the 
core image. Although the Haralick textures are not 
straightforward to human, they are very informative to the 
machine learning data analytics. 

 

Figure 5. Haralick texture features a core image. (left) original 
core image; (right) Haralick texture features at each depth strips, 
each column represents one calculated coefficient in sequence 
of depth. 

Each one of the image features described above are 
then aggregated horizontally into a profile in depth, 
resampled and aligned with well logs and core analysis 
data. To eliminate potential local artifacts in the core 
image, such as plug holes or markers, each feature depth 
profile is smoothed with box-car windows that can cover 
those artifacts, as shown in Figure 6. The smoothed 
profiles are then used subsequently in the model building. 
An example of core images and extracted image features 
in depth profile is shown in Figure 6. 

 

Figure 6. Example of core image (left) and extracted image 
features (right & bottom). Only a few of image features are 
shown here, from left to right: hue (H), saturation (S), value (V), 
Shannon entropy (Entropy), angular second moment 
(Haralick_00), contrast (Haralick_01), correlation 
(Haralick_02), sum of squares variance (Haralick_03), inverse 
difference moment (Haralick_04). The blue curves are the 
depth-wise aggregation of raw computation, and the orange 
curves are smoothed features profile for model building. 

4. Machine learning modeling 
We formulate the task of petrophysical property 
prediction as a supervised regression problem. The core 
image features described in the previous section and the 
well logs, such as core gamma log, are used as the input 
features for model building. The target properties from 
core analysis are used as the ground truth labels. In this 
paper, we investigate the prediction of three properties 
including grain density, porosity, and permeability. 
 

The image features are first extracted from quality-
checked and cleaned core images. Then the extracted 
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features are combined with well log data to create the 
ensemble feature profile. The core analysis data is used as 
the ground truth label set. The features are fed into 
selected machine learning regression algorithms to train 
the corresponding models, test on new image data, and for 
performance evaluation. The overall workflow is shown 
in Figure 7. 

 

Figure 7. Workflow of AI-assisted petrophysical properties 
regression based on core images and well logs 

4.1. Classification and Regression Tree 

Classification and Regression Trees (CART) are 
among the most popular machine learning algorithms 
given their intelligibility and simplicity [6]. CART is a 
decision tree-based prediction model. Each decision tree 
is a set of internal (non-leaf) nodes and leaves. Each 
internal nodes are associated with an input feature, and the 
selected feature is used to make decision on how to divide 
the data set into two separate sets with certain criteria. 
Each leaf of the tree is labeled with a class or regression 
function, and the algorithm walks through the tree by 
making decisions at each node from input features and 
arrives at the corresponding leaf to compute the 
classification or regression. The procedure is shown as the 
sub-trees in Figure 8(a). 

 

Figure 8. Diagram of classification and regression trees (CART) 
based regression models: (a) Random Forest; (b) Gradient 
Boosting. 

In this work, two ensemble techniques are used to 
build the regression models, which effectively construct 
more than one CART. The random forest (RF) technique 
is one type of bootstrap aggregating or bagging ensemble, 
which builds multiple weak CART with repeatedly 
resampled training data and averages the trees for a 
consensus prediction [7]. The gradient boosting (GB) 
technique incrementally builds an ensemble by training 

new weak CART to minimize the residual of previous 
iteration [8]. Figure 8(a)&(b) shows the diagrams of both 
RF and GB algorithms. 

4.2. Deep Neural Network 

Among the recent advances of machine learning, deep 
learning (DL) has attracted broad attention [9]. DL 
technology is based on deep neural networks (DNN), 
which are networks composed of layers of artificial 
neurons [10]. The neuron receives input signals from 
other neurons or external sources, sums them up with 
weights in transfer function, and produces output with 
non-linear activation function. The model is trained by 
learning optimal weights from training data. 

 
In this work, the feed-forward network topology is 

adopted to model the petrophysical properties. The 
network consists of multiple layers of neurons, and 
connections between neighboring layers. The neurons in 
each layer are shown in Figure 9, and the last layer has a 
linear activation to output the target variable. Three 
individual networks are trained to model each 
petrophysical properties, grain density, porosity, and 
permeability respectively. 

 

Figure 9. Diagram of deep neural networks. The image features 
and well logs data are fed as input to the network. The network 
consists of 4 hidden layers and output one target petrophysical 
property. Individual networks are trained to model each 
petrophysical property. 

5. Field example 
We tested the workflow of AI-assisted petrophysical 
properties prediction in a field from Saudi Arabia. The 
workflow is described in the previous section. The 
machine learning models used in this study are Random 
Forest, Gradient Boosting (GB) and Deep Fully 
Connected Neural Network (NN). 

 
We plot the cross plots of the predicted against the 

actual values for each petrophysical properties Figure 10, 
to visualize the performance of the model prediction. All 
values are normalized to [0, 1] for the visualization. A 
guideline of y=x is plotted in a red line to represent a 
perfect match. The prediction results from each model 
(NN, RF, GB) are reasonably close to the ground truth. 
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The grain density has a small dynamic range and almost 
discrete values related to rock types. The porosity has a 
good distribution, and all models can capture the property 
very well. The permeability is more challenging to predict 
due to weaker correlation between the physics of the rock 
and the image. Despite that, the models are still able to 
capture the overall trend with slightly higher level of 
variances than those of density and porosity prediction. 

 

Figure 10. The cross plot of predicted against actual 
petrophysical properties. The target properties are: (a) grain 
density; (b) porosity; and (c) permeability (logarithmic). The 
regression algorithms are color-coded: (1) random forest as 
green dots; (2) gradient boosting as orange dots; and (3) deep 
neural network as purple dots. The red line represents the guide 
of y=x. All values are normalized to [0, 1]. 

The depth tracks of predicted and actual 
petrophysical properties are shown in Figure 11. All 
values are normalized to [0, 1] for the visualization, and 
the depth is represented in sample index. In grain density 
estimation, NN and RF models’ predictions have very 
good performance and similar accuracy, while GB model 
prediction is also reasonable. In porosity estimation, all 
three models can track the trend well, while NN performs 
slightly better on capturing low porosity and RF performs 
slightly better on capturing high porosity. In permeability 
estimation, the prediction error is also reasonable with 
more challenging on lower and higher ends, while RF is 
slightly better at the average trend, and NN and GB are 
slightly better at providing the overall correlation between 
the prediction and ground truth. 

 

Figure 11. The depth track of predicted and actual petrophysical 
properties. The target properties are: (a) grain density; (b) 
porosity; and (c) permeability (logarithmic). The regression 
algorithms are color-coded: (1) random forest as green lines; (2) 
gradient boosting as orange lines; (3) deep neural network as 
purple lines; and (4) ground truth labels as black dash lines. All 
values are normalized to [0, 1]. 

We also derived the feature importance from RF 
models respecting to each petrophysical properties, as 
shown in Figure 12. The feature importance describes 
which features are relevant in the modeling, where the 
relative scores are effective. It can help domain experts 
with better understanding of the core characteristics, by 
providing insights into the data set and models. The 
relative scores can highlight which features may be more 
relevant to the target property and model building, and 
which features are less relevant. Such knowledge can be 
interpreted by petrophysicists and data scientists as the 
basis for gathering more or different data. We can also 
improve the predictive models by selecting more 
significant features using feature importance. Such 
feature selection can simplify the modeling problem, 
speed up the modeling process, and sometimes improve 
the model performance. In this case study, we note that 
grain density is more relevant to hue, which is correlated 
to the rock type. For example, shale rocks often appear 
darker in color than sandstones or limestones, where 
correlates to distinguishable grain density. Meanwhile, 
porosity and permeability are relevant to both image 
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features and textures, especially some Haralick textures, 
due to the complex correlations between core images and 
physical properties. 

 

Figure 12. The feature importance of modeled petrophysical 
properties by Random Forest. The target properties are: (a) grain 
density; (b) porosity; and (c) permeability (logarithmic). The 
features are sorted by their importance to the prediction, and 
only the top 10 most important features are shown. 

The overall performance is summarized in Table 1. 
In the table, y denotes the ground truth measurements and 
y�  denotes the model prediction. The R2 denotes the 
coefficient of determination and is defined by: 

R2 = 1 −
∑(y − y�)2

∑(y − avg(y))2 

 
The full-scale error (FSE) is defined by: 

FSE = (y − y�) max(y)⁄  
 
And the zero-normalized cross-correlation (CC) is 

defined by: 

CC =
1
n

∑(y − avg(y))(y� − avg(y�))

�∑(y − avg(y))2 �∑(y� − avg(y�))2
 

Table 1. Evaluation metrics of all models to target 
petrophysical properties 

Target Model R2 FSE CC 

Grain Density 

NN 70.4% 8.4% 86.0% 

RF 68.3% 8.7% 82.6% 

GB 56.6% 12.2% 77.5% 

Porosity 

NN 40.6% 14.3% 69.2% 

RF 40.7% 15.1% 68.1% 

GB 37.8% 16.0% 69.2% 

Permeability 
(LOG10) 

NN 33.2% 16.5% 62.9% 

RF 37.0% 16.4% 61.5% 

GB 34.4% 16.9% 62.2% 

 

In this case study, NN has overall slightly better 
performance in terms of metrics of accuracy and 
correlation, while RF and GB also provide reasonable 
prediction. However, it should be noted that prediction 
accuracy depends on many factors including feature 
engineering, hyper-parameter tuning, and training vs. 
validation vs. testing data splitting. 

6. Conclusion 
We have demonstrated that it is feasible to integrate core 
images and well logs into quantitative petrophysical 
characterization workflow, with the assistance of 
computer vision and machine learning technology. We 
successfully applied the workflow on data from several 
heterogeneous reservoirs in Saudi Arabia. The core 
images are preprocessed and analyzed with CV 
techniques to extracted features as a depth profiles. The 
features are aligned with core gamma logs and plug 
analysis. Image features such as RGB and HSV provide 
more information related to lithology while entropy and 
Haralick provide more information regarding rock 
textures. The integrated features vector is imported in ML 
models building and training with difference ML 
regression algorithms, such as CART and DNN. The 
models produce high-resolution profiles of petrophysical 
properties that can be very useful for up-scaling. We 
evaluated the importance of each feature from CART 
model for individual target, to provide petrophysical 
insights of core characteristics and help in future model 
building. We also evaluated the model performances and 
achieved reasonably good correlation and accuracy from 
the models. 
 

The AI-assisted workflow leverages machine 
learning techniques to automate the process of core data 
analysis, reduces human effort and cost, and provides fast 
core petrophysical properties prediction. The approach 
enables core digitization and core preservation, and 
reduces exploration risk, as well as provides petrophysical 
insights to assist core description. Machine leaning 
algorithms add value to business cases with workflow 
automation and improved efficiency. 
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