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Abstract. In current literature in the petroleum industry, machine learning has been used to predict capillary 
pressure only on the centrifugal data points and not the complete capillary pressure curves generated from existing 
correlations after analysis. This paper will present novel information that will benefit the petroleum industry as it 
shows machine learning techniques can be used to obtain the complete capillary pressure curve which is the end 
goal in undertaking an SCAL centrifuge experiment.  

This research involves testing core samples using a centrifuge set up to produce capillary pressure data points. 
Then, using a commercial SCAL interpretation software, the collected data is utilized to generate complete capillary 
pressure curves based on developed literature correlations. RCAL data for the core samples is also obtained to be 
used with the machine learning techniques. The machine learning models are then applied to the collected data to 
predict the capillary pressure curves. Optimization of the different machine learning techniques is done to improve 
the predictions. 

The results show the machine learning techniques perform very well on the validation set after being trained 
on the training set. The machine learning models also provide reasonable prediction of the complete capillary 
pressure curves on the testing data set. Changing of the machine learning technique parameters also shows the effect 
on the overall precision and the improvements that can be made. Further research can be done to see the effectiveness 
of using machine learning techniques to predict other SCAL properties such as relative permeability. This can then 
greatly reduce the time needed to obtain these extremely important properties for reservoir characterization. 

  
1 Introduction  
Researchers continue to find new ways to reduce the time and 
improve the accuracy of reservoir characterization [1]. 
Specialized core analysis (SCAL) examines important 
reservoir characteristics such as capillary pressure and 
relative permeability to estimate incremental oil recovery 
during secondary water or gas flooding and tertiary enhanced 
oil recovery. Arguably, SCAL is more time consuming and 
has more uncertainty compared to routine core analysis and 
fluid characterisation. Capillary pressure (Pc) is the pressure 
between two immiscible phases in a capillary tube or, in this 
case, within the rock’s pores [2]. Capillary pressure is 
measured in a lab through spontaneous imbibition, gravity 
drainage, and forced imbibition tests. Pc is used directly in 
reservoir simulators to account for unrecoverable oil and it is 
further used to estimate relative permeability or the relative 
conductivity of the rock to more than one fluid phase 
simultaneously. The three main test methods used to 
determine capillary pressure curves are centrifuge, porous 
plate, and mercury injection [2]. The advantages and 
disadvantages of these methods are summarized in Table 1. It 
is worth pointing out that mercury injection capillary pressure 
(MICP) does not respond to wettability components in the 
pores since Hg is an ideal non-wetting fluid. Hence MICP 
reflects only the pore geometry and therefore differs slightly 
from other tests that use oil/brine/gas. 
 
The oil and gas industry has always been highly competitive 
and somewhat unpredictable. In recent years, companies have 

begun using machine learning techniques to combat several 
challenges and issues in data processing and handling in 
various oil and gas activities such as reducing risk factors and 
cost of maintenance [3]. In current literature, machine 
learning has been used to predict the experimental capillary 
pressure data points obtained from centrifugal and mercury 
injection tests with varying results [4-6]. For the case that did 
use centrifugal data, correlations were not applied to the 
experimental results to obtain a complete capillary pressure 
curve. This research aims to obtain complete capillary 
pressure curves generated from existing correlations after 
analysis of centrifugal data and then test the novelty in using 
machine learning techniques to predict the experimental 
capillary pressure curve and water saturation. Three machine 
learning techniques, including the artificial neural network, 
support vector regression and random forest regression were 
used to predict the capillary pressure from centrifuge test 
samples with routine core analysis data (porosity, 
permeability, grain density, and irreducible water saturation) 
being used as inputs. ML-based approaches generate a multi-
point capillary pressure curve as a function of fluid saturation 
using the provided input parameters. The ML prediction is 
not just a single value just as the experimentally measured 
and calculated capillary pressure values are recorded at 
discrete fluid saturation points. Although experimental 
techniques are broadly used to generate the capillary pressure 
curve of core samples, they are expensive and require core 
samples to be in reservoir conditions that is very difficult to 
achieve. As a result, researchers ponder whether data-driven 
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methods can estimate SCAL data. Can one develop accurate 
machine learning methods to predict SCAL data such as 
capillary pressure of core samples from routine core analysis 
data without a need for time consuming and finicky 
laboratory experiments? 

Table 1. Pc Methods – Advantages and Disadvantages [2] 

Method Advantages Disadvantages 

Centrifuge 
- Applicable to most 
rock types 

- Simple and quick 
- Non-destructive 
test 

- Uses synthetic 
reservoir fluids 

- Most expensive 
method 

- Raw production 
data needs to be 
corrected by the 
test lab 

Porous Plate 
- Best method to 
achieve a uniform 
saturation profile 

- Uses synthetic 
reservoir fluids 

- Non-destructive 
test 

- Time consuming to 
achieve complete 
Pc curve 

- Time allowed to 
achieve equilibrium 
can completely 
govern resultant 
curve 

Mercury 
Injection 

- Low-cost technique 
- Rapid tests 

- Not representative 
of reservoir fluids 

- Test is destructive 
(mercury remains 
in sample) 

1.1 Machine Learning Technique Types  

Machine learning is the broad study of programming 
algorithms that can learn through experience from the use of 
a variety of data [7]. Machine learning techniques are 
categorized into either supervised or unsupervised learning 
with supervised learning being further broken into 
classification and regression as shown in Fig. 1.  

 
Fig. 1. Machine Learning Algorithm Breakdown [8] 
For the purposes of this research, supervised learning 
regression techniques that were used are briefly explained as 
follows. 

1.1.1 Support Vector Regression 

Support vector regression (SVR) is a popular technique 
where support vector machines are adapted for regression 
with a quantitative response [9]. The technique provides 
flexibility in defining the acceptable error for the model and 
determines an appropriate line or hyperplane fit to the data 
[10]. For SVR, the objective function is to minimize the L2-
norm of the coefficient vector. One strength of SVR is a 
variety of kernel functions being available to select or modify 
depending on the requirements for your own predictions [11]. 
The kernel function transforms data that are not linearly 
separable to linearly separable in a higher dimensional space. 
As well, given its dependence on support vectors, not all 
training data is needed for predictions. The support vectors 
determine the decision boundaries between the data from 
different trends that are used to do regression. SVR is a 
supervised technique in which data are fed into the model in 
(input, output) pairs. 

1.1.2 Artificial Neural Network 

Artificial neural network (ANN) is another regression 
technique that learns from processing (input, output) data 
pairs supplied during the training-testing split of input data. 
The more examples and variety of inputs the model is given, 
the more accurate the model typically will predict outputs [9]. 
Fig. 2 below shows the architecture of an ANN model, where 
the X nodes are the input layer, the Z nodes are the hidden 
layer, and the Y nodes are the output layer. For this study, X 
consists of porosity, permeability, grain density, and 
irreducible water saturation and Y consists of capillary 
pressure and water saturation. The number of hidden layers 
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and epochs (number of cycles through the training data) can 
be varied to see their effect on the predictions. The input to 
every hidden layer is the linear combination of the outputs of 
the previous layer passed through a non-linear function, also 
called the activation function. Activation function can be one 
of hyperbolic tangent (tanh), sigmoid, Rectified Linear Unit 
(ReLU), linear, etc. 

 
Fig. 2. Single Hidden Layer ANN [8] 

1.1.3 Random Forest Regression 

Random forest regression (RFR) is a supervised learning 
technique that utilizes ensemble learning for regression 
analysis. The method uses predictions from multiple learning 
algorithms to obtain a more accurate prediction [12]. RFR is 
also one of the most powerful regression techniques and is 
useful for non-linear relationships.  A typical setup of a RFR 
model is where multiple decision trees are constructed on 
training data and the mean of the trees is outputted as the 
prediction. Each tree processes the input parameters, 
including the porosity, permeability, grain density, and 
irreducible water saturation to predict capillary pressure and 
water saturation. Therefore, capillary pressure and water 
saturation are the output of each tree. The final output will be 
the average of all trees outputs in the forest. 

However, it should be pointed out that capillary pressure 
curves generated by machine learning methods and 
experimental methods are often not accurate and seldom 
match the distribution of wetting and non-wetting phases 
sensed by imaging techniques. An ML-based method can 
predict water saturation and capillary pressure curve much 
faster than laboratory methods and potentially with no more 
uncertainty. Also, ML-based methods can be generalized to 
different fields if enough samples are used to train the models. 
In this manner, the need for core samples from new fields in 
reservoir conditions is mitigated. 

2 Literature Review 

2.1 Centrifuge Capillary Pressure Correlations 

The centrifuge capillary pressure problem involves solving 
the challenge of determining local saturations along the 
length of the core based on the averaged saturations measured 
during the centrifuge experiment [13]. To solve the centrifuge 
capillary pressure problem numerous correlations have been 
developed that take on the general form of Eq. 1. 

𝑆𝑆(𝑃𝑃𝑐𝑐1) = 𝑎𝑎1�̂�𝑆(𝑃𝑃𝑐𝑐1) + 𝑎𝑎2𝑃𝑃𝑐𝑐1
𝑑𝑑�̂�𝑆(𝑃𝑃𝑐𝑐1)
𝑑𝑑𝑃𝑃𝑐𝑐1

+ 𝐸𝐸  (1) 

where , , and  will vary depending on the correlation 
used [14]. The main assumptions are hydrostatic equilibrium 
being reached at each phase and the boundary condition of 
the capillary pressure being zero at the outflow face [13]. 
𝑆𝑆(𝑃𝑃𝑐𝑐1) is the local saturation and �̂�𝑆(𝑃𝑃𝑐𝑐1) is the average 
saturation measured during the centrifuge experiment. Pc1 is 
determined from Eq. 2. 

𝑃𝑃𝑐𝑐1 = 1
2
Δ𝜌𝜌𝜔𝜔2(𝑟𝑟22 − 𝑟𝑟12)  (2) 

Where Δ𝜌𝜌 is the difference in the fluid densities and 𝑟𝑟1 and  
𝑟𝑟2 are the radii at the inner and outer faces of the sample in 
the centrifuge core holder and  is the rotation speed.  

2.1.1 Hassler Brunner Method 

The simplest solution for the centrifuge capillary problem 
was developed by Hassler and Brunner and it is also the 
poorest solution as it neglects both radial and gravity effects 
[15]. These assumptions can be satisfied for very short and 
narrow samples spun far from the rotation axis. In the case of 
the general centrifuge capillary problem, the Hassler-Brunner 
equation reduces to the following: 

𝑆𝑆(𝑃𝑃𝑐𝑐1) = �̂�𝑆(𝑃𝑃𝑐𝑐1) + 𝑃𝑃𝑐𝑐1
𝑑𝑑�̂�𝑆(𝑃𝑃𝑐𝑐1)
𝑑𝑑𝑃𝑃𝑐𝑐1

  (3) 

where  𝑎𝑎1 = 1, 𝑎𝑎2 = 1 and 𝐸𝐸 = 0. 

Forbes first solution demonstrated that this solution is always 
significantly lower, in terms of saturation, than the true 𝑆𝑆(𝑃𝑃𝑐𝑐) 
solution [14]. 

2.1.2 Forbes First Solution 

Forbes built upon previous solutions to the centrifuge 
capillary problem and came up with his own solution that still 
neglects both radial and gravity effects but incorporates the 
difference in the centrifuge core radii [13]. Forbes solution 
took the form shown in Eq. 4.s 

𝑆𝑆(𝑃𝑃𝑐𝑐1) = �̂�𝑆(𝑃𝑃𝑐𝑐1) + 1
1+𝛼𝛼

𝑃𝑃𝑐𝑐1
𝑑𝑑�̂�𝑆(𝑃𝑃𝑐𝑐1)
𝑑𝑑𝑃𝑃𝑐𝑐1

  

where 𝑎𝑎1 = 1, 𝑎𝑎2 = 1
1+𝛼𝛼

 and 𝐸𝐸 = 0. 
(4) 

𝛼𝛼 = 1− √1−𝐵𝐵
1− 2√1−𝐵𝐵

  (5) 

𝐵𝐵 = 1 − �𝑟𝑟1
𝑟𝑟2
�
2
  (6) 

2.1.3 Spline Functions 

Nordtvedt and Kolltvelt were first to approximate the wetting 
phase saturation as a function of the capillary pressure 
whereby the capillary pressure curve is approximated 
piecewise by a polynomial [16]. This parameter estimation 
technique is usually related to functions which are too 
simplistic to describe the shape of capillary pressure curves 
[15]. A linear system of equations is then obtained and the 
piecewise approximation polynomial takes on the form 
shown in Eq. 7. 
𝑆𝑆(𝑃𝑃𝑐𝑐1) = 𝑎𝑎𝑖𝑖,𝑜𝑜 + 𝑎𝑎𝑖𝑖,1𝑃𝑃𝑐𝑐1 + 𝑎𝑎𝑖𝑖,2𝑃𝑃𝑐𝑐2𝑖𝑖 = 1,2, …𝑛𝑛𝐼𝐼  (7) 

Where  indicates the interval number and  refers to the 
total number of intervals. 
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2.2 Current Machine Learning Applications 

Busaleh et al. used several types of machine learning 
techniques to predict capillary pressure in carbonate oil 
reservoirs from data comprised of mercury injection drainage 
capillary pressure data [4]. Their data consisted of 202 
carbonate core samples that contained at minimum 70 
capillary pressure versus saturation points in addition to the 
corresponding porosity, permeability, and grain density for 
the core. For their machine learning techniques, the inputs 
used were porosity, permeability, grain density, and water 
saturation with their output being capillary pressure. They 
used a training-testing split of 70-30 of the core sample data. 
With the variety of machine learning techniques came with 
mixed results. ANN-trainbr, ANN-trainlm, ANN-trainscg, 
ANN-trainoss refer to neural networks using Bayesian 
regularization backpropagation, Liebenberg-Marquardt 
optimization, scaled conjugate gradient, and one-step secant 
methods, respectively. 

The decision tree algorithm performed the best on the training 
data however this is likely due to overfitting as it performed 
considerably worse on the testing set. The ANN-trainbr 
method performed the best overall; however, there is still 
significant room for improvement [4].  

Jamshidian et al. obtained centrifuge capillary pressure data 
for 15 core samples each of which having 27 capillary 
pressure data points totalling 405 data points. They completed 
seven cases to see the effects of additional input parameters 
on the final predictions [5]. An ANN model with a Cuckoo 
optimization algorithm was used to predict capillary pressure 
as the only output which was then compared against the 
experimental centrifuge values. The training set consisted of 
8 cores with the remaining 7 used for validation.  

Table 2. ANN Models with Input Parameters [5] 
ANN Modelling Case Contributing Input Parameter(s) 

Case 1 Sw 
Case 2 Sw, kair 
Case 3 Sw, kair, φ 
Case 4 Sw, kair, φ, Sw,irr 
Case 5 Sw, kair, φ, Sw,irr, kw 
Case 6 Sw, kair, φ, Sw,irr, kw, ko @ Sw,irr 
Case 7 Sw, kair, φ, Sw,irr, kw, ko @ Sw,irr, ρgrain 

Table 2 above shows the different cases modelled with the 
addition of input parameters. Water saturation, air 
permeability, porosity, irreducible water saturation, water 
permeability, oil permeability at irreducible water saturation, 
and grain density were the contributing input parameters. 

  

Fig. 3. Correlation Coefficients for the Different Cases [5] 

From Fig. 3 the increase of input parameters correlates with 
an increase in the correlation coefficient for both the training 
and testing data sets. Case 1 through 7 correlates to the ANN 
modelling case and contributing input parameters shown in 
Table 2. Also, the greatest prediction comes with all the input 
parameters being used. Fig. 4 below highlights the accuracy 
of the predictions for core number 9 under the case 7 scenario. 

 

Fig. 4. Core Number 9 Experimental versus Predicted Values [5] 

Kasha et al. developed a new method for capillary pressure 
estimation based on the Leverett J-function as shown in Eq. 
8. This is a dimensionless function of water saturation 
describing capillary pressure also considering pore size and 
interfacial tension [6].  

𝐽𝐽(𝑆𝑆𝑤𝑤) =
𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤)�𝑘𝑘

𝜙𝜙

𝛾𝛾cos 𝜃𝜃
  (8) 

𝑟𝑟 = 900.33�𝑘𝑘
𝜙𝜙

  (9) 

Eq. 9 above is the Carman-Kozeny equation which was used 
to determine the average pore size. The data consisted of 214 
samples of mercury injection data with permeability and 
porosity data and the J versus water saturation for each curve 
was calculated. The workflow consisted of the formulation of 
grouping features from porosity, permeability, and pore 
throat-radius. The formed grouping features can be seen in 
Eq. 10 and 11.  

𝐹𝐹1 = 0.01(ln 𝑘𝑘ln 𝑟𝑟0.5 − 3.23)  (10) 

𝐹𝐹2 = 0.39 �𝜙𝜙
0.5ln 𝑘𝑘
ln 𝑟𝑟0.5 − 0.11�  (11) 
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This approach was compared against the flow zone indicator 
(FZI) method, which is a rock typing method grouping 
capillary pressure data into different rock types [6]. 
𝐹𝐹1(𝐹𝐹𝐹𝐹𝐼𝐼) = 0.37 �log 𝜙𝜙

1−𝜙𝜙
+ 2.71�  (12) 

𝐹𝐹2(𝐹𝐹𝐹𝐹𝐼𝐼) = 0.28 �log �𝑘𝑘
𝜙𝜙

+ 1.71�  (13) 

Next an unsupervised machine learning technique 
(clustering) was used to group each sample based on the 
grouping features. A technique called the within-cluster sum 
of squares (WCSS) was used to determine the optimum 
number of clusters. 

 

Fig. 5. WCSS Optimum Clusters [6] 

The WCSS is the sum of squared deviations between each 
cluster’s data points and the cluster’s centroid. In this case, as 
shown in Fig. 5, four scenarios were considered based on the 
maximum curvature of 6 and three higher cluster scenarios of 
10, 15 and 20 clusters. 

The results of the cluster scenarios based on the grouping 
features can be seen in Fig. 6.  

 

Fig. 6. Clustering Scenarios Based on Grouping Features [6] 

From these generated clusters in each of the scenarios, an 
average J curve was calculated based on the J curves for each 

sample that were identified in the specific cluster as seen in 
Fig. 7. 

 
Fig. 7. Average J Curves Based on Clustering Scenarios [6] 

An example of the average J curves calculated against the J 
curves for each sample identified in a cluster is shown in Fig. 
8. This is showing the curves for cluster 1 and 2 for the 6 
clusters scenario. 

 

Fig. 8. Cluster 1&2 J Curves for 6 Cluster Scenario [6] 

Next, classification algorithms (supervised machine learning) 
were used to develop maps for the prediction of 
corresponding clusters for new samples. The algorithms used 
were K-nearest neighbours (KNN), kernel support vector 
machine (KSVM), decision tree (DT), and random forest 
(RF) which were validated by using six carbonate rocks and 
comparing with the respective experimental data. The best 
predictions were for the 6 and 10 cluster scenarios with the 
accuracy for each algorithm found below in Table 3. 

Table 3. Classification Algorithm Results [6] 
 

Classification 
Algorithm 

Current Method 
6 

Clusters 
(%) 

10 
Clusters 

(%) 
KSVM 97.09 91.24 
KNN 95.95 90.62 
RF 95.29 87.75 
DT 94.12 81.90 

As shown, KSVM provided the highest accuracy in the 
predictions. This algorithm was then subsequently used to 
classify the validation set (6 carbonate rocks). The rock 
properties and the grouping features for each can be seen in 
Table 4 along with the identified cluster for each rock. 
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Table 4. Summary of Rock Properties and Validation Results [6] 

Rock Information Grouping 
Feature 

Identified 
Cluster 

Rock 
Type k (md) Φ 

(%) 
r 

(µm) F1 F2 
6 

Clusters 
(KSVM) 

10 
Clusters 
(KSVM) 

1 124.350 1.21 91271 0.91 0.10 4 5 
2 26.710 11.87 13506 0.69 0.44 4 5 
3 5.580 10.05 6709 0.57 0.39 3 6 
4 0.586 8.64 2345 0.43 0.35 3 3 
5 0.041 6.12 737 0.28 0.27 1 9 
6 0.003 4.51 232 0.16 0.20 1 9 

Busaleh et al. presented work completed on mercury injection 
data from carbonate rocks. Although they used a variety of 
machine learning techniques, results were poor, and more 
emphasis could have been placed on obtaining better results 
from a few techniques.  

The work from Jamshidian et al. used centrifuge experimental 
data and an ANN with a Cuckoo optimization algorithm 
being used to predict capillary pressure with varying inputs. 
It is important to note here the predictions were completed on 
capillary pressure experimental centrifuge points with water 
saturation being used as an input. 7 different cases were 
conducted with each case involving an additional input 
parameter which in turn increased the accuracy of the 
predictions. The limitation here however was the use of the 
raw centrifuge experimental points. The use of an 
interpretation software was not used to apply literature 
correlations to obtain a complete capillary pressure curve. 

Kasha et al. took a different approach in using an 
unsupervised algorithm, clustering, first followed by 
classification algorithms. The limitation here being the need 
for an abundance of mercury injection data for many samples 
to be clustered together and an accurate average J curve for 
those types of rocks to then be developed. Other approaches 
could have been taken as well with regards to the pore size 
distribution such as the Winland r35 values. 

This research aims to show the novelty of using machine 
learning techniques to predict complete capillary pressure 
curves developed from conducting centrifuge tests followed 
by using SCAL interpretation software to apply literature 
correlations. This is turn can reduce the time to obtain a 
complete capillary pressure curve and help improve reservoir 
characterization which is the end goal in undertaking a SCAL 
centrifuge experiment. Although several researchers have 
used ML methods to predict SCAL data, they have focused 
on predicting a single value of the quantity of interest (relative 
permeability, capillary pressure, water saturation, etc.). This 
study assesses the capability of three machine learning 
algorithms in generating the capillary pressure curves that 
consists of both capillary pressure and water saturation. 
Therefore, the novelty of this paper is to simultaneously 
predict capillary pressure and water saturation values to 
generate the capillary pressure curve.  

3 Methodology 

3.1 Centrifuge Capillary Pressure Tests 

For this research, multiple centrifuge capillary pressure tests 
were conducted.  The setup consisted of a VINCI RC 4500 – 
capillary pressure refrigerated centrifuge along with a 
computer with the appropriate recording and interpretation 
software. The interpretation software used was CYDAR 
which offers a powerful solution for the interpretation of 
conventional and specialized core analysis experiments. 
CYDAR is also used to record the water saturation and speed 
versus time during the experiment. A separate VINCI 
software is used to set the rotational speeds and block times 
for the centrifuge as well as setting up the camera interfaces 
for the holding cups.  

Core samples were first cleaned followed by drying out in an 
oven for approximately 1-2 days. Following drying the core 
samples, their length and diameter were recorded using a 
Vernier calliper. Next, the dry weight of the cores were 
recorded. The petrophysical properties of the cores used in 
the machine learning can be seen in Table 5 below. 

Table 5. Core Petrophysical Properties 

Core # Porosity Permeability 
(mD) 

Grain Density 
(g/mL) 

Swirr 

Core 1 0.222 300 2.011 0.045 
Core 2 0.217 180 2.089 0.098 
Core 3 0.317 2300 1.761 0.033 
Core 4 0.316 2300 1.736 0.064 
Core 5 0.308 2300 2.034 0.068 
Core 6 0.308 2173 1.811 0.2 
Core 7 0.285 2216 1.627 0.23 
Core 8 0.265 2557 1.844 0.162 
Core 9 0.261 1631 1.864 0.066 

Core 10 0.296 2868 2.032 0.306 
Core 11 0.2828 3591 1.792 0.058 
Core 12 0.267 2900 2.033 0.185 
Core 13 0.27 2200 1.686 0.23 

Next, a synthetic brine was prepared for the simulation of 
formation water, the composition is shown in Table 6 below. 

Table 6. Synthetic Brine Formulation 
Synthetic Brine Formulation 

NaCl 50.397 g/kg 96.96 g/L 
CaCl2*2H2O 13.202 g/kg 14.16 g/L 
MgCl2*6H2O 2.760 g/kg 2.96 g/L 

KCl 0.439 g/kg 0.46 g/L 
Na2SO4 0.345 g/kg 0.37 g/L 
Subtotal 107.132 g/kg 114.91 g/L 

Add Water 892.868 g/kg 957.69 g/L 
Total 1000 g/kg 1072.60 g/L 

The cores were then loaded into a vessel where the 
approximately 1 L of brine was pumped in to saturate the 
cores for approximately one day. Due to the high permeability 
of the cores one day proved sufficient in saturating the cores. 
After saturation had occurred, the wet weight of the cores was 
measured. This data was then used to calculate the porosity 
and grain density of each sample. 

The cores were then loaded into centrifuge core holders 
where the top, bottom pipe, and sleeve were determined from 
the core length as shown in Fig. 9a. 
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Fig. 9a) Assembled Core Sample (left) 9b) Holding Cup (right) 

The core holders were pressurized to 2000 psi using a hand 
pump and silicone oil. Small amounts of deionized water and 
oil were put into the holding cups to create an interface as 
seen in Fig. 17b. The core holders were also weighed to 
ensure symmetrical weight before being loaded in the 
centrifuge. 

Once loaded in the centrifuge, the recorded data was inputted 
in CYDAR, and the recording software was loaded. Multi-
step speeds (between 500 to either 3500 or 4500 rpm in 
increasing 500 increments) as well as step durations were 
specified, and the camera was set to record the oil-water 
interface for the respective cups as shown in Fig. 10. This 
figure shows an oil-water system with the right arrow 
indicating the water side and the left arrow indicating the oil 
side. The arrow pointing between the two indicates the oil-
water interface. Throughout the drainage experiment as the 
oil is forced into the core and the water out, the interface will 
gradually move towards the left. The camera was also 
checked periodically to ensure it was still properly recording 
the interface.  

 

 

 

 

 

 

 

 

 

Fig. 10. Camera Interface 

Upon completion of the centrifuge test, the next step was to 
process the recorded data. This required the use of CYDAR 
interpretation software. The water saturation versus time data 
was cleaned to exclude any outlier data that the camera may 
have recorded, and the block times and durations were 
recorded and entered for CYDAR to calculate the capillary 
pressure based on the step speeds. For each core, an analytical 
fit was calculated for the experimental data and Forbes first 
solution correlation [13] was applied to the experimental data. 
An example of a complete capillary pressure curve for a 

sample after processing can be seen in Fig. 11. A bi-
exponential fit was the analytical method used in this case. As 
shown, both analytical and Forbes methods lack rigor to fit 
the experimental data. 

 

Fig. 11. Core 3 Processed Data (drainage capillary pressure) 

For each of the 13 cores the Forbes first solution was 
applied to the experimental data. Using CYDAR, data from 
the Forbes curves was discretized to be used for the machine 
learning techniques in order to predict the Forbes curves. 

3.2 Machine Learning Techniques 

A spreadsheet was developed to collect all the test data for 
the machine learning techniques before pre-processing of the 
data from 13 core samples. The machine learning workflow 
followed in this case can be seen in Fig. 12.  

 

Fig. 12. Machine Learning Workflow 

The inputs for the machine learning techniques as mentioned 
previously were the routine core analysis data of porosity, 
permeability, grain density, and irreducible water saturation. 
The outputs were water saturation and capillary pressure; 
subsequently, multi-output regression models were 
developed. Data for 2 core samples were put into a separate 
file to be used as a test set after model development. Note that 
for these 2 samples, 1995 (input, output) data points were 
recorded. For the remaining 11 cores, a training-testing split 
of 70-30 was used to train the models. Using these 11 cores, 
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10,955 (input, output) data points were recorded and used to 
train and validate the ML models. Depending on the 
technique used, the parameters were defined for each; for 
ANN the epochs, activation function, hidden layers, and 
neurons, for RFR the number of trees, and for support vector 
regression the tolerance and max iterations. Standardization 
and normalization feature scaling were also implemented to 
see how they would affect overall performance. Eqs. 14 and 
15 show the methods for standardization and normalization, 
respectively. 

𝑋𝑋′ =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎 , (14) 

where  is the mean of the feature values and  is the standard 
deviation of the feature values. 

𝑋𝑋′ = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

,  (15) 

where  and  are the minimum and maximum of the 
feature, respectively.  

Once the models were run on the training and testing data, 
their performance was measured using 2 measurements, 
including the mean squared error (MSE) and correlation 
coefficient (R2) where n corresponds to the total number of 
data points. 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑛𝑛

. Σ(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)2 (16) 

Finally, once all models were developed on the validation 
data set, they were then tested and evaluated on the unseen 
data set. All machine learning methods were implemented 
using Python 3.7 programming language along with Keras 
library with Tensorflow 2.3 backend. 

4 Results and Discussion 
The results from all ML algorithms on the validation data is 
shown in Table 7. 

Table 7. ML Models Results – Test Data 

ML Algorithm MSE R2 (Validation 
Data) 

Random Forest 2.09×10-5 0.9997 

Neural 
Network 

0.00222 0.9937 

Support Vector 0.00436 0.9543 

All models performed well with random forest being the best 
with a correlation coefficient of 0.9997. Figs. 13 and 14 show 
the prediction versus experimental data for ANN for capillary 
pressure and water saturation, respectively.  

 

 

 

Fig. 13. ANN Validation Data Results – Capillary Pressure 

 

Fig. 14. ANN Validation Data Results – Water Saturation 

Similarly, Figs. 15 and 16 highlight the results for the SVR 
model and Fig. 17 and 18 are the results for the RFR model 
on the testing data.  

 

Fig. 15. SVR Validation Data Results – Capillary Pressure 
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Fig. 16. SVR Validation Data Results – Water Saturation 

 

Fig. 17. RFR Validation Data Results – Capillary Pressure 

 

Fig. 18. RFR Validation Data Results – Water Saturation 

A sensitivity analysis was also completed on the ANN 
parameters of hidden layers, neurons, and activation 
functions. The base case for the following graphs is a model 
with 32 neurons, 2 hidden layers and a rectified linear unit 
(ReLU) activation function (i.e. when seeing the effects of 
changing neurons, 2 hidden layers and ReLU activation 
function is used). 

 

Fig. 19. Varying ANN MSE Results 

 

Fig. 20. Varying ANN R2 Results 

As can be seen from Figs. 19&20 the biggest change in 
prediction accuracy comes with the change in using Tanh as 
the activation function. Minimal changes occurred in the 
prediction accuracy with varying the hidden layers with 2 
hidden layers performing the best. Finally, for the varying of 
neurons, the greatest error occurred when using 16, while the 
greatest prediction happened using 32. 

With the ML models developed, the test set of the 2 cores that 
was set aside was then given to the models for predictions. 
The following graphs highlight the accuracy of each model 
showing the test data results with the results on the test set 
when using normalized and standardized feature scaling. 
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Fig. 21. MSE Results of Models for Test and Validation Data 

 

Fig. 22. R2 Results of Models for Validation Data 

Following the evaluation of the validation data, unseen data 
consisting of 2 cores was used to test the accuracy of the 
models. The results for each of the models can be seen in 
Table 8. 

Table 8. ML Models Results – Unseen Data 

ML Algorithm MSE R2 (Unseen 
Data) 

Random Forest 0.0248 0.9734 

Neural Network 0.1034 0.8886 

Support Vector 0.0438 0.9527 

As shown in Fig. 23, although RFR performed the best 
overall on the validation data and unseen data with regards 
to the performance metrics, it is very noisy when predicting 
unseen data. SVR performed the greatest overall with a 
smoother curve, however the entry capillary pressure was 
predicted higher.  

 

Fig. 23. Unseen Data Model Results – First Core  

 

 

Fig. 24. Unseen Data Model Results – Second Core  

Similar to the first core, RFR was noisy again in predictions 
for the second core. ANN and SVR curves were smoother 
but showed differences in the entry capillary pressure. 

5 Conclusions 
This work investigated various machine learning techniques 
in predicting complete drainage capillary pressure curves. 
Centrifuge capillary pressure tests were conducted with 
SCAL interpretation software being used to apply the Forbes 
First solution correlation. Data for 13 cores was obtained 
along with the respective RCAL data of porosity, 
permeability, grain density, and irreducible water saturation 
for each core. Once all the data was collected, three machine 
learning models were developed using training and validation 
data sets with some of the collected data set aside to be used 
as a test data set. Some of the key findings from this work 
were that the three techniques used all performed very well 
on the validation data set as evident from the performance 
metrics used. Another takeaway is the effectiveness of 
conducting a sensitivity analysis as evident in the results from 
the ANN model when changing the neurons, hidden layers, 
and activation function used.  

Some recommendations for future work are to conduct 
centrifuge experiments on more cores of different rock types 
to see how the models will perform when using a variety of 
rock types. As well as, incorporating additional input data 
such as pore size distribution to see the effects. Additional 
cores could also be added to the unseen data for the models 
to increase the accuracy of the predictions. With the success 
of applying machine learning techniques to capillary 
pressure, future work can also be to conduct other SCAL tests 
such as relative permeability to see the effectiveness of 
machine learning techniques in predicting other reservoir 
characteristics.  
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