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Abstract  

Relative permeability and capillary pressure saturation functions are key uncertainties in reservoir 
engineering. Many resources are spent on measuring these functions in special core analysis (SCAL) for 
field developments. Despite the effort and time invested, it is not yet common practice to numerically 
interpret SCAL data, nor is it common practice to study the resulting uncertainty to reliably extract these 
two-phase saturation functions. Further developments are particularly important for complex rock types 
such as microscopically and macroscopically heterogeneous carbonates. 

Here, we present a MATLAB-MRST-based simulator for simultaneous matching of SCAL data sets from 
different experimental techniques. We focus on the most common SCAL techniques, namely, steady-state 
relative permeability and centrifuge capillary pressure. We discuss the implementation of the common 
parametrized relative permeability representations and their deficiency to describe data from rather complex 
rocks such as carbonates. To overcome this limitation, a point-by-point approach is developed and applied 
to an extensive carbonate data set. For uncertainty analysis, a Markov chain Monte Carlo (MCMC) 
sampling-based workflow is implemented and applied. The uncertainty is discussed in the frame of the 
individual data set, simultaneously analyzed data sets, and the sample-to-sample variation, which is an 
essential step toward stochastic reservoir modeling. 

 

1. Introduction 
Dynamic reservoir simulations require relative 
permeability (𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤)) and capillary pressure (𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤)) 
saturation functions when immiscible fluid displacement 
is of concern. Common examples are water flooding for 
oil production (water/oil), the production of deep 
geothermal systems (water/steam) and the geological 
storage of CO2 (water/CO2). In these operations, 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) 
and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) decisively dominate the fluid displacement 
efficiency, sweep efficiency and injection/production 
pressure. History matching (HM) and predicting reservoir 
performance by numerical simulations therefore require 
an accurate input for those saturation functions. 
Classically, 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) are measured in 
laboratories by core flooding, which is subject to special 
core analysis (SCAL). 

In SCAL, relative permeability is measured by the 
flooding experiments e.g. steady-state (SS) method, in 
which the two fluid phases, e.g., oil and water or CO2 and 
water, are injected simultaneously at a constant total 
injection rate and at a certain fractional flow. By 
measuring the differential pressure and the water 
saturation after reaching steady-state conditions, Darcy’s 
law can be used to calculate the relative permeability at 
that fractional flow point, and the scanning of the 
fractional flow curve allows us to measure the entire 
relative permeability curves. However, typically, the 
measured differential pressure cannot be assigned to a 
single 𝑆𝑆𝑤𝑤, since capillarity influences the fluid 
distribution in the rock—the so-called capillary end 
effect—𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) are coupled [1, 2]. 
Furthermore, in flooding experiments, the saturation 

endpoints are typically not reached in a finite time. 
Toward endpoints, relative permeability measurements 
are often extended by other experimental methods, such 
as single-speed centrifuge experiments. In these 
examples, it turns out that single measurements may not 
describe a saturation function sufficiently, which means 
that measurements and analyses need to be combined. 
This is due to the natural inference of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) 
in any type of two-phase flow experiments. For this 
reason, the classic analytical solutions to the SCAL 
experimental methods, such as using Darcy’s law for SS, 
JBN analysis [3] for un-steady state (USS), and Hassler–
Brunner [4] and Hagoort’s [5] approaches for the analysis 
of centrifuge measurements, fail, as does the numerical 
description of individual data sets [6]. 

By numerical data interpretation, the full physical 
picture can be considered by a subsequent interpretation 
of 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) and 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) experiments or by a simultaneous 
interpretation of data sets [7, 8]. The latter case does not 
refer to the best match of the individual data set but to the 
best combined description, leading to a robust and reliable 
interpretation. Numerical SCAL interpretation refers to 
the inverse modeling approach, in which the simulation 
results are iteratively matched to the experimental data. 
However, inverse modeling is an ill-posed problem with 
intrinsic uncertainties [9]. Non-uniqueness and 
instabilities in part are the results of weighting assigned in 
the objective function, averaging methods applied and 
experimental uncertainties such as instrumental noise and 
systematic errors. It is also not necessarily given that the 
underlying physical model is sufficient to describe 
experimental observations. Examples may be simple, e.g., 
sample heterogeneity that is typically not accounted for in 
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SCAL interpretation, and pressure and saturation 
fluctuations by ganglion dynamics are not represented in 
the modeling approach using Darcy’s law [10, 11]. 
Additionally, the restriction to certain parametrized 
representations of 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) and 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤), such as the Brooks 
Corey [12], modified Corey [13] or LET [14] 
representations, may be a threat for the interpretation of 
complex rocks such as carbonates [9]. As a result of this 
discussion, single representations of 𝑝𝑝𝐶𝐶  and 𝑘𝑘𝑟𝑟 saturation 
functions may not be sufficient for reliable reservoir flow 
predictions; uncertainty intervals should be included in 
modern stochastic reservoir modeling. The first promising 
attempts in this direction have been made in [9, 11, 15]. 
However, neither numerical interpretation nor uncertainty 
modeling is yet common practice in SCAL interpretation. 
A reason may be that the sophisticated SCAL simulation 
tools are proprietary, which hinders developments in this 
area. 

With this paper, we provide an MRST-based open-
source simulator running in MATLAB, for a 
comprehensive interpretation of SCAL experiments. The 
work focuses (a) on uncertainty modeling and 
probabilistic analysis following a Monte Carlo type of 
sampling with the goal of obtaining realistic intervals for 
early decision making and stochastic reservoir modeling. 
(b) Saturation functions are optionally constructed 
differently from common representations, depending on 
the complexity of the rock type under investigation. For 
the interpretation of rock types with a high complexity 
(the majority of carbonates), we introduce an optional 
point-by-point approach, which does not follow a 
specified mathematical function. With this approach, we 
overcome the limitations of the classic parametrization, 
which is demonstrated and discussed on a complex 
carbonate. The simulator runs forward simulations with 
the MATLAB Reservoir Simulation Toolbox (MRST) 
[16]. The gradient-based history matching used the 
MATLAB optimization toolbox. We also employed 
parallel high-performance delayed-rejection adaptive-
metropolis Markov chain Monte Carlo (MCMC) 
(ParaDRAM) [17], all of which are open-source toolboxes 
built in MATLAB. 

2. Experimental Materials and Methods 
SCAL experiments were performed on Estaillades 
limestone, a rather complex, dual porosity carbonate rock 
type. The SS and centrifuge (CF) data were published in 
[18]. The data set represents a primary drainage process 
on the original water-wet state of the rock. 

Rock Samples: Experimental results from 5 rock 
samples taken from the same outcrop block of Estaillades 
limestone are discussed in this paper. The average 
porosity was determined to be 𝜙𝜙~0.28, and the average 
permeability was determined to be 𝐾𝐾~164 mD. The 
sample properties are summarized in Table 1. The block 
showed overall porosity variations of 10% and 
permeability variations of 28% [18]. 
 

Table 1: Rock samples, rock properties and experimental 
process. 

Sample 
ID 

Porosity 
(fraction) 

Permeability 
(mD) 

Measurement 

1 0.293 142.3 Steady-state relative 
permeability; 
primary drainage 

2 0.271 141.8 

3 0.283 204.1 Multispeed 
centrifuge capillary 
pressure; primary 
drainage 

4 0.283 141.2 
5 0.274 189.8 

The rock type was of dual porosity with a pure calcite 
mineralogy [18]. The samples were drilled and cut to 
dimensions of 3.75 cm diameter and 5 cm length for both 
types of experiments. Subsequently, the samples were 
cleaned, and 𝑆𝑆𝑤𝑤 = 1 was established as the starting point 
for the drainage experiments. 

Fluids: The SCAL experiments were performed at 
ambient pressure and temperature conditions (22 °C) 
using brine and decane as wetting and nonwetting fluids. 
The brine contained 3 wt% NaCl and 5 wt% CsCl as X-
ray doping agents. Under experimental conditions, the 
brine viscosity was measured to be 0.993 cP, and the 
viscosity of decane was measured to be 0.827 cP. 

Steady-State Experiments: Primary drainage SS 
relative permeability experiments were performed in 
vertical geometry by simultaneously injecting oil and 
water from top to bottom. The total injection rate was kept 
constant at 3 ml/min at different water fractional flow (𝑓𝑓𝑤𝑤) 
steps. 

The samples were initially saturated to 𝑆𝑆𝑤𝑤 =1 under 
vacuum conditions, followed by the first SS measurement 
at 𝑓𝑓𝑤𝑤 =1, delivering the absolute permeability. 𝑓𝑓𝑤𝑤 was 
then stepwise decreased by keeping the total flow rate 
constant. For each 𝑓𝑓𝑤𝑤 step, the differential pressure and 
the 1D saturation profile along the core were measured 
after reaching steady state. 

The differential pressure was measured in two ways: 
(a) from injection to production end over the total porous 
domain (the data shown here) and (b) locally, over a 
length of 2.5 cm around the center of the plug over which 
the saturation profile was essentially flat (to exclude the 
capillary end effect). The local measurement allows us to 
analytically calculate the relative permeability point-by-
point using Darcy’s law. The analytical solution serves as 
an initial guess for numerical interpretation. The 
saturation was monitored by measuring the X-ray 
attenuation profile along the core, which is sensitive to 
different X-ray absorption coefficients of the fluids and 
hence to the saturation state. 

Multispeed Centrifuge Experiments: Centrifuge 
experiments were performed in drainage mode, starting 
from 𝑆𝑆𝑤𝑤 =1, established in the same way as for the SS 
experiments. The samples were desaturated in multiple 
steps of increasing centrifugal acceleration and angular 
frequencies. During the experiment, the cumulative water 
production was recorded by an automatic stroboscopic 
read-out system.  At the end of each experimental step no 
further water production was observed. From the 
cumulative water production, the average water saturation 
(𝑆𝑆𝑤𝑤) can be calculated. From 𝑆𝑆𝑤𝑤 and the centrifugal 
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acceleration, 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) can be estimated by the Hasser–
Brunner equations [4], which serve as a starting point for 
the numerical data interpretation further below. 

3. Numerical Methods and Implementation 
The forward modeling part is using the MRST to simulate 
the SS, unsteady-state (USS), and CF experiments both in 
an imbibition and drainage mode. We use the term 
“forward modeling” for the case in which we have the full 
set of rock and fluid properties available, and we 
numerically simulate SCAL experiments. Forward 
modeling is especially useful to design experiments and 
for quality control purposes of, e.g., third-party data, or to 
judge the validity of analytical solutions as starting point 
for numerical analysis; typically, analytical solutions 
serve as starting points of the numerical workflow. 

The initial step in our methodology begins with 
calculating the saturation functions from the experimental 
measurements using the corresponding analytical 
solutions, i.e., the Darcy equation for SS experiments and 
the Hassler–Brunner equations [4] for CF experiments. 
Then, we implement an objective function with which we 
search for the least mean square error between the 
experimental measurements of the SS (pressure and 
saturation profiles) and CF experiments (average water 
saturation) and the corresponding simulation predictions. 
These errors are summed up in a single total error to be 
able to match both experiments simultaneously. This 
objective function is then fed into the MATLAB 
optimization toolbox fmincon function. 

The fmincon function attempts to optimize the 
saturation functions by minimizing the least mean square 
error defined in the objective function. The variation in 
the saturation functions is done in a point-by-point fashion 
to overcome the limitations of saturation function 
parametrization functions, e.g., Corey [12] and LET [14], 
which is further explained in the section on the 
parametrization of saturation functions. The results of the 
history matching simulation are then input into the 
ParaDRAM package to run the Monte Carlo simulations, 
sampling variations of the saturation tables in the vicinity 
of the history match results, and quantify the uncertainty 
ranges around the history-matched solution. 

As far as the convenience of use and the 
computational efficiency are concerned, MRST serves 
our purpose. Details, especially on the latter, are discussed 
further below. 

Flow Equations and Solver: For the simulation of 
SCAL experiments, immiscible and incompressible fluid 
phases are assumed. Furthermore, fluid viscosities are 
assumed to be pressure independent and can be specified 
by the user. Under these conditions, two-phase flow can 
be described by the following governing equations: in the 
absence of source and sink terms, the material balance is 
expressed as: 

 
𝜙𝜙 𝜕𝜕𝑡𝑡(𝑆𝑆𝛼𝛼) + ∇ ∙ (𝑣𝑣𝛼𝛼����⃗  ) = 0             𝛼𝛼 = 𝑤𝑤, 𝑜𝑜 (1)  

 
Here, 𝜙𝜙 is the porosity and 𝑆𝑆𝛼𝛼 is the phase saturation—
both dimensionless—and 𝑣𝑣𝑎𝑎����⃗  is the Darcy phase velocity 
vector in units of m/s. Without the restriction to a specific 

combination of fluids we refer the two phases 𝛼𝛼 to oil (o) 
and water (w) in the following. The Darcy velocity 𝑣𝑣𝑎𝑎����⃗  is 
given by Darcy’s law: 

𝑣𝑣𝛼𝛼����⃗ =  −�
𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝛼𝛼

�𝐾𝐾(∇𝑝𝑝𝛼𝛼 − 𝜌𝜌𝛼𝛼𝑔⃗𝑔)       𝛼𝛼 = 𝑤𝑤, 𝑜𝑜 (2)  

where 𝑘𝑘𝑟𝑟𝑟𝑟 are the dimensionless relative permeability 
saturation functions and 𝜇𝜇𝛼𝛼 are the phase viscosities in 
Pa ∙ s. 𝐾𝐾 is the absolute rock permeability in m2, 𝑝𝑝𝛼𝛼 are 
the phase pressures in Pa, and 𝑔𝑔 is the gravitational 
constant in m/s2. Furthermore, the phase saturations 
satisfy 𝑆𝑆𝑤𝑤 + 𝑆𝑆𝑜𝑜 = 1, and incompressible flow is further 
restricted to ∇ ∙ (𝑣𝑣𝑤𝑤����⃗ + 𝑣𝑣𝑜𝑜���⃗ ) = 0. 

The solver is based on the MRST automatic 
differentiation (AD) toolbox, including differentiation 
and divergence operators, automatic differentiation to 
compute the Jacobians, object-oriented framework, and 
state functions from which we make use in the simulator. 
The details on how these operators are implemented in the 
MRST framework can be found in [19]. 

The simulation time and the desired time stepping 
are managed by using the MRST rampupTimesteps 
function, which increases the simulations' stability and 
accuracy since there are usually relatively larger changes 
in the saturation and pressure at the beginning of a 
simulation schedule. Then, the simulateScheduleAD 
function is used for simulations using fully implicit 
formulation and adaptive time step adjustments in case of 
convergence failures. 

For the carbonate rock simulations shown in this 
paper, a maximum time step of ~20 hours with ~10 
geometrically ramped-up time steps show the best 
tradeoff between the accuracy and the simulation speed 
for most of the cases. 

Parametrization of Saturation Functions: SCAL 
data are numerically calculated by varying 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 
𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) to be compared with the experimental 
measurements e.g. pressure and saturation measurements. 
Traditionally, these saturation functions are constructed 
using parametrized power law functions. These functions 
are partly physically motivated [12] and partly designed 
to allow an effective description of a wide range of rock 
types [14]. The disadvantage of power laws is that they 
generally constrain the shape of the resulting saturation 
function. They also impact the history matching process, 
as they may cause highly non-unique response surfaces of 
the objective function that the optimizer is trying to 
minimize [9]. 

In this work, saturation functions are constructed 
point by point since a higher flexibility was needed to 
describe the specific carbonate rock type. In the point-by-
point approach, we interpolate linearly between adjacent 
points using the MRST interpTable function. Derivatives 
are then computed by the piecewise linear interpolant. To 
find the overall best match of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤), the SS 
and multispeed CF data sets are interpreted pairwise and 
simultaneously. The saturation points are chosen on the 
basis of the experimental average water saturations after 
steady conditions were reached. The achieved saturation 
ranges of the individual data sets may be different. In the 
present case of primary drainage, S𝑐𝑐𝑐𝑐 may be reached by 
CF but typically not by SS. Therefore, outside the SS 
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saturation range, 𝑘𝑘𝑟𝑟 is sensitive only to the CF 
measurement. The average of the saturation profiles at 
each fractional flow from SS defines the middle range 
water saturations, and the average water saturation from 
CF experiment defines the lower water saturations. In this 
way we define the water saturation vector on which the 
history matching process is performed. For simultaneous 
evaluation of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤), the MATLAB fmincon 
function automatically scales the input parameters to 
assist the optimization process. However, during the 
uncertainty quantification using the ParaDRAM package, 
no input parameter scaling is applied. To date, the point-
by-point approach has not caused any numerical stability 
problems. 

Steady-State and Unsteady-State Model: Steady-
state and unsteady-state core flood experiments are 
modeled in a 1D linear domain as displayed in Figure 1 
using the tensorGrid function in MRST. The domain size 
is adapted to the dimensions of the rock samples and 
regularly discretized in the flow direction with a grid size 
of 1 mm. This gridding scheme is inspired from the work 
of [6]. As typical in SCAL, the domain is considered 
homogeneous in all rock properties and is populated with 
the experimentally determined average values for 𝐾𝐾 and 
𝜙𝜙. 

 
Figure 1: Modeling domains for matching steady-state (SS, left) 
and centrifuge experiments (CF, right). In this figure, 𝑓𝑓𝑤𝑤 is the 
fractional flow of water, 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 total injected flow rate, 𝜙𝜙 
porosity, 𝑃𝑃𝐶𝐶 capillary pressure, 𝐾𝐾 the absolute permeability, 
𝑆𝑆𝑤𝑤water saturation, and 𝑃𝑃0 initial pressure. 

Extra grid blocks with the same volume are added to 
either end of the simulation domain to apply the inlet and 
outlet boundary conditions. By assigning 𝜙𝜙 = 1, 𝑃𝑃𝐶𝐶 = 0, 
and straight-line 𝑘𝑘𝑟𝑟 functions, the discontinuity at the inlet 
and outlet boundary is introduced [6]. The experimental 
boundary conditions are also applied to these extra grids; 

at the inlet boundary cell, constant flow rates, and at the 
outlet, constant pressure boundary conditions are applied 
by using the fluxside and pside functions in the MRST. 
The differential pressure is calculated as the pressure 
difference between the boundary cells at each end of the 
core. Since we assume the capillary pressure in these 
boundary cells to be zero, the water and oil pressures are 
the same in both cells, and the reported differential 
pressure applies to the respective connected fluid phase in 
the domain. For the calculations of average water 
saturations, these boundary cells are omitted from the 
water saturation profile outputs since the boundary cells 
are not a part of the main core body. 

For the initialization of the primary drainage 
processes, the water saturations in the inlet and outlet 
boundary cells are set to one, and for the first imbibition 
process, they are set to zero. These settings follow the 
experimental layout, with the experiments starting at 𝑓𝑓𝑤𝑤 =
1 for drainage and at 𝑓𝑓𝑤𝑤 = 0 for imbibition. 

By realizing the boundary conditions as described 
referring to the experimental settings of the injection 
pumps and the backpressure system, the experimental 
responses can be modeled and compared to the actual 
measurements. These are the differential pressure as 
measured by pressure transducers and the 1D saturation 
profiles, which are determined by X-ray absorption 
measurements. 

Multispeed Centrifuge Model: For modeling 
centrifuge experiments, the modeling domain is set up as 
for the SS and USS core flood experiments. However, the 
driving force refers to the gravity term in equation (2). The 
model geometry is given on the right side of Figure 1. In 
centrifuge experiments, gravity is applied by centrifugal 
acceleration 𝑔𝑔𝑐𝑐𝑐𝑐 = 𝜔𝜔2𝑟𝑟, in which 𝑟𝑟 denotes the distance 
from the center of rotation; therefore, gravity varies along 
the modeling domain, i.e., along the core sample. 

For the simulations of an individual experimental 
step at a constant angular frequency 𝜔𝜔, both ends of the 
core are assigned a constant pressure boundary condition. 
The pressure boundary conditions in CF experiments are 
governed by the hydrostatic pressure in the surrounding 
fluid that invades during the CF experiment. At the 
boundary toward the center of rotation, the pressure is set 
to a constant 𝑃𝑃0 = 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔2𝑟𝑟0, while on the opposite side 
of the modeling domain, the gravitational head amounts 
to 𝑃𝑃 = 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔2𝑟𝑟𝑁𝑁+1, with 𝑟𝑟0 and 𝑟𝑟𝑁𝑁+1 being the positions 
of the two boundary grid blocks and 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 being the 
density of the surrounding/invading fluid, which is oil in 
the case of drainage and water in the case of an imbibition 
process. Defining the boundary conditions as above 
allows us to establish the surrounding hydrostatic pressure 
and naturally account for the gravity-induced fluid flow in 
and out of the modeling domain. 

A centrifuge device requires a certain time to reach 
the predefined angular velocity, which is called the startup 
time. This startup period affects the production profile, 
especially from cores with high absolute permeability. In 
the simulator, to account for the startup period we divide 
the startup rotation per minute (RPM) to the startup time 
and assume a linear increase in the centrifuge RPM to 
calculate a maximum rate at which the centrifuge RPM 
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can change over time (in the units of RPM/s). Then we 
scan through the CF rotation schedule and break it down 
into smaller RPM increase steps based on the maximum 
rate that the CF RPM can change. In the simulations, a 
startup period of 100 s to 2000 rpm is assumed, discretized 
in five 20-second steps. 

4. History Matching 
SCAL data interpretation by numerical history matching 
is well established but not yet common practice. A best 
practice is an assisted history matching procedure based 
on a user-defined objective function to be minimized, 
which also allows for a subsequent uncertainty analysis 
[9]. In this work, we go two steps beyond: first, similar to 
[20, 21], we analyze data sets of different measurements 
simultaneously instead of subsequently. Simultaneous 
analysis facilitates finding the best combined match of 
𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) by minimizing a common and 
normalized objective function. Second, in numerical HM, 
the 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) functions are typically represented 
by power laws, which is physically expected for simple 
rock types [13] [12]. The present module also allows a 
point-by-point description of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) to match 
experimental data from highly complex rock types 
without the limitations of specific power-law 
representations. 

In general, numerical HM is an underdetermined 
process, for which the Levenberg–Marquardt algorithm is 
used because of its robustness to the starting values [21] 
[22]. However, in contrast to the Levenberg–Marquardt 
approach, the MATLAB fmincon function implements 
interior-point or active-set algorithms in which a 
constrained nonlinear optimization algorithm allows for 
the implementation of inequalities; inequalities are 
essential for the aspired point-by-point approach to 
enforce monotonic behavior of 𝑘𝑘𝑟𝑟 and 𝑝𝑝𝐶𝐶  saturation 
functions, which is naturally the case by power-law 
representations. Monotonicity is demanded from a 
physical point of view, since we do not expect that, e.g., 
the phase permeability decreases with increasing 
saturation. 

Inside the fmincon function, we set the optimization 
algorithm to be the active set, as it provides the best 
possible results by minimizing the following objective 
function: 

𝐾𝐾 =  
1

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
� (

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑑𝑑𝑖𝑖

)2
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

 (3)  

 
where 𝑑𝑑𝑖𝑖 are the observed experimental values, 𝑦𝑦𝑖𝑖  are the 
simulated responses, and 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 is the number of 
parameters, which is equal to the number of measured 
data points. Various objective functions are reported in 
the relevant literature [11]. The convergence criteria for 
the fmincon function is the default 10-6 difference between 
the two last calculated objective function values. The 
𝜒𝜒2 function is most commonly used as objective function 
for history matching purpose, however we found equation 
(3) to be more suitable for the simultaneous history 
matching of SS and CF experiments and point-by-point 
representation of the saturation tables. Simultaneous 

experiments affect the data that we are matching (causing 
a different error surface) and the choice of representation 
affects the points that we are iterating on. This is because 
the measurements are at different scales (i.e., numerical 
values) and at different resolutions (i.e., point density), 
which is accounted for by the well-normalized objective 
function in equation (3). The available analytical solutions 
serve as a starting point for the HM process, which 
ensures that the solution is close enough to the optimal 
solution to minimize the chances of approaching a local 
minimum instead of the optimal solution. 

4.1 Uncertainty modeling 
After finding a match between the experimental and 
numerical responses, we explore the response surface 
around our optimal solution and determine its sensitivity. 
As also shown by [9], the history matching problem is ill-
posed with local minima. In such cases, solutions through 
a Hessian matrix and a 𝜒𝜒2 analysis may fail. Instead, we 
opt for MCMC sampling. 

In the traditional MCMC methods, manual tuning of 
parameters within the sampling algorithm may be 
required to ensure the convergence of the Markov chain 
to the target densities for the problem at hand. To avoid 
manual tuning, we use the ParaDRAM library, which 
offers a practical implementation of the delayed-rejection 
adaptive-metropolis MCMC or DRAM algorithm. 
DRAM is fully automated regarding the selection of the 
free parameters and is an extension of the traditional 
Metropolis–Hastings (MH) method [17]. 

The DRAM algorithm combines two algorithms, 
namely, the delayed-rejection (DR) and adaptive-
metropolis (AM) algorithms. The AM algorithm, as 
opposed to the MH algorithm, adapts the proposal 
distribution based on the past history of the Markov chain 
(the points sampled thus far), and the DR algorithm 
improves the efficiency of the MCMC sampler, especially 
in higher dimensional problems; in high-dimensional 
domains, the number of rejections can become more 
significant than the acceptance, strongly compromising 
the efficiency of the sampler. Therefore, DRAM can be 
useful since the point-by-point construction of saturation 
functions refers to a high-dimensional space. 
Furthermore, this method is particularly useful for 
multimodal target density functions separated by deep 
valleys of low likelihood. Therefore, in the case of 
multiple local minima in the objective function response 
surface, this method can help us find them [23]. 

The MatDRAM algorithm [23] (existing in the 
ParaDRAM library) offers a practical variant of the 
generic DRAM algorithm relaxing the requirements for 
(a) a set of delayed-rejection-stage proposal distributions 
and (b) reduces the complexity of the acceptance 
probability. Symmetric proposal distributions with a fixed 
shape are used through the DR process, and the scales are 
determined through a user-defined schedule. To run the 
MCMC simulations, we use a likelihood estimation 
function as follows: 

𝐽𝐽 =
 1
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

� −
1
2

(
𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑑𝑑𝑖𝑖

)2
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

 (4)  
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where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is a fixed value between 0 and 1 (expressed 
as a percentage below) and we multiply -1/2 to this 
function since here we aim to maximize the probability 
rather than minimizing as in equation (4). We assume a 
relative error of 2.5% for the pressure reading, 1% for the 
saturation profile of SS experiments, and 1% for the 
average water saturation of CF experiments. These fixed 
error values are simple assumptions coming from the 
experimental measurements' average standard deviation 
after steady state was reached. The experimental 
measurements act as observed (true) values, and through 
ParaMonte iterations, 𝐽𝐽 is calculated from simulation 
predictions. During the MCMC simulations, 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) is 
hard bounded between zero and one, and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) bounds 
are set to be half and double the optimum values (the 
minima – or the best saturation function - which is found 
in the history matching simulations) as lower and upper 
boundaries. 

To force a monotonic behavior of the point-by-point 
saturation functions, we define a prior inequality function 
that checks if: 

 
𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 (5)  

 
Where 𝑥𝑥 is a vector, containing the parameters that are 
history matched, and the matrix A and vector b are defined 
in a way to have: 
 

𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖+1 or 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖−1 (6)  
 
based on the type of monotony that is forced on the 
parameters. This inequality is run before the likelihood 
estimation above (equation (4)), and if it is not valid we 
reject the sample before running the simulations to save 
computational time. In this function, we create the A and 
b matrix, in the same way the inequalities are forced in the 
MATLAB optimization toolbox [24], and reject the 
samples that are not monotonic prior to our main 
likelihood estimation function. This method saves 
computational time by not rejecting samples without 
running the main likelihood estimation function. 

5. Benchmarking and Verification 
The model's accuracy was verified by using synthetic data 
sets published by Lenormand et al. [25] and Loeve et al. 
[8] for the forward modeling and history matching 
modules, respectively. The simulator has been 
benchmarked with 5 simulation cases to the results of 
accepted SCAL simulators by comparing the results to 
[25]. Figure 2 shows (a) the 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and (b) the 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) 
input and the comparison with the differential pressure 
and saturation data simulated by the SCORES simulator 
expressing 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) with a Corey model and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) as 
tabulated values. Case 1 (c) represents the differential 
pressure during SS imbibition in a neutral-wet system. 
The synthetic data set includes bump floods as typically 
performed at the end of SS experiments to increase the 
accessible saturation window. Figure 2 (d) refers to a 
water-wet primary drainage process and the respective 
average water saturation from a CF experiment. 

 

 
 
Figure 2: Verification by forward simulation using the reference 
data set presented by [25]. (a) and (b): Relative permeability and 
capillary pressure saturation functions, respectively, for primary 
drainage (case 5) and first imbibition (case 1). Panels (c) and (d) 
show the forward simulated differential pressure from SS (case 
1) and the simulated average water saturation of the CF 
experiment of case 5, respectively. The symbols are simulated 
with SCORES, and the lines correspond to the simulator 
developed in the present work. The open squares in (a) and (b) 
refer to point-by-point matches of forward simulated 
experimental responses.  

All simulation results show perfect agreement between all 
simulators, including the one developed in this work. For 
case 1, a domain discretized into 80 grid cells and a 
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maximum time step of 0.2 h lead to a runtime of ~16 s 
using a 9th series core i7 Intel CPU. For this benchmark 
we use simulateScheduleAD with the default parameters 
– fully implicit scheme and LinearSolverAD that calls 
standard MATLAB direct solver mldivide.  

To benchmark the HM module and to demonstrate 
the MC uncertainty quantification, we use the synthetic 
data set by [8] to simultaneously match an USS and multi-
speed CF imbibition experiment. The data set consists of 
unsteady-state (USS) and multispeed centrifuge simulated 
calculations (the synthetic pressure and production data). 
The Corey-type 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) [12] and the Skjaeveland-type 
[26] 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) input functions are shown in Figure 3 (a) and 
(b). The upper and lower bounds as well as the starting 
point of the HM are chosen as in [8]. The results are 
shown in the same panels. Deviations from the true values 
are found at connate water saturation and the oil endpoint 
relative permeability. The reason may be the limited 
information an USS imbibition experiment delivers at low 
water saturations. The uncertainty analysis is performed 
by assuming a 2.5% relative error for the pressure and 
production responses. Figure 3 (c) shows the resulting 
histograms and the two-parameter correlations for the 
relative permeability functions. On the contour plots, the 
Pearson’s correlation strengths are given in addition to red 
numbers [27]. Strong correlations are found between the 
endpoint relative permeability and endpoint saturations of 
the complimentary phase, as evident in the Pearson’s 
correlation matrix. The endpoint relative permeability 
also shows a strong correlation with the respective Corey 
exponents. This is a property of the specific mathematical 
representation of the saturation functions. For example, a 
change in the oil Corey exponent directly modifies the oil 
endpoint relative permeability at a given connate water 
saturation. The correlations may also provide a physical 
interpretation as far as the used function is physically 
motivated. 

Above, the classic power-law representations are 
used to history match (HM) the synthetic datasets and 
benchmark the SCAL simulator HM module. In the point-
by-point representation of the saturation functions, how 
many free history-matching parameters we have is 
determined by the count of the fractional flow steps 
implemented in the SS experiment, and the count of 
different rotational speeds implemented in the CF 
experiment. We use the 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) of [25] case 
5 as input to simulate the primary drainage SS and CF 
experiments with 12 SS fractional flow (fw) steps and 5 
CF centrifugal speed steps. The simulated experimental 
responses are then matched with the point-by-point 
approach using the analytical solutions as starting points. 
The resulting saturation curves are shown as scatter 
graphs in Figure 2 (a) and (b). Naturally, the solution 
shows a certain scatter but describes the input saturation 
functions well. Deviations are found at the oil endpoint 
𝑘𝑘𝑟𝑟. This may be expected since the SS drainage does not 
reach true 𝑆𝑆𝑤𝑤𝑤𝑤  and the centrifuge is missing sensitivity to 
𝑘𝑘𝑟𝑟 of the invading phase at that point. 

 

 
Figure 3: Simultaneous history matching and uncertainty 
quantification for benchmarking. Synthetic data sets of an 
unsteady-state and a multispeed centrifuge experiment [8] are 
matched with modified Corey and Skjaeveland 
parametrizations. True values, starting points and the matches 
are shown in (a) for relative permeability and (b) capillary 
pressure (see text for details). (c) shows the result of the MCMC 
uncertainty analysis. The diagonal shows the single parameter 
probability distribution (histograms). The off-diagonal elements 
(contour plots) show the two-parameter correlations for the 
relative permeability curves. The red numbers refer to the 
Pearson correlation strength matrix. 
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6. Results 
The real case study is performed on an SCAL data set of 
Estaillades limestone. The data set consists of two steady-
state primary drainage relative permeability 
measurements and three multispeed centrifuge 
experiments. The experiments have been pair-wise 
simultaneously matched. Data from a CF/SS combination 
(samples 2 and 5) are shown in Figure 4. Details about the 
rock type and rock properties of the individual plugs are 
summarized in the Materials and methods section above. 

6.1 Finding Solutions 
The analytical solutions using Darcy’s law for SS and the 
Hassler–Brunner equations for CF experiments are shown 
in Figure 5 and are used as starting points for the 
numerical simulations. The quality of the analytical 
solutions is demonstrated by forward simulations and 
comparison of the results to the experimental data, as 
shown in the top row of Figure 4. The comparison of the 
SS differential pressure shows a reasonable match as 
capillary pressure is ignored. Including the Hassler–
Brunner analytical solution in the forward simulation of 
the SS experiment, the data are no longer matched but 
rather an overestimation of the differential pressure. The 
Hassler–Brunner analytical solution itself underestimates 
the average water saturation of the CF experiment. The 
observed mismatches emphasize the importance of 
including both data sets in the analysis and even the 
importance of simultaneous history matching of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) 
and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤), matching SS and CF experiments 
simultaneously. 

At first, we simultaneously matched CF (average water 
saturations) and SS (pressure and saturation profiles) 
experimental measurements by using various power-law 
representations for 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤), namely, Corey, LET and 
modified Corey, and the corresponding representations of 
𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤). Since the data set refers to a primary drainage 
process, the water endpoint relative permeability is fixed 
to 𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤 = 1) = 1. All the other parameters are left 
open. The residual water saturation is, however, a history 
matching parameter common for both 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) 
but matched separately from each other. This means that 

𝑆𝑆𝑤𝑤𝑤𝑤  can principally be different for both types of data sets. 
The starting point of the history match is the analytical 
solution shown in Figure 5. 

 
Figure 5 : Analytical solutions (symbols) and results of the 
history matching using various representations of 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 
𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤), as indicated in the legends. Top: saturation functions 
on a linear scale. Bottom: the same functions on a logarithmic 
scale.  

Figure 4 : Experimental data and analytical/numerical interpretations: CF average water saturation (left), SS differential pressure 
(middle), and SS saturation profiles (right). Top row: forward simulations using the analytical solutions. Middle row: automated 
and simultaneous history march using different 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) power-law input functions in combination with their corresponding 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) 
representations. Lower row: best match using the point-by-point approach. 
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As shown in Figure 4, none of these models suitably 
describe the experimental data sets. Referring to the SS 
differential pressure, the deviation is strongest close to the 
crossing points of relative permeability, where the total 
fluid mobility is lowest, i.e., highest differential pressure 
values. However, referring to the combined data set of SS 
and CF, the overall deviations are unacceptable. 

With the point-by-point HM approach, we give the 
system much more degrees of freedom. In this approach 
we used 17 points for water relative permeability, 17 for 
oil relative permeability and 8 points for the capillary 
pressure table. The points for the relative permeability 
tables are coming from the average of the saturation 
profiles at each fractional flow until the minimum water 
saturation measured in the SS experiment. Below this 
water saturation we get the points from average water 
saturations of the CF experiment. For the capillary 
pressure table, we get the points from the average water 
saturation of the CF experiment. Here we only vary the 
functional values and the saturation values are constant. 
The lower row of Figure 4 shows the resulting simulated 
versus experimental responses. With point-by-point 
matching, the 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) line shapes are not 
restricted to follow a certain functionality, and with this, 
complex rock structures may be described. In the present 
case of Estaillades limestone, all responses can be well 
described, including the SS saturation profiles for all 
𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤). The resulting 𝑘𝑘𝑟𝑟(𝑆𝑆𝑤𝑤) and 𝑝𝑝𝐶𝐶(𝑆𝑆𝑤𝑤) are shown in 
Figure 5, in which all solutions are compared. The point-
by-point approach delivers rather unregularly shaped 
saturation functions but closely follows the irregularities 
directly observed in the experimental responses. 
Furthermore, all resulting saturation functions from the 
HM of the experimental measurements with the 
simulation predictions are within rather narrow intervals, 
which is surprising, considering the quality of the 
matched versus experimental responses. This opens up the 
important question about the uncertainty in the procedure 
and finally the resulting uncertainty in the saturation 
functions.  

The results of the HM simulations depend on the 
optimization algorithm being used and for the point-by-
point approach presented here we found the active-set 
algorithm in MATLAB fmincon function to be the most 
efficient. The Levenberg-Marqardt (LM) method which is 
used in the literature [9, 21] does not allow the 
implementation of inequalities (equation (3)) which is an 
integral part of the point-by-point approach to force the 
monotonic behavior for the saturation functions. Other 
algorithms e.g. interior-point can sometimes lead to a 
closer match to the experimental measurements in case 
power law representation for saturation functions are 
used.   

6.2 Uncertainty Analysis 
To quantify the uncertainties, we run Monte Carlo 
simulations using ParaMonte. We specify a chain size of 
20,000, which is the number of unique points to be 
sampled from the likelihood estimation function. For this 
case it leads to ~1,5 million total likelihood estimation 
function calls or ~1.5% acceptance rate for the MCMC 

algorithm. Considering the high-dimensional parameter 
space, the uncertainty analysis requires a large 
computational effort resulting in approximately a week of 
computational time on the used computer system. Figure 
6 top shows the value of the likelihood estimation 
function, which reduces in the early iterations and then 
oscillates around a value of −15. The adaptation measure 
is a real number between 0 and 1 with 0 implying no 
proposal adaptation and 1 implying extreme adaptation. 
The convergence of the adaptive Markov chain – the type 
of MCMC simulations that we are using in this study - to 
the target density is guaranteed, as long as the adaptation 
of the Markov chain monotonically decreases throughout 
the simulation. It is, therefore, important to monitor the 
amount of adaptation in ParaDRAM simulations to ensure 
the adaptation of the proposal distribution diminishes 
progressively throughout the simulation [28]. This value 
is shown in Figure 6 bottom and the moving average is 
shown to be monotonically decreasing. This is a healthy 
sign for the implemented Monte Carlo simulation, which 
shows a convergence in both the sampled likelihood 
estimation function and input parameters [17]. For the 
samples used in this study the point-by-point approach 
showed the best convergence and match with 
experimental data whereas; the power-law-like saturation 
functions do not well match the experimental data, which 
leads to convergence problems of the Monte Carlo 
simulation. In that case, the tracer chains overshoot to 
high values, making the uncertainty range larger. This 
behavior is sample specific and the saturation functions 
can be predicted using power law function with a high 
confidence level as shown in the literature [21].  

Figure 7 shows the histograms of the simulated 𝑘𝑘𝑟𝑟𝑟𝑟 
(a), 𝑘𝑘𝑟𝑟𝑟𝑟 (b), and 𝑝𝑝𝐶𝐶  (c) points along the water saturation 
axis. These histograms can be used to quantify the 
uncertainty, which may be defined by calculating the P10 
to P90 interval given in Figure 8. The interval refers to the 
probability of 10 to 90% that the quantity—in this case 
the fluid relative permeability—exceeds the given value. 
The P50, given in the same panel, refers to a best match 
from the Monte Carlo approach. In addition, Figure 7 
shows the MCMC chain plots (the accepted Markov 
chain) at selected saturations along with the correlations 
between neighboring saturation points exemplarily for 
𝑘𝑘𝑟𝑟𝑟𝑟. The histograms and the MC line tracers show nearly 
Gaussian distributions except for the endpoint at connate 
water saturation. This means that the modeled drainage 
process is less sensitive to the endpoint, reflected in the 
elongated histogram shape. This leads to the large 
uncertainty range at the tail of the water relative 
permeability in Figure 8 (a). The same is true for the 
capillary pressure (c), as the centrifuge multistep 
simulation is less sensitive to the capillary pressure at 
residual water saturation, leading to a larger uncertainty at 
𝑆𝑆𝑤𝑤𝑤𝑤 . 
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Figure 6: Top: the value of the sampled likelihood estimation 
function (equation (4)) during the MCMC for the accepted chain 
of samples. Bottom: the adaptation measure for the full Markov 
chain. 

Although the histograms mostly show Gaussian behavior, 
the tracer in some chain plots does not always oscillate 
around a constant value (e.g., 𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤 = 0.97)). Longer 
period temporary deviations may be caused by the 
relatively large parameter space and the respective 
degrees of freedom, in which the values of some 
parameters can deviate from the general trend and still be 
accepted. However, then because of the increased error in 
the likelihood estimation function, the rejection rate 
increases, and the chain returns to the previous trend that 
it was following before. 

Figure 8 shows all relative permeability and 
capillary pressure curves calculated for the Estaillades 
experimental data sets. It also shows the P10 and P90 
range calculated from the earlier discussed data set 
referring to the histograms in Figure 7. The best history 
match lies within this range. However, it does not lie on 
the median of the interval. By performing a forward 
simulation of the experimental response in the boundary 
of the P10-to-P90 interval, the P10 and P90 pressure 
ranges are obtained, as shown in the inset of Figure 8(a). 
The measured pressure is well within the uncertainty 
range except around the highest-pressure points (lowest 
total fluid mobility) and around the pressure of the bump 
flood. These parts of the pressure plot are close to the 
boundaries of the calculated range. 

The range here corresponds to the fixed relative 
error that we decided in the beginning before running the 
MCMC simulations. The resulting uncertainty range 
around the pressure is higher than the assigned 2.5%, 
since we also allocate 1% error to the saturation profile 
and 1% error to the average water saturation from the 
centrifuge experiment. Depending on the standard 
deviation of the experimental measurements, the error 

assigned to the measurements in the equation (4) varies, 
which affects the calculated uncertainty range. 

 

 
Figure 7: Histograms providing single parameter uncertainties 
of oil and water relative permeability, (a) and (b), respectively, 
and capillary pressure (c) saturation functions. MCMC chain 
plots are exemplarily given for oil relative permeability. (d) 
Correlation of oil relative permeability at the given water 
saturation with neighboring saturation points.  

The reasoning behind this is intuitive since by doing so, 
we change the shape of the sampled response surface. The 
Pearson correlation matrix and the full grid plots for this 
analysis show the correlation strength between the history 
matched parameters. The map shows strong correlations 
between neighboring saturation points. This is partly 
caused by the forced monotonic behavior that we apply to 
our simulations. The relative permeability table shows 
positive correlation between the water saturation points 
next to each other (Figure 7 (d)) and this correlation is 
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negative for the capillary pressure table. At lower water 
saturations, the positive correlation between 𝑘𝑘𝑟𝑟 saturation 
points span several next neighbors, which is the reason for 
the larger uncertainty interval at low 𝑆𝑆𝑤𝑤. At higher water 
saturations, there is a negative correlation between the 
water and oil relative permeability. This means that at 
higher water saturations, the total mobility (relative 
permeability at constant viscosity) is split between oil and 
water; as phase mobility increases, the mobility of the 
complimentary phase decreases—a behavior that we 
physically expect. 

Figure 7 (d) illustrates the correlation strength 
between 𝑘𝑘𝑟𝑟𝑟𝑟 at 𝑆𝑆𝑤𝑤 = 0.66 and its neighboring points. The 
Pearson’s correlation strength 𝑟𝑟 is labeled in the plot 
below the black arrows. This demonstrates that with 
increasing water saturation, the correlation vanishes. 

 
Figure 8: Panel (a) and (b): resulting relative permeability on a 
linear and logarithmic scale from experiment/sample SS 2 in 
combination with CF 2, 3 and 5. The uncertainty range is given 
for the combination SS2, CF 5. For comparison, the pair-wise 
analysis of SS1 with CF 3, 4 and 5 is given as well. Panel (c) and 
(d) provide the same information, but for the capillary pressure. 
The inset in (a) shows the P10 to P90 uncertainty interval for the 
differential pressure response during the SS 2 experiment as an 
example. 

6.3 Sample-to-Sample Variation 
It is a common problem that carbonates often show 
heterogeneity on various scales. In SCAL, we typically 
ignore heterogeneity on the plug scale, and SCAL data are 
numerically interpreted by assuming a simulation domain 
with homogeneous rock properties. However, sample-to-
sample variations are common, even if the samples are 
drilled from locations close to each other. Therefore, it 
should be common practice to measure saturation 
functions on more than one plug from the region. In the 
present study on Estiallades, which is a common outcrop 
rock, the samples are from the same block and are 
therefore “twin plugs”. A natural question is whether 
measurements on twin plugs deliver results within the 
uncertainty range of the individual data set. [21] proposed 
a method to deal with the common data interpretation 
problems that rises from the heterogeneities of samples in 
SCAL experiments. They argued that by calculating the 
variability number (V) of the plugs using the X-Ray 
measurements one can decide on the significance of the 
heterogeneity based on the cut-off value for V. Their 
approach warrants further work to be looked into, also in 

the framework of the reliability of the analysis provided 
from a small number of samples, in the future. 

What we deliver in this study is an indication only 
because 5 plugs (a common number of samples available 
for SCAL) and 2 and 3 repeat measurements may or may 
not provide a solid statistical basis [21]. However, we use 
the two SS and the three CF experiments from [18] and 
simultaneously analyze all possible SS and CF 
combinations. The results are shown in Figure 8 (a) and 
(b) for relative permeability and (c) and (d) for capillary 
pressure. The simultaneous analysis shows a strong 
deviation between the SS results but a relatively small 
influence of the sample-to-sample variation in the CF 
experiments; the resulting curves split into two groups 
referring to the two SS experiments, which differ 
predominantly in the oil branch toward low water 
saturations, where the strongest point-to-point 
correlations are found as will be discussed further below. 
With respect to uncertainty, for simulations with a given 
SS data set, the 𝑘𝑘𝑟𝑟 curves generated by combining with 
the different CF data lie within a narrow window 
compatible with the individual uncertainty range from 
MCMC. However, the two groups do not fall into the 
individual uncertainty ranges but show a certain overlap 
over the whole saturation range. In this specific case, it 
appears that sample-to-sample variation plays a stronger 
role than the uncertainty coming from individual data sets 
and their combinations. 

6.4 Results: Bimodal Distributions 
The samples from the likelihood estimation function 
shown at the top of Figure 6 show a rather multimodal 
histogram, indicating that there is no unique solution in 
the error surface. Figure 9 shows the histograms of 
𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) for the SS 1/CF 5 case, where the best match lies 
partly outside the P10-P90 interval; in (c), the histograms 
are bimodal for water saturations below 0.6 and above 
0.95, with a pronounced narrow maximum and an 
overlapping broad component. The global minimum is 
found using the MATLAB fmincon function—the best 
match, while the broad component dominates the 
uncertainty range in the MCMC sampling. Using equation 
(4) as the objective function in the fmincon function 
(without the -1/2 factor) leads to comparable results and 
trends when the fmincon function is used with equation 
(3) (see section 4.1), which excludes the influence of the 
specific choice of the objective function.  

The complex bimodal histograms may be related to 
the following aspects: (a) At low 𝑆𝑆𝑤𝑤, the dataset is outside 
the range of the SS experiments. The information 
regarding 𝑘𝑘𝑟𝑟 therefore comes exclusively from the 
centrifuge experiments. (b) Especially in the SS1 case, the 
HM result for 𝑘𝑘𝑟𝑟𝑟𝑟 is closely tied to 1 in this saturation 
range. If a monotonic behavior with 𝑘𝑘𝑟𝑟 ≤ 1 is required, 
most of the samples are rejected during HM in the 
respective range. 
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Figure 9: Sampled likelihood estimation function (equation (4)) 
versus oil relative permeability for the SS1 and CF5 
combination. (a) for a single saturation state, 𝑆𝑆𝑤𝑤 = 0.46; (c) for 
the full range of 𝑆𝑆𝑤𝑤. (b) Relative permeability and uncertainty 
interval from Figure 8 for comparison. The white symbols 
represent results from porous plate experiments, with errors of 
individual measurements in the order of the symbol size.  

The symbols in Figure 9 (b) show the results of 
porous plate (PP) experiments [18]. By means of the PP 
method, samples are desaturated to a certain water 
saturation close to 𝑆𝑆𝑤𝑤𝑤𝑤 . Subsequently, the effective 
permeability is measured by multi-rate decane flooding 
(at 𝑓𝑓𝑤𝑤 = 0). Assuming that the aqueous phase is largely 
immobile, 𝑘𝑘𝑟𝑟𝑟𝑟 was derived. However, also with the 
additional PP data, it is not possible to decide on the true 
𝑘𝑘𝑟𝑟𝑟𝑟. Due the sample-to-sample variation—considering 
that the PP experiments were performed on different 
samples—the derived 𝑘𝑘𝑟𝑟𝑟𝑟 values vary in the full spread of 
generated data. 

7. Summary and Conclusions 
In the present study, we present a comprehensive way to 
interpret SCAL data. We apply a workflow starting from 
the well-known analytical solutions, directly derived from 
the individual data sets, as input for numerical history 
matching. The experimental data sets are described 
simultaneously and by means of a point-by-point 
parameterization - 34 points for the two relative 
permeability tables combined and 8 points for the 
capillary pressure table. With these innovations, a good 
description of complex saturation functions is possible. 

Different parametrizations of the saturation 
functions are used. The study shows that using classic 
power-law representations is not sufficient to 
conclusively analyze data derived from more complex 
rock types, such as microscopically heterogeneous 
carbonates. For this purpose, the point-by-point approach, 
in which the saturation functions were evaluated at the 
individual saturation points defined by the experimental 
steps that serve as HM parameters. This approach allows 
us to match complex rocks since the functions are not 
restricted to power laws. 

Furthermore, the simultaneous evaluation of SS and 
CF experimental data sets accounts for the fact that 𝑘𝑘𝑟𝑟 and 
𝑝𝑝𝐶𝐶  are coupled. The results show that simultaneous rather 
than subsequent evaluation of those data sets leads to 
more objective results. With “objective” we mean to 
prefer a solution without manual, respectively personal 
intervention in the process. However, the massive 
increase in the free parameters in the simultaneous point-
by-point approach substantially increases the required 
computational power, especially in cases where 
uncertainty analyses are performed. 

The uncertainties are evaluated by MCMC 
simulations sampling the response surface of the 
likelihood estimation function of the combined data set. 
This allows the extraction of single parameter distribution 
functions and correlations between those parameters on 
the saturation scale. The study shows that despite the 
given high degree of freedom, the simultaneous point-by-
point approach delivers a very robust description of two-
phase flow in complex rock types. While the gradient-
based HM reliably finds the best match, MCMC sampling 
demonstrates the complexity of the response surface. This 
results in one SS data set for a separation of the best match 
and the P10-P90 uncertainty interval (the best match is 
within the P01-P99). 

By combining all available SS and CF experimental 
results for analysis, a comparison of the sample-to-sample 
variation with respect to the error of the individual data 
set could be made. For the specific rock type, the sample-
to-sample variation seems to be dominant (as far as the 
limited data set allows for that statement). The results 
group around the individual SS curves with a narrow 
bandwidth by the various CF measurements. The P10-to-
P90 uncertainty intervals of the two SS curves just 
marginally overlap apart from the saturation range around 
𝑆𝑆𝑤𝑤𝑤𝑤; the individual data sets also show the greatest 
uncertainty around 𝑆𝑆𝑤𝑤𝑤𝑤 , which may have to do with the 
missing next-neighbor information toward lower water 
saturations. 

 
The authors acknowledge valuable discussions with Jos Maas, 
Steffen Berg and Pit Arnold. 
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