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Abstract. In the field of core analysis, parameterization of permeability variation is the foundation for quantifying 
the role of geologic heterogeneity on a wide range of conservative, reactive, and colloidal transport processes. 
Recent utilization of in situ imaging, specifically positron emission tomography (PET), enables the measurement of 
three-dimensional (3-D) time-lapse radiotracer transport in geologic porous media. This experimental tool provides 
unprecedented spatial and temporal data that can capture millimeter-scale spatial variation in transport phenomena 
that enables the quantification of heterogeneous multiscale permeability in geologic cores. Using spatially and 
temporally resolved concentration measurements, an ensemble Kalman filter (EnKF) is first implemented for 
inverting for the subcore scale permeability in a sandstone core. In addition to this traditional inversion approach, 
an encoder-decoder based convolutional neural network (CNN) is trained to predict the 3-D subcore scale 
permeability map from the same PET experimental data. Through forward numerical models, the permeability 
inversion accuracy of the trained CNN is compared with the EnKF on an experimental PET imaging dataset acquired 
using a heterogeneous Berea sandstone core. The results indicate that, compared to the EnKF, a single trained CNN 
can capture the variable solute arrival time behavior in a core-flooding experiment with orders of magnitude 
improvement in computational efficiency. Finally, mild permeability perturbations are added to the CNN inverted 
permeability map as an approach for generating the initial EnKF ensemble to further examine the optimal balance 
between the inversion accuracy and computational efficiency. This experimental approach combined with deep 
learning and numerical workflows provides an unprecedented improvement in 3-D multiscale permeability 
determination in heterogeneous geologic core samples.

1 Introduction  

Multiscale permeability heterogeneity is a fundamental 
challenge to quantitative analysis and interpretation of flow 
and transport observations during core-scale experiments. 
Permeability heterogeneity is present in all geologic 
materials, even the most uniform and well-characterized 
formations, such as Berea sandstone [1] and Bentheimer 
sandstone [2]. Improved understanding of multiphase flow 
processes, fines migration, and enhanced recovery 
technologies first requires the estimation of initial 
permeability conditions, potential permeability evolution, 
and spatial variation in permeability. Without rapid methods 
for 3-D permeability map determination, advanced 
understanding of these core-scale processes may be limited. 
 
     Medical, industrial, and synchrotron-based imaging 
methods applied to problems in the field of petroleum 
engineering and hydrogeology have revolutionized the 
understanding of physical processes from the nanometer to 
the meter scale [3–6]. Photon transmission imaging 
techniques such as X-ray computed tomography (X-ray CT) 
across a range of scales excel at characterizing materials with 
different electron densities. As a result, at the micrometer 

scale, X-ray CT is ideal for mapping pore geometry and fluid 
interfaces [7, 8]. At the continuum scale—the scale at which 
Darcy's Law can be used to describe flow in a porous 
medium—X-ray CT can map the spatial distribution of fluids 
of different densities or variations in porosity [3, 9, 10]. More 
recently, positron emission tomography (PET) has emerged 
as a non-destructive imaging technique for quantifying 
conservative tracer and colloid transport in geologic materials 
[5, 11]. Using PET, it is possible to map 3-D time-lapse tracer 
distributions collected during core-flooding experiments. 
This has enabled studies of fundamental flow and transport 
processes such as solute tailing driven by diffusion into 
microporous carbonates [12], flow path alteration in fractured 
carbonates [13], fluid saturation [14, 15], fines migration in 
reservoir formations [11], and the rock compartmentalization 
driven by the presence of deformation bands [16]. 
 
     Despite the aid provided by the high-resolution 
characterization of tracer and colloid transport, robust 
inversion of flow and transport parameters from image-based 
data remains challenging due to the intrinsic ill-posedness 
and high computational cost associated with the inversion 
problems. The non-linearity in the subsurface transport 
processes and the heterogeneity in the geologic materials 
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make subsurface image inversion problems often ill-posed 
[17]. Because of the ill-posedness, small uncertainties in the 
input observations due to imaging artifacts or measurement 
error can cause large uncertainties in the inversion results, and 
it is difficult for the inversion to converge to a unique 
maximum likelihood solution [18]. To reduce the ill-
posedness of the numerical inversion problems, iterative 
regularization techniques based on certain prior information 
are explicitly imposed to only preserve the optimal set of 
features (or basis vectors) and prevent the amplification of the 
uncertainties in observations [17, 19]. However, previous 
studies have shown that the explicitly imposed regularization 
terms are either case-specific for over-simplified datasets or 
unable to incorporate all the prior information numerically for 
realistic datasets [20].  
 
     A PET image at a single timestep is often composed of 
over 10,000 voxel-level concentration measurements in a 
geologic core, and therefore the computational cost of 
utilizing all the information for 3-D permeability inversion 
can be high. Specifically, the high computational cost 
associated with the numerous forward modeling at every 
iteration can make the inversion of high-dimensional and 
geologically realistic permeability maps often unfeasible 
[21]. The need for a large number of forward models makes 
ensemble smoother and ensemble Kalman filter (EnKF) 
based inversion methods very computationally expensive 
[22–26]. For a 2-D inversion problem with less than 2,000 
grid cells, the ensemble-based inversion methods would 
typically involve repeated flow and transport simulations on 
an ensemble of 𝑂𝑂(102) models to get one complete inversion 
[27]. Development of high precision sub-core scale 
permeability inversion algorithms involving iterative J-
Function characteristic calculations and coreflooding 
simulations is another core-scale permeability inversion 
approach [29]. Given the accurate porosity, saturation, and 
reasonable initial permeability maps, a convergence in sub-
core scale permeability distribution generally took four to 
nine full iterations. Therefore, the reduction in computational 
time is often a trade-off with the reduction in experimental 
data collection time and resources. 
 
     In contrast, through a combination of weight decay, batch 
normalization, drop out, and early stopping, deep learning 
inversion methods can enforce the sparsity and smoothness in 
the solution spaces during the weight optimization process. 
Consequently, the encoder–decoder based convolutional 
neural networks (CNN) has been shown to address the ill-
posedness problem by reducing the effects of noise [30], 
capturing features at a finer resolution [19], and learning a 
generalizable regularizer based on the training dataset 
without explicitly enforcing any constraints [20]. Moreover, 
instead of utilizing limited conditioning data, CNNs can be 
trained with large ensembles of flow and transport field 
characteristics (i.e. permeability) that span a diverse set of 
geologic materials in typical unfractured aquifers using 
classic methods such as Latin hypercube sampling. The 
representative set of training data allows CNNs to identify 
less significant features and capture the maximum amount of 

variability with the minimum number of features [17], thus 
alleviating the ill-posedness of the inverse problem.  

     In this study, we first perform PET data dimension 
reduction, quantile-based analysis, and normalization 
procedures [31] to emphasize transport characteristic 
information that is most important for permeability 
distribution determination. This processing reduces the 
influence of experimental imaging noise, solute tailing 
behavior, variation in initial solute concentration, and solute 
dispersion. We then use this data to compare the inversion 
performance between the deep learning approach, 
specifically the recently developed encoder-decoder based 
CNN [31], and a traditional numerical inversion approach, 
specifically EnKF, in terms of computational cost and 
inversion accuracy.  To further enhance these methods, we 
also demonstrate the use of a hybrid CNN with EnKF tuning 
to maximize the permeability inversion accuracy while 
minimizing the associated computational cost.     
 
2 Methods 

2.1 Experimental Data Acquisition 

The details of the PET data acquisition, imaging system, and 
experimental platform can be found in previous work [5]. For 
this study, a 10 cm long Berea sandstone sample was loaded 
into a custom aluminium coreholder that enabled the 
application of confining pressure and thus no-flow boundary 
conditions on the cylindrical faces of the samples. The core 
was saturated with low-pressure CO2 and then injected with 
water while applying backpressure at the outlet face to 
prevent gravity-driven desaturation during horizontal fluid 
injection. The differential pressure was monitored, and 
steady-state conditions were determined to have been reached 
when the differential pressure stabilized. Core-average 
permeability was calculated to be 23 mD using Darcy's Law 
based on measurements of steady-state differential pressure, 
core geometry, and fluid injection rate.  

     For the imaging experiment, the water injection rate was 
set to 2 mL/min (0.245 cm/min). The positron-emitting 
radiotracer—fludeoxyglucose  (18F-FDG) —was diluted in 
water to a radio-concentration of 0.323 mCi/mL to reach the 
optimal radioactivity injected for minimizing imaging noise 
[5]. Fludeoxyglucose is a commercially available 
conservative tracer with a half-life of 109.7 minutes with high 
radioactive yields. High radioactive yields enable high signal 
radiotracer concentrations without altering aqueous fluid 
properties such as density—an advantage over X-ray 
computed tomography-based tracer approaches [5]. The PET 
scans were performed using a Siemens pre-clinical Inveon 
DPET scanner. Shortly after the scan started a 4 mL pulse of 
radiotracer (1.292 mCi) was injected into the core and 
displaced with water containing no 18F -FDG. An illustration 
of four frames of the time-lapse reconstructed PET image is 
shown in Figure 1. 
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     The reconstructed PET data was further processed to 
reduce the dimensionality of the data for use in the 
permeability inversion workflows. In short, quantile analysis 
was performed on every voxel of the PET images to calculate 
the 0.5 quantile, equivalent to the median arrival time and 
therefore insensitive to potential tailing effects in more 
heterogeneous cores. This quantile calculation enables the 
reduction of the 4D PET data down to a 3D image that 
provides the necessary information of permeability inversion 
with added benefits of reducing image noise and reducing the 
influence of sample-specific dispersion. The resulting 
quantile arrival time map for the Berea sandstone core was 
then normalized by converting from time to pore volumes 
injected. Additional details of this dimension reduction can 
be found in previous work [31, 32]. The final data processing 
step was to remove the linear trend in quantile arrival times 
that results from the bulk 1D flow from one end face of the 
core to the other. This linear trend was removed from each 
voxel by subtracting the quantile arrival time that would 
occur in a homogeneous core based on the distance of each 
voxel from the inlet of the core. The result after this trend 
removal is termed the arrival time difference map. These 
difference maps highlight areas of faster advection, with 
values greater than zero, and areas of slower advection, with 
values less than zero. The experimental arrival time 
difference map serves as input into the inversion workflow. 
A plot of the arrival time maps is provided in the results 
section. 

                  

Fig. 1. Positron emission tomography time frames measuring 
radiotracer concentration distribution in the Berea sandstone core 
that was used in this study. The pore volumes injected (PV) are 
indicated above each image and fluid is injected from the left face 
of the core. The radiotracer was [18F]-FDG. The voxel size 
dimensions are 0.2329 x 0.2329 x 0.2388 cm3. These images 
highlight the permeability heterogeneity of the Berea sample that 
resulted in faster tracer breakthrough in the upper middle and lower 
portion of the core. Corresponding X-ray CT images confirm 
horizontal planar laminations in the lower portion of the core with 
subtle cross-bedding containing higher clay content in the upper 
portion of the core. 

2.2 Training data generation 

An encoder-decoder based CNN was constructed and trained 
on 16,000 pairs of synthetic permeability and arrival time 
difference maps. Specifically, 10,000 pairs were used as the 
training dataset—for providing learnable features, 5,500 pairs 
were used as the validation datasets—for monitoring and 
guiding the CNN during the training, and 500 pairs were used 
as the testing set—for verifying the CNN after the training. 
To account for the instrumental error during the PET imaging 
process, a Gaussian white noise with a mean of zero and a 
standard deviation of 1/70 of the range is applied to every 
arrival time map. A similar level of noise is observed in 
experimental arrival time maps.  

The 3-D synthetic permeability maps were generated via the 
random field generation algorithm using the exponential 
covariance model using open-source package developed by 
[33]. The grid cells for all the synthetic permeability maps 
have dimensions of 0.25 × 0.25 × 0.25 cm3, and dimensions 
of 20 x 20 x 40 cells such that the model dimensions are 
nearly identical to the core samples and corresponding PET 
images. The synthetic permeability maps were sampled from 
parameters space with the mean ranging from 1 mD–20 D, 
log10 variance ranging from −1.7 to 9.9. In each x, y, and z 
directions, the correlation length of all synthetic permeability 
maps spans from 0.25 to 12.5 cm—spanning 
sedimentological lengths scales contained in core-scale 
samples—and the angle of rotation spans from 0 to 90°. Three 
example permeability fields are shown in Figure 2. By using 
the Latin hypercube sampling algorithm [34], all the training, 
validating, and testing data were well-balanced and 
representative of this parameter space. Three example 
permeability fields are illustrated in the left column of Figure 
2. 

     Using MODFLOW 2005 with MT3DMS [35], a set of 
arrival time maps were numerically simulated for each 
synthetic permeability map. The simulated arrival time map 
also has a dimension of 20 × 20 × 40, and it underwent the 
same pre-processing and dimension reduction procedures as 
the 3-D experimental PET data for calculating arrival time 
difference maps. Three example arrival time difference maps 
calculated from synthetically generated permeability fields 
are illustrated in the right column of Figure 2. 

     To further guide the training and preserve the uniqueness 
of the inversion, the average permeability (𝑘𝑘) for every 
synthetic core was calculated by Darcy's Law based on 
modeled pressure drop data for each synthetic permeability 
map.  

                                         𝑘𝑘 = 𝑄𝑄𝑡𝑡
𝐴𝐴
⋅ 𝐿𝐿
𝛥𝛥𝛥𝛥 ⋅ 𝜇𝜇                                        (1)

  

Identical to the experimental conditions, all the synthetic 
cores had a length (L) of 10 cm and a cross-sectional area (A) 
of 78.5 cm2. The flow rate through the synthetic core (Qt) was 
set to 2 mL/min, and the pressure drop across the synthetic 
cores (𝛥𝛥𝛥𝛥) was calculated by subtracting the simulated 
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average pore pressure difference between the outlet slice and 
the inlet slice. The average permeability was expanded to a 1 
× 20 × 20 tensor and then concatenated to the inlet of the input 
arrival time map. Therefore, the overall dimension of the 
input is 20 × 20 × 41. 

 

 

Fig. 2. Three example training data used for CNN training and test. 
The left column shows synthetically generated permeability field 
and the right column shows the corresponding arrival time 
difference map calculated from numerical simulation output.
   

2.3 Convolutional Neural Network Architecture 

Convolution, sampling, and regression are the three main 
components of the encoder-decoder based CNN. The 
convolution blocks are composed of convolutional layers, 
that are used to gain an overall parameterization of the image. 
Sampling blocks are used to extract the high-frequency 
features of the input through downsampling and verify the 
learning through upsampling. The regression blocks are 
composed of a series of dense blocks connected in a residual-
in-residual structure, which are used to perform deep 
regression over the sampled images. 
    
    A convolutional layer extracts features from input images 
through: x(l+1) = fl+1(W(l+1)x(l) + b(l+1)), where W(l+1) is the 
weight matrix (or kernel), b(l+1) is the bias vector, and fl+1 is 
the nonlinear activation function that maps the input map x(l) 
to a corresponding output map x(l+1). In a convolutional layer, 
every neuron is linked to a receptive field, a region in the 
input that represents a particular feature. As the result, CNN 
captures smaller-scale features in the shallower layers and the 
more global information in the deeper layers. There are two 
main reasons for adopting CNN in the image-to-image 
regression problems. First, the parameter sharing features and 
sparse connectivity of CNNs require fewer parameters than 
the traditional neural networks [36], which reduces the 
computational cost of processing large datasets. 
Decompressing the input to latent spaces while learning 
further reduces the computational cost. Secondly, CNN is 

highly capable of finding spatial correlations within a map by 
enforcing a local connectivity pattern between neurons of 
adjacent layers [36], which enables high accuracy in voxel-
wise inversion. 
 
     By connecting each convolutional layer with all its 
subsequent layers, Densely Connected Convolutional 
Networks (DenseNet or dense block) fully leverage the 
hierarchical advantages of CNNs by encouraging feature 
propagation, sharing, and reuse among all the layers [37]. To 
increase the depth of the networks without the gradient-
vanishing or gradient-exploding problem, a residual learning 
framework was adopted to connect the dense blocks in the 
networks. Instead of directly learning the unreferenced 
original mapping, the residual connection adopts a skip-
connection between blocks that learn residual functions with 
reference to the layer input. Suppose x is the input for the 
current layer and let x denotes the residual. Let F(x) denote 
the optimal mapping of the current layer and let R(x) denotes 
the original mapping (or the residual function) of the current 
layer, and let F(x) := R(x) + x. The F(x) is then passed to the 
next layer, so if the original R(x) of the current layer enlarges 
the error, the next layer could always refer back to the residual 
x, which could be considered as skipping the layer that 
enlarges the error. To the other extreme, if the original 
mapping R(x) is optimal, the residual x will be set to zero. 
Therefore, the deeper layer would produce no higher error 
than the upper layer. The residual-in-residual dense block 
(RRDB) are composed of a stack of residual dense blocks 
connected in another residual structure [38, 39]. Therefore, 
the residual learning was used in two levels, resulting in a 
residual-in-residual structure. For both of the two levels, the 
desired output is actually denoted as F(x) := β × R(x) + x, 
where β ∈ (0, 1] is the residual scaling factor [38]. 
 
     The inverted permeability map 𝑥𝑥� is then compared against 
the synthetic permeability map (or the ground truth) x through 
loss functions, and the loss is going to be minimized by back-
propagating the weights and bias through gradient descent. 
The overall loss function (Equation 2) is a combination of L1 
loss (Equation 3) and KL-Divergence loss (Equation 4) 
weighted by 𝛼𝛼.     

                              Ltotal =L𝐿𝐿1 +𝛼𝛼L𝐾𝐾𝐿𝐿                       (2) 

The L1 loss evaluates the absolute error between the synthetic 
(or ground truth) permeability map (𝒙𝒙) and inverted 
permeability map ( 𝑥𝑥� ). 

        L𝐿𝐿1 =‖𝒙𝒙−𝑥𝑥� ‖1                      (3) 

The KL-Divergence loss measures the similarity between the 
synthetic (or ground truth) permeability distribution (𝛥𝛥(𝒙𝒙)) 
and inverted permeability distribution (𝑄𝑄( 𝑥𝑥� )).  

  L𝐾𝐾𝐿𝐿 =𝐷𝐷(𝛥𝛥(𝒙𝒙)‖𝑄𝑄( 𝑥𝑥� ))𝐾𝐾𝐿𝐿 =𝛥𝛥(𝒙𝒙)⋅log 𝑃𝑃(𝑥𝑥)
𝑄𝑄( 𝑥𝑥� )

               (4) 

     The encoder of the CNN extracts the high-frequency 
features of the input through the convolutional block while 
compressing the input map down through the sampling block. 



The 35th International Symposium of the Society of Core Analysts 

 

The compressed high-level features map is referred to as the 
latent space of the input map, which has a dimension of 5 × 5 
× 10. The decoder then up transposes the latent map based on 
the extracted high-frequency features. The inverted (or 
decoded) permeability map has a dimension of 20 × 20 × 40.  

     To further validate the trained CNN performance under 
experimental settings, we run MODFLOW-MT3DMS flow 
simulations on the inverted permeability map 𝑥𝑥� to generate 
modeled arrival time map for direct comparison with the 
experimental arrival time map. The R2 score is used to 
evaluate the similarity between the modeled and experimental 
arrival time maps (R2 = 1 indicates perfect inversion). A 
detailed illustration of the overall training and validation 
workflow is illustrated in Figure 3. Additional details of the 
CNN architecture, training, and convergence performance 
can be found in [31].  

2.4 Ensemble Kalman Filter  
 
To compare the encoder-decoder based CNN with the most 
computationally efficient numerical inversion algorithm, an 
Ensemble Kalman filter [23] has been adopted and 
constructed for this study. The EnKF is the Monte Carlo 
approximation to Kalman filtering for sequential data 
assimilation. An advantage of the EnKF for this application 
is that uncertainty characterization of EnKF on the ensemble 
of inverted outcomes is computationally efficient [40] and the 
EnKF only requires the ensemble predicted error statistics to 
update the inverted parameters. The computational efficiency 
and inversion robustness of EnKF have been demonstrated by 
various hydrogeological data assimilation tasks, such as 
contaminant source identification [40] and history matching 

[41]. In this study, we adopted the standard EnKF to 
characterize geologic core heterogeneity through continuum-
scale permeability inversion.   
 
     To begin a standard EnKF inversion, an initial ensemble 
of augmented state vectors (Xinit  = [x(1), …, x(np)]) needs to be 
generated. In this study we performed EnKF inversion with 
three different types of ensembles. The first was generated by 
slightly perturbing the permeability prediction of the CNN 
permeability prediction as described in the following section. 
The second and third EnKF inversion were performed using 
a spatially correlated ensemble of permeability field based on 
the expected correlation in a layered sandstone (i.e., low-
uncertainty ensemble) and using an ensemble of permeability 
fields that are generated assume less information is available 
(i.e., high-uncertainty ensemble). The ensemble of 
permeability fields was generated using the same algorithm 
as the CNN training data described in Section 2.2. A summary 
of the ensemble parameter space is given in Table 1.  
 
     According to previous studies, an assumption of the EnKF 
is that the true permeability map of the sample with unknown 
permeability lies in the linear span of the initial ensemble 
space [42]. If X evolves with time, each X contains the state 
vector (S) with a dimension ns × 1 and a parameter vector (P) 
with a dimension np × 1. Through state operators (e.g., 
numerical model), the state vector (e.g., fluid pressure 
distribution) will vary with time based on the inverted 
parameter vector (e.g., permeability) at the corresponding 
time step. However, since X in this study (i.e., the 
permeability map) is not varying with time and the 
observation operator (i.e., MODFLOW-MT3DMS model) 
does not require a state vector as input, X only contains the 

Fig. 3 Schematic of the overall inversion workflow. The top loop demonstrates the validation of the trained encoder-decoder based CNN 
using synthetic permeability maps [31]. The middle chain represents the CNN, including convolutional blocks (blue), up/down-sampling 
block (yellow), and residual-in-residual dense blocks (green). The bottom loop demonstrates the validation of the CNN using an 
experimental arrival time map collected from the Berea sandstone core. Note that the purple blocks correspond to synthetic (x) or predicted 
(𝐱𝐱�) or EnKF tuned (𝐱𝐱�Hyb) permeability maps, the red block is the PET data, and the orange blocks correspond to experimental (y) and 
modeled (𝐲𝐲�) arrival time maps.  
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parameter vector with a dimension of np × 1, where np equals 
the size of the 1-D flattened permeability map plus the 
average permeability calculated by Equation 1. Based on the 
corresponding state vectors, an ensemble of initial 
observation vectors (Yinit = [y(1), …, y(no)]), each with a 
dimension no × 1, were simulated via Equation 5, where f is 
the observation operator. All the dimension parameters used 
in this study are presented in Table 2. 
 
                                    Yinit = f(Xinit)                                     (5) 
 
At iteration i, the standard EnKF involves two main steps. 
The first step is to compute the Kalman gain matrix G for 
updating the parameter vector ensemble: 
 
                                  G = Pxy⋅(Pyy+R)-1                                  (6) 
 
Here Pxy is the np × no cross-covariance matrix between the 
inverted permeability and simulated arrival time from the 
previous iteration (Equation 7), Pyy is the no × no covariance 
matrix of the simulated arrival time from the previous 
iteration (Equation 8), and R is the diagonal measurement 
error matrix created by projecting the measurement error at 
every voxel (or observation point) onto a no × no identity 
matrix. 
 
                    Pxy = (𝑋𝑋𝑖𝑖−1 -𝑋𝑋𝑖𝑖−1)⋅( 𝑌𝑌𝑖𝑖−1 - 𝑌𝑌𝑖𝑖−1)T                          (7) 

                    Pyy = (𝑌𝑌𝑖𝑖−1 - 𝑌𝑌𝑖𝑖−1)⋅( 𝑌𝑌𝑖𝑖−1 - 𝑌𝑌𝑖𝑖−1)T                          (8) 
 
Here, 𝑋𝑋𝑖𝑖−1 is a np × ne matrix with each column containing 
the average of one vector in the parameter ensemble. 
Similarly, 𝑌𝑌𝑖𝑖−1 is a np × ne matrix with each column 
containing the average of one vector in the observation 
ensemble. Then, every parameter vector in the previous 𝑋𝑋𝑖𝑖−1 
ensemble is updated with the Kalman gain matrix G via 
Equation 9: 
 
                          𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖−1 + G⋅(𝑌𝑌𝑖𝑖−1 – 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)                            (9) 
 
Here Ytrue is the 1-D flattened experimental arrival time map 
measured from the Berea core. The vector (Yi-1 - Ytrue) is used 
to quantify the new observational error. The combination of 
the Kalman gain matrix and observation error vector helps the 
Kalman filter to assimilate the observations for the new 
iteration of parameter updates.     
 
     The second step is to simulate the new observation 
ensemble Yi (i.e., arrival time maps calculated from 
MODFLOW-MT3DMS model output) based on the updated 
parameter ensemble Xi via the observation operator for the 
new error statistics. By the end of every iteration, the 
ensemble average of all parameter vectors was generated as 
the permeability inversion result. The ensemble standard 
deviation provides an estimation of the inversion uncertainty. 

2.5 Hybrid CNN with EnKF tuning 

In the final permeability inversion approach, the CNN 
inversion results were used to generate an initial ensemble for 

final tuning of the 3-D permeability prediction using the 
EnKF. The ensemble generation was performed by 
multiplying the CNN inverted permeability map by an 
ensemble of spatially correlated exponential covariance fields 
with a mean of 1 and variance ranging from 0.001 to 0.05; the 
correlation length and rotation angle of the fields were within 
the same range as the low-uncertainty parameter space 
presented in Table 1. 

Table 1. The parameter space boundaries for generating the initial 
Berea EnKF permeability ensemble. Assuming no exact knowledge 
of the spatial information of the Berea permeability map, the 
permeability maps in the low-uncertainty ensemble are with a well-
defined range of spatial information constrained by prior knowledge 
obtained from geologic knowledge and X-ray CT images on the 
core. In contrast, the permeability maps in the high-uncertainty 
ensemble are sampled from a larger parameter space.  The mean 
permeability for both ensembles were calculated by Equation 1 
using the data from core-flooding experiments.   

Parameter 
Name 

Low-uncertainty 
ensemble  

High-uncertainty 
ensemble 

     Mean 
Permeability 23.2 mD 23.2 mD 

log10 
exponential 

variance  
-3.0 - -2.0  -7.0 - -1.0  

Correlation 
length in x, y 

directions 
      12.5 - 37.5 cm          0.25 - 25 cm 

Correlation 
length in z 
directions 

0 cm 0 cm 

Rotation 
angle in x, y, 
z directions 

0 Rad 0 - 3.14 Rad 

Table 2. The dimension parameters used for EnKF. 

Dimensional Parameter Name Number of parameters 

Number of ensemble (ne) 400 

Number of observation (no) 16,000 

Number of parameters (np) 16,001 

3 Results 

For the encoder-decoder based CNN, each training took 
around 30 hours to complete on a Nvidia GeForce GTX980 
GPU. All the 8,570,690 trained parameters were then stored 
in two separate path files (a 10.8 MB path file for the encoder 
model and a 22.1 MB path file for the decoder model). A 
summary of the training and validation loss is illustrated in 
Figure 4.  
 
     The EnKF inversion was an iterative process, and the time 
required to stabilize inversion accuracy heavily depends on 
the quality of the initial parameter ensembles. For the 
inversion via hybrid CNN with EnKF, the range of initial 
ensemble is very well-defined and constrained, and the 
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accuracy stabilization generally requires 3 to 4 hours. When 
the initial ensemble is less constrained, the range for the 
initial ensemble expands. The accuracy stabilization time was 
between 5 hours and 9 hours when sampling from low or high 
uncertainty ensemble parameter space. 

 

Fig. 4. An illustration of training and validation loss curves from 
five independent CNN training trails. At every epoch, the upper and 
lower bounds of the loss curve area indicate the maxima and the 
minima of the five loss curves. The bold middle line within the loss 
range represents the average loss of the five trials at every epoch. 

 

Fig. 5. Cross-plot of flattened experimental arrival time data (x-axis) 
and modeled arrival time difference based on the inverted 
permeability maps from CNN (top left), hybrid CNN with EnKF 
tuning (top right), EnKF with the low-uncertainty initial ensemble 
(bottom left), and EnKF with the high-uncertainty initial ensemble 
(bottom right). To illustrate the density of the correlations, the cross-
plot is colored by the number of points in a local region of the cross-
plot. The R2 correlation results indicate that the EnKF can bring 
significant improvement in permeability map prediction and the 
quality of the initial ensemble for the EnKF has a profound impact 
on the inversion accuracy. 

 

Fig. 6. Qualitative validation of the trained encoder-decoder based 
CNN using experimentally measured arrival time data measured 
with PET collected from the Berea sandstone core. The upper left 
subplots show the arrival time map calculated from the PET imaging 
data, the lower plot shows the predicted permeability by the 
network, and the upper right shows the modeled arrival time map 
based on the predicted permeability map. Note that the experimental 
and modeled arrival times have the same colorscale. 

     Three sets of initial ensembles with increasing levels of 
uncertainity (i.e., CNN-based, low uncertainty, and high 
uncertainty) were tested as the input for the EnKF inversion 
algorithm. Similar to the CNN validation workflow, modeled 
arrival time maps were generated based on the EnKF inverted 
permeability maps through MODFLOW-MT3DMS 
numerical simulation. As illustrated in Figure 5, the R2 
correlation between the experimental and modeled arrival 
time decreases as the precision of the initial ensemble 
decreases. With an R2 accuracy of 0.891, the hybrid CNN 
with EnKF tuning excels both in terms of computational cost 
and inversion accuracy. As demonstrated in Figure 6 and 7, 
the EnKF algorithm captures more discrete heterogeneity that 
is more geologically realistic than the smoothed permeability 
map inversion produced by the CNN, resulting in higher 
inversion accuracy.  

 

 

Fig. 7. A quantitative comparison of the inversion results for the 
hybrid CNN with EnKF tuning (top), the EnkF with the low-
uncertainty initial ensemble (middle), and the EnkF with the high-
uncertainty initial ensemble (bottom). The left subplots show the 
inverted 3-D permeability maps and the right subplots show the 
modeled arrival time maps.  

 

4 Discussion 

The high R2 correlation between the experimental and 
modeled arrival time maps illustrates that the trained encoder-
decoder based CNN is capable of accurately determining the 
overall magnitude and local variations of 3-D permeability 
maps. With a reasonable initial ensemble, the Ensemble 
Kalman filter can achieve a similar or higher level of 
inversion accuracy as the encoder-decoder based CNN. As 
noted in previous inversion studies, the quality of the initial 
ensemble has a considerable impact on both the accuracy and 
computational efficiency of the inversion.  
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     Trained CNNs are capable of describing the input imagery 
(e.g., PET data) in terms of dense and generalizable features, 
resulting in a significant reduction in computational time and 
memory requirements [43, 44]. Although the initial CNN 
training process is computationally intensive, the trained 
network can invert the permeability map of nearly any 
unfractured geologic core sample within 10 seconds. 
Furthermore, each path file that contains the trained 
parameters for the entire encoder-decoder network is only 
tens of megabytes. 
 
     Training of the encoder–decoder based CNN is purely 
data-driven, relying on statistical relationships instead of any 
iterative forward operator involved in the inversion process. 
Our work illustrates that the encoder–decoder based CNN is 
capable of learning a generalizable mapping function 
between the arrival time difference and permeability maps. 
The mapping function served as a pseudo-inverse operator 
[18], and it eliminates the need for numerically defining a 
forward operator, running iterative forward simulations, and 
computing covariance matrices. This significantly reduces 
computational time if inverting the permeability maps for 
multiple core samples. 

     As indicated by the inversion accuracy stabilization time, 
the EnKF requires high computational time and memory 
because of the iterative forward simulations and covariance 
matrices computations involved in the inversion process. For 
a system with n = no = np, the computational cost of the 
standard EnKF is at least in the order of 𝑂𝑂(𝑛𝑛𝑡𝑡2 ⋅ 𝑛𝑛) [45]. To 
mitigate this issue, both the ensemble size and the number of 
iterations need to be reduced by a well-constrained initial 
ensemble estimation.  

     Similar to CNN training data parameter space definition, 
the geologically reasonable EnKF ensemble definition is 
essential for accurate inversion results. Guided by the 
geologic knowledge and sedimentary structures present in X-
ray CT core image obtained from previous experiments, the 
EnKF initialized with low-uncertainty permeability fields  
accurately capture the magnitude and variation of the Berea 
core’s permeability map. Furthermore, the CNN inverted 
permeability map provides additional structural information 
that is difficult to defined manually to the EnKF inversion, 
resulting in the highest R2 inversion accuracy. In contrast, 
results of the EnKF initialized with the high-uncertainty 
permeability fields illustrate a lack of geologic realism.  

In addition, if proper regularization techniques are not 
explicitly imposed, small uncertainties in the input 
observations arising from measurement error can result in 
large uncertainties in the inversion results due to the ill-
posedness of the nonlinear inversion problem [17, 19]. For 
instance, as the uncertainty in the input ensemble increases, a 
clear reduction in the inversion accuracy is observed. This 
issue can be attenuated by using CNN to guide the generation 
of an initial ensemble with low uncertainty. 

5 Conclusion 

This study demonstrates the capability of both CNNs and 
traditional numerical inversion methods for determining 
subcore permeability maps from PET imaging data. The CNN 
can learn a generalizable relationship between the PET arrival 
time and permeability maps that allows a single trained 
network to invert for the permeability of any geologic sample 
represented by the training data parameter space. This enables 
an accurate 3-D permeability characterization of geologic 
cores. The data-driven nature of the CNN inversion approach 
has been shown to lead to an unprecedented reduction in 
computational time and memory requirements such that a 
single inversion can be run in seconds. 
 
     The EnKF numerical inversion algorithm requires more 
computationally intensive covariance calculations and 
observation operation that must be run for each sample-
specific permeability field inversion. Similar to the CNN 
training data parameter space definition, the EnKF ensemble 
parameter space has a strong influence on inversion accuracy 
and computational efficiency. With a well-defined initial 
ensemble, the Ensemble Kalman filter may outperform the 
CNN results in terms of inversion accuracy. However, due to 
the variation and spatial complexity of different permeability 
fields in different reservoir rocks, prior knowledge about a 
specific geologic core will often be limited. As a solution, the 
CNN inverted permeability map with subtle perturbations 
that span the inversion uncertainty can serve as the starting 
point for generating a geologically realistic and sample 
specific ensemble with much lower uncertainty than 
traditional geostatistical ensemble generation methods. The 
hybrid CNN with EnKF tuning not only aids the EnKF to 
further improve its inversion accuracy but also broadens its 
capability at a larger scale or a finer resolution. Combined, 
this approach provides a transformational approach for rapid 
sub-core permeability characterization in complex geologic 
reservoir core samples. 
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