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Abstract. Relative permeability is a crucial parameter in CO2 storage as it describes the fluids' transport in porous 

media and residual saturations. CO2 injection into saline aquifers leads to CO2 dissolution in brine and subsequent 

formation of carbonic acid, resulting in complicated reactions with the rock minerals. These reactions include 

mineral dissolution, mineral precipitation or silicate weathering, depending on the composition and texture of the 

reservoir rock. As a consequence, these reactions bring about alterations in key rock characteristics including 

mineralogy, porosity, absolute permeability, and wettability. The main objective of this study is to develop a 

CO2/brine relative permeability model using machine learning (ML) algorithms based on a more comprehensive, 

yet representative, set of input parameters including rock/fluid properties and their compositions, instead of time-

consuming experiments. In this study, experimental relative permeability data were data mined from the literature, 

along with some additional fluid and rock properties including absolute permeability, porosity, fluid density, fluid 

viscosity, CO2/brine interfacial tension, CO2 solubility, rock minerals’ concentration, brine salinity and composition, 

and fluid saturations. The dataset was pre-processed, and missing data were identified and populated using 

applicable correlations. Various supervised ML approaches were tried to predict the relative permeability values, 

including Decision Tree Regression (DTR), Gaussian Process Regression (GPR), Linear Regression (LR), and 

Bayesian Ridge Regression (BRR). In a comparative analysis, the same ML algorithms were trained and tested, 

incorporating only three typical input parameters that have been repeatedly used recently in the literature for relative 

permeability modelling (i.e., porosity, absolute permeability, and fluids saturation). Results indicate that there was 

a good agreement between the predicted and experimental relative permeability data for models developed using 

DTR and GPR algorithms when all input parameters were incorporated. However, the models were not nearly as 

accurate when only three conventionally agreed input parameters were used. A sensitivity analysis was also 

performed to determine the most accurate input parameters and their impact on relative permeability predictions. 

According to the sensitivity analysis results, the most important input parameters are brine salinity, CO2 and water 

viscosity, porosity, absolute permeability, and iron and halite content of the rock samples. Overall, the results 

indicate the critical role of rock-fluid interactions and composition, as well as fluid properties, in predicting relative 

permeability using ML-based approaches, underscoring their significance for future studies. 

1 Introduction 

Carbon capture, utilization, and storage technologies are 

efficient solutions to reduce environmental pollution, climate 

change, and global warming. CO2, as one of the most 

important greenhouse gases, can be stored in oceans, 

geological structures, or through surface mineral carbonation. 

Since surface mineral carbonation and CO2 storage in oceans 

require expensive infrastructure and may even negatively 

affect the environment, CO2 storage in geological formations 

seems to be the best option. Moreover, potential geological 

storage sites are distributed worldwide, and all the experience 

and knowledge obtained from fossil fuel production and 

geological studies are applicable to geological CO2 storage. 

Potential geological sites for CO2 storage include depleted oil 

and gas reservoirs, deep saline aquifers, and coal seams. 

Saline aquifers are of utmost importance when geological 

sites for carbon storage are screened due to their large 

capacity, wide geographical spread, and reasonable porosity 

and absolute permeability [1, 2]. 

Understanding how different fluids flow through a rock 

can be achieved by examining the multiphase flow properties 

of a porous medium-fluid(s) system, including relative 

permeability and capillary pressure. These properties explain 

how each fluid phase is displaced and how different fluid 

phases are distributed within the pores. The ability to store 

CO2 in both mobile and immobile forms within the pore space 

and in the presence of brine relies on the relative permeability 

of CO2-brine as well as capillary pressure characteristics [3]. 

Relative permeability plays a crucial role in describing these 

parameters. Relative permeability is an important 

characteristic that influences the movement and fate of 

injected CO2 in porous media. It describes how much the 

injected CO2 and water disrupt each other's movement 

through rocks. Moreover, relative permeability curves are 

essential inputs for reservoir simulators, enabling them to 

history match and simulate CO2 storage scenarios [4]. 
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Misinterpretation of the CO2-brine relative permeability 

could be the reason behind various unexpected field-scale 

observations, such as CO2 injectivity issues, early 

breakthrough, and plume shape [5]. In the last few decades, 

the research focus on the geological storage of CO2 has led to 

examining the CO2/brine system in aquifer rocks, particularly 

in terms of relative permeability [6].  

During CO2 injection into aquifers, CO2 dissolves in brine 

and reacts with the rock minerals. Carbonic acid is formed 

upon CO2 dissolution in the brine, leading to reduction in pH 

and an increase in the H+ concentration. Thus, different 

reactions occur depending on the brine and rock compositions 

as well as reservoir conditions. For instance, mineral 

dissolution occurs when carbonic acid reacts with calcium 

carbonate minerals. Mineral precipitation could 

simultaneously happen when calcium and bicarbonate ions 

react, forming solid calcium carbonate. Silicate weathering is 

yet another reaction that occurs when carbonic acid reacts 

with silicate minerals. These reactions could cause changes in 

crucial rock and rock-fluid properties such as mineralogy, 

porosity, absolute permeability, and wettability through 

mineral dissolution/precipitation and surface chemistry 

alteration [7, 8]. For instance, specific mineral dissolution 

increases porosity and absolute permeability, while mineral 

precipitation and particle migration have the opposite effect. 

The concentration of ions in brine, type of rock minerals, and 

CO2 injection pressure, as well as reservoir pressure, all play 

significant roles in determining the extent of these reactions 

[9].  

The above-mentioned reactions and subsequent changes 

in rock and rock-fluid properties have implications for 

relative permeability, which has been an active area of 

research for the past several years; however, there is a lack of 

site-specific reservoir data for CO2 storage application. 

Particularly, several papers have been published over the 

years on determining CO2/brine relative permeability through 

laboratory experimentation [10]. In these experiments, both 

unsteady-state and steady-state coreflooding techniques 

could be used to determine initial brine and residual CO2 

saturations, relative permeabilities during drainage and 

imbibition, and other system characteristics under various 

flow conditions, temperature, and pressure [1, 11]. Based on 

these experimental studies, different models (i.e., 

correlations) have been developed for relative permeability 

prediction; however, specific impacts of fluid composition, 

properties as well as rock-fluid interactions on relative 

permeability curves or saturation exponents have not been 

fully understood and implemented yet in these so-called 

conventional models for relative permeability prediction. 

These conventional models mainly describe the relative 

permeability as a function of fluid phase saturations. There 

are more recent studies that consider some additional input 

parameters such as wettability, rock type, porosity, absolute 

permeability, viscosity ratio, and interfacial tension [6, 12, 2]. 

In this study, we developed some machine learning (ML)-

based models for predicting CO2/brine relative permeability 

by utilizing a comprehensive set of input parameters that 

incorporate rock and fluid properties and compositions, as 

well as rock-fluid interactions. The input parameters used in 

this ML-based modelling attempt include absolute 

permeability, porosity, fluid density, fluid viscosity, 

CO2/brine interfacial tension, CO2 solubility, rock mineral 

concentration, water salinity and composition, and fluid 

saturations. To the best of our knowledge, no such modelling 

exercise has been done in the literature for predicting the 

relative permeability of CO2/brine fluid system that includes 

the comprehensive range of input parameters utilized in this 

research work. As pointed out above, the currently available 

predictive models only consider a limited range of input 

parameters, which results in reduced accuracy and non-

representativeness of the models.   

2 Methodology  

A comprehensive data gathering and databank preparation 

was done in this research work in which several papers 

focusing on CO2-brine relative permeability measurements 

[1-30] were reviewed, and all the data, including rock and 

fluid properties, rock-fluid interaction parameters as well as 

relative permeability information were extracted accordingly. 

The parameters extracted include absolute permeability, 

porosity, fluid density, viscosity, CO2/brine interfacial 

tension, CO2 solubility, rock mineral concentration, water 

salinity and composition, fluid saturations, and corresponding 

relative permeability values. The data collected were pre-

processed, and missing data such as fluid density and 

viscosity, and CO2/brine interfacial tension were identified 

and populated using applicable correlations. Several 

supervised machine learning approaches were attempted to 

predict the relative permeability values at corresponding fluid 

saturations, including Decision Tree Regression (DTR), 

Gaussian Process Regression (GPR), Linear Regression 

(LR), and Bayesian Ridge Regression (BRR). A subset of the 

collected data (25% of the dataset) was utilized as the training 

dataset to train the model. The accuracy and reliability of the 

models were then assessed using the remaining data, 

designated as the testing dataset. The data points allocated for 

the testing stage were excluded from the databank when the 

models were trained. Therefore, the accuracy of predictions 

achieved in the testing stage was not biased with any data 

shared between the training and testing stages. The accuracy 

of predictions with respect to the measured values was 

assessed by calculating some statistical parameters such as 

root-mean-square error (RMSE), relative average deviation 

(RAD), and coefficient of determination (R2) based on model 

predictions during the testing stage. Additionally, the 

predicted versus measured relative permeability profiles were 

compared using some selected ML approaches as a function 

of aqueous phase saturation. A sensitivity analysis was also 

performed to determine the most influential input parameters 

and their impact on relative permeability predictions. In this 

study, the relative permeability predictions were obtained by 

incorporating all the input parameters into the ML 

approaches. The relative permeability values were also 

calculated with only three input parameters of porosity, 

absolute permeability, and fluid saturation. 

 

2.1 Data pre-processing 

As previously stated, a dataset consisting of nearly 700 data 

points was created, and the missing values, accounting for 

approximately 10% of the entire dataset, were identified 

using different correlations and filled into the database. Table 
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1 displays the missing parameters and the correlations used 

for estimating these missing parameters.    

Table 1. Correlations used for estimating the missing parameters in 

order to complete the database  

Missing 

Parameters in 

the database  

Correlation Correlation 

parameters  

Brine Density Danesh [31] P, T, S 

Brine Viscosity Danesh [31] P, T, S 

CO2 Viscosity Pitzer & Schreiber [32] P, T 

CO2 Density Altunin & Sakhabetdinov 

[33]  

P, T 

CO2 Solubility Hangx [34] P, T, concentration of 

salts  

IFT Lins et al. [35] P, T, ρCO2, ρbrine  

P: Pressure  

T: Temperature  
S: Brine salinity  

ρ: Density 

 

After filling in the missing values, the descriptive 

statistical distributions for each input parameter were 

computed. The range of variation for each input parameter is 

illustrated in Fig. 1 in the logarithm scale. Clearly, certain 

parameters, such as salinity and absolute permeability 

exhibited a wider variation range compared to the rest of the 

input parameters.  

 
 

Fig. 1. Variation range of input parameters  

 

A descriptive statistical analysis approach was also 

undertaken to gain deeper insights into the dataset. This 

involved computation of various statistical parameters such 

as mean, standard deviation, minimum, maximum, and 

quartiles for all the input parameters. This approach enabled 

us to determine whether the values fell within a reasonable 

range and also offered insights into the overall distribution 

patterns. The calculated statistical parameters for some of the 

features are presented Table 2. 

 

Table 2. Statistical parameters for some of the features 

           

                   Input 

Statistical 

parameters 

 

φ 

 

k 

(mD) 

 

ρCO2 

(kg/m3) 

 

μCO2 

(cp) 

 

S 

 (ppm) 

Mean 17.45 480.88 616.53 0.10 71,497 

std 7.6 697.32 201.99 0.17 93,501 

Min 4.3 0.02 209.9 0.02 0 

25% 12.57 2.8 404 0.03 0 

50% 16.8 65 680 0.05 30,000 

75% 22.2 619 768.4 0.08 88,972 

Max 44 1810 920 0.66 315,400 
k: Absolute permeability  

φ: Porosity  

μ: Viscosity  

 

2.2. Data preparation for modelling 

An essential step in ML modelling is dividing the input data 

into training and testing subsets. Cross-validation is a 

technique employed in ML modelling where the training and 

testing subsets are used alternately as both a testing and 

validation set, with the process repeated multiple times to 

assess the model's performance. The objective is to evaluate 

the model's ability to generate accurate and reliable 

predictions based on measured values. The cross-validation 

procedure provides a more precise estimation of the model's 

performance by utilizing multiple validation datasets. 

Another approach for creating data subsets is a 

straightforward strategy in which the entire dataset is 

randomly divided into separate training and testing subsets. 

In this research work, we employed both approaches. We first 

incorporated a 5-fold cross-validation method. Additionally, 

25% of the data were randomly allocated for model training, 

and then the remaining 75% were used as the testing subset. 

 

2.3. ML Algorithms 

Once the training and testing datasets were prepared, ML 

algorithms were trained and evaluated. The subsequent four 

sections present a concise overview of each of the employed 

ML applications. 

2.3.1 Linear Regression  

Linear regression is a widely-used and straightforward 

method that relies on mathematical approaches to perform 

predictive analysis. It is particularly useful for projecting 

continuous or mathematical variables. LR is a statistical 

method to model the relationship between a dependent 

variable and one or more independent variables. The goal of 

using LR is to find the best-fitting linear relationship between 

the dependent and independent variables such that the 

difference between the predicted and actual values of the 

dependent variable is minimized. LR can be classified into 

two categories: simple linear regression and multiple linear 

regression (MLR). A straight line is used in simple linear 

regression to model the relationship between the dependent 

variable and ONE independent variable. However, in MLR, 

a hyperplane is used to model the relationship between the 

dependent variable and two or more independent variables 
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[36]. The model’s parameters are estimated using the least 

squares method in both cases. An intercept and a slope for 

simple linear regression define the model. In contrast, a MLR 

model is defined by a set of parameters, one for each 

independent variable. This method is easy to implement, and 

it can also be extended to more complex models, such as 

polynomial regression or generalized linear models. 

However, it assumes a linear relationship between the 

variables and may not perform well when the relationship is 

non-linear, or the data contain outliers [37]. 

2.3.2 Decision Tree Regression 

One of the practical approaches to supervised learning is 

Decision Tree. This algorithm applies to both regression and 

classification problems. The decision tree algorithm is a 

decision-making tree-like structure technique that divides a 

dataset into increasingly smaller subsets while 

simultaneously developing a corresponding decision tree. 

The resulting tree consists of decision nodes and leaf nodes. 

The first node is the root node, representing the entire sample, 

and may be divided into further nodes [38]. The interior nodes 

are associated with the features of a dataset, and the branches 

represent decision rules. The leaf nodes are the outcomes. 

DTR is utilized where the goal is to predict a continuous 

numerical value. Once the tree is constructed, a new data 

point is predicted by traversing the tree from the root to a leaf 

node. This algorithm evaluates the condition based on the 

input feature at each internal node and decides whether to 

follow the left or right branch. The leaf node reached by the 

traversal then represents the predicted value for the input data 

point [39]. 

2.3.3 Gaussian Process Regression (GPR) 

The Gaussian Process is a versatile technique for supervised 

learning that can be applied to solve regression and 

probabilistic classification problems. GPR is a regression 

technique that is nonparametric and nonlinear. It is utilized to 

interpolate between data points dispersed in high-

dimensional input space. The algorithm is rooted in Bayesian 

probability theory and strongly correlates with other 

regression approaches, such as kernel ridge regression (KRR) 

and LR. In contrast to several widely used supervised 

machine learning algorithms which learn precise values for 

each parameter in a function, the Bayesian methodologies 

instead estimate a probability distribution encompassing all 

the potential values. It is particularly useful when little or no 

prior knowledge about the underlying function exists. GPR 

provides not only point estimates but also incorporates 

uncertainty estimates for the predictions, making it suitable 

for a range of applications. Additionally, GPR is applicable 

to handling data with complex input-output relationships and 

can be employed for tasks such as interpolation, 

extrapolation, and function approximation [40]. 

2.3.4 Bayesian Ridge Regression (BRR) 

Bayesian Regression is a statistical methodology that utilizes 

probability distributions instead of point estimates to model 

LR. This technique is particularly effective in handling data 

that may be inadequate or non-uniformly distributed. Unlike 

conventional methods that estimate the output variable as a 

single value, Bayesian Regression models the output variable 

as a probability distribution. Thus, the algorithm increases the 

modeling flexibility and considers data uncertainty. BRR is a 

widely used technique among Bayesian linear regression 

algorithms that includes a regularization term to improve the 

model's performance. Essentially, BRR reduces the impact of 

noise and extraneous variables by placing a prior probability 

distribution on the regression coefficients; therefore prevents 

overfitting and improves the overall model predictability. In 

particular, BRR is highly effective in dealing with many 

independent variables when some are interrelated [41]. 

3 Result and Discussion 

Four supervised ML algorithms were used to model 

CO2/brine relative permeability as a function of absolute 

permeability, porosity, fluid density, fluid viscosity, 

CO2/brine interfacial tension, CO2 solubility, rock mineral 

concentration, water salinity and composition, and fluid 

saturations. Data pre-processing and understanding/finding 

missing data are crucial steps for proper data analysis. A 

Python-generated heatmap chart is introduced in Fig. 2 to 

visualize the extent of available data and facilitate data pre-

processing. In Fig. 2a, each cell represents a data point, and 

the missing values are depicted in white while the available 

data are illustrated in black. Significant clusters of missing 

data can be observed for a few input parameters including 

CO2, water, and total flow rates, and CO2 solubility. In 

addition, certain data points were also missing in some other 

variables, such as interfacial tension (IFT), fluid viscosities, 

and densities. It was not possible to correlate/estimate the 

missing unreported injection flow rates of CO2 and water 

based on available information from the reference papers. 

Therefore, it was decided to exclude these parameters from 

further analysis. For the remaining missing parameters, 

however, we managed to estimate them using some 

appropriate correlations to ensure a comprehensive dataset is 

available for further analysis. After excluding the injection 

flow rates and incorporating missing data estimation using 

proper correlations, the resulting dataset contains no missing 

information, as depicted in Fig. 2b. 

After cleaning the dataset and filling in the missing 

values, all the input data were normalized to ensure that 

features with larger magnitudes do not dominate or bias the 

learning algorithm. As depicted in Fig. 1 and 3, brine salinity 

exhibits notably larger values compared to other features 

when the original data points are concerned. With data 

normalization, all the data points were brought within a 

consistent range of variation in the input dataset. 
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Fig. 2. Heatmap showing the presence of null values in the dataset. 

The white colour represents the missing data. 

 

Fig. 3. Comparison of “feature mean” for the original and 

normalized datasets, showing the impact of normalization on data 

distribution. 
 

After data pre-processing and normalization, the ML 

algorithms were first trained and then individually used to 

predict CO2 relative permeability for the whole dataset, and 

the agreements between the predicted and measured relative 

permeability values for each ML model are presented in the 

form of parity plots in Fig. 4 to 7. In each parity plot, the solid 

black line represents the line where the measured and 

predicted data are equal. The two black dashed lines represent 

the predicted values within the ±5% range from the 

measurements. Clearly, the DTR and GPR algorithms 

demonstrated significant superiority in predicting the 

measured data when compared to the other methods. As 

indicated in Fig. 4 and 5, the scattering errors associated with 

these predictions are small and very similar, and most data 

points are spread closely around the diagonal line. In contrast, 

the LR and BRR models possess less accuracy when 

predicting CO2 relative permeability values. This is evident 

from the wider distribution of the data points beyond the ±5% 

scatter error zone depicted by the dotted lines in Fig. 6 and 7.  

In order to quantitatively assess the predictive 

performance of each of these ML algorithms, a set of 

statistical parameters was calculated, including root-mean-

square error, relative average deviation, and coefficient of 

determination (Table 3). These statistical measures show the 

accuracy of predictions when compared against experimental 

data. Clearly, the DTR and GPR algorithms resulted in the 

smallest RMSE and RAD values and the biggest R2 values, 

which signify their highest accuracy in predicting CO2 

relative permeability values. Interestingly, both the parity 

plots and statistical measures show that the DTR model 

slightly outperformed the GPR model in predicting CO2 

relative permeability values.   

 

Fig. 4. Comparison of the predicted and measured CO2 relative 

permeability values using DTR model. 

Fig. 5. Comparison of the predicted and measured CO2 relative 

permeability values using GPR model. 
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Fig. 6. Comparison of the predicted and measured CO2 relative 

permeability values using LR model. 

Fig. 7. Comparison of the predicted and measured CO2 relative 

permeability values using BRR model. 

 

Table 3. Statistical measures presenting models’ accuracy.  

           

                       Method 

Algorithm 
RMSE RAD (%) R2 

BRR 0.086 0.49 0.62 

LR 0.08 0.48 0.64 

DTR 0.01 0.0212 0.96 

GPR 0.025 0.0241 0.94 

 

Another approach to demonstrate the excellent 

performance of the DTR and GPR models in predicting the 

CO2 relative permeability data is through visualization of the 

residual error distribution. As demonstrated in Fig. 8, the 

residual errors associated with both CO2 relative permeability 

predictions are normally distributed around zero, which 

shows high-accuracy predictions for both algorithms.  

 

 

Fig. 8. Residual error distribution plots for the DTR and GPR 

algorithms. 

 

Once the performance of the ML models was assessed in 

predicting the CO2 relative permeability values for the entire 

input parameter dataset, the two most promising models of 

DTR and GPR were utilized to build the entire relative 

permeability-saturation function for both CO2 and brine 

phases based on the data collected from three selected case 

studies in references [1], [4] and [9]. Note that the R2 values 

reported in Fig. 9 to 11 belong to the CO2 relative 

permeability predictions using the DTR and GPR models 

when compared against the experimental data. As indicated 

in Fig. 9 to 11, the selected ML models were able to replicate 

the experimental data very accurately, with coefficients of 

determination of greater than 0.96, over the entire range of 

CO2 saturation, with only a slight underestimation at the 

higher end of CO2 saturations. The collective prediction 

trends shown for the DTR and GPR models strongly suggest 

them as two representative models for predicting CO2 relative 

permeability for the CO2-brine fluid system. As indicated in 

these three figures, the DTR and GPR models also predicted 

the brine relative permeability very accurately. In order to 

emphasize the outstanding performance of the DTR and GPR 

models, one set of CO2 relative permeability values versus 

saturation, borrowed from Reynolds et al. [4], was compared 

against predictions made using the LR and BRR models (Fig. 

12). It is clear that these two models did not perform well in 

predicting CO2 relative permeability values.  
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Fig. 9. Comparison of measured (Kou et al. [1]) versus predicted 

CO2 and brine relative permeability curves with the application of 

DTR and GPR models.  

Fig. 10. Comparison of measured (Reynolds et al. [4]) versus 

predicted CO2 and brine relative permeability curves with the 

application of DTR and GPR models. 

Fig. 11. Comparison of measured (Kou et al. [9]) versus predicted 

CO2 and brine relative permeability curves with the application of 

DTR and GPR models.  

 

In recent years, various researchers used three parameters 

of saturation, absolute permeability and porosity to predict 

relative permeability through analytical and numerical 

modelling efforts [6, 12, 42, 43]. We propose that the 

prediction accuracy will be significantly enhanced if more 

carefully-selected relevant input parameters are incorporated 

when modelling relative permeability using ML approaches. 

To prove this hypothesis, the Decision Tree and Gaussian 

Process Regression models were trained with only three 

parameters of porosity, absolute permeability and fluid 

saturation. These models were then used to predict the CO2 

relative permeability values, and the predicted versus 

measured relative permeability results are plotted in Fig. 13 

and 14. In each parity plot, the solid black line represents the 

line where the measured and predicted data are equal, and the 

two black dashed lines represent the predicted values within 

the ±5% range from the measurements. Clearly, the 

prediction performance of both these ML algorithms has 

deteriorated when compared to their prediction accuracy with 

all the input parameters involved for training and testing of 

the models.  

 

 
Fig. 12. Comparison of measured (Reynolds et al. [4]) versus 

predicted CO2 relative permeability curves with the application of 

LR and BRR models. 

  

Fig. 13. Comparison between the predicted and measured CO2 

relative permeability values with application of DTR algorithm 

when only three parameters of porosity, absolute permeability and 

fluid saturation were used for the modelling approach.  
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Fig. 14. Comparison between the predicted and measured CO2 

relative permeability values with application of GPR algorithm 

when only three input parameters of porosity, absolute permeability 

and fluid saturations were used for the modelling approach.  

 

In order to assess the relative significance of various input 

parameters on the predictive performance of each model, a 

sensitivity analysis was conducted using the DTR and GPR 

algorithms, and the results are presented in Fig. 15 and 16, 

respectively. The most influential parameters obtained from 

this sensitivity analysis include brine saturation and salinity, 

CO2 and water viscosity, porosity, absolute permeability, and 

iron and halite concentration of rock. These results highlight 

the importance of considering these influential parameters in 

future research and the practical application of the model. The 

subsequent paragraphs briefly discuss these parameters' 

significance with some evidence from the literature. 

 

Fig. 15. Sensitivity analysis of the relative permeability results using 

the DTR algorithm.  

Fig. 16. Sensitivity analysis of relative permeability results using 

the GPR algorithm. 

 

Salinity is known to influence rock wettability and, 

therefore, is an important factor when the fluid distribution 

and relative permeability measurements are concerned. It also 

inversely affects CO2 solubility in brine. Various chemical 

reactions, such as the ion exchange phenomenon at the fluid-

rock interface, are highly affected by brine salinity. It is 

customary to have salinity as one of the most influential 

parameters for relative permeability prediction [44, 45]. Rock 

porosity and absolute permeability are two other important 

parameters recently considered to be “influential” when 

predicting relative permeability. The interconnected pore 

network within a rock structure significantly affects porous 

media flow. Porosity, along with pore size distribution, 

determines pore connectivity, hence affecting rock 

permeability. Additionally, porosity demonstrates the 

effective surface area available for fluid-rock interactions. 

Greater porosity values provide a larger contact area between 

CO2, brine, and the rock surfaces, potentially leading to 

complex interactions affecting relative permeability [44]. 

The presence of various minerals (such as iron) in rocks 

could facilitate mineral dissolution and subsequent re-

precipitation (due to pH changes) when CO2 reacts with brine 

and reservoir rock, leading to potential changes in relative 

permeability. The presence of certain minerals could also 

affect surface wettability when in contact with the CO2-brine 

fluid system [46]. The next influential parameter is the halite 

content of the reservoir rock. Halite, also known as rock salt, 

mainly comprises sodium chloride (NaCl). The presence of 

halite in reservoir rocks significantly affects CO2 and brine 

relative permeabilities due to its high solubility in water [47]. 

Last but not least, CO2 and brine viscosities significantly 

affect flow resistance, fluid mobility, saturation distribution, 

and capillary pressure gradients within the porous medium. 

These factors collectively affect the relative permeabilities 

associated with the CO2-brine fluid system [37].  

4 Conclusions 

This study aimed to predict CO2/brine relative permeability 

using supervised machine learning algorithms. Four 
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algorithms were employed: Linear Regression, Decision Tree 

Regression, Gaussian Processes Regression, and Bayesian 

Ridge Regression. The Decision Tree and Gaussian Process 

Regression algorithms accurately modelled the relative 

permeability dataset (R2 > 94%). The performance of these 

algorithms was further validated by predicting relative 

permeability pairs versus saturation profiles for three case 

studies borrowed from the literature. Additionally, a 

sensitivity analysis was performed to investigate the effect of 

selecting only a limited number of input parameters on the 

predicted relative permeability data. It was concluded that 

more accurate relative permeability predictions were 

obtained when the full list of input parameters was used. 

Moreover, a sensitivity analysis was performed to obtain the 

most influential parameters when predicting relative 

permeability data using a selected ML algorithm. This list 

includes brine salinity, CO2 and water viscosity, porosity, 

absolute permeability, as well as iron and halite concentration 

of the reservoir rock. In summary, this study highlights the 

ability of some ML algorithms to accurately predict the 

relative permeability data using some rock, fluid, and 

rock/fluid parameters. It also highlights the importance of 

considering a comprehensive set of input parameters to 

provide thorough insights into relative permeability 

prediction with high certainty levels.  
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