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Abstract. We present novel, a priori estimates of the nanoDarcy oil/water relative permeabilities within 

tight-oil shale that are too small to be measured experimentally, with the aim of increasing the yield from 

existing unconventional reservoirs. Intact half-cm3 subsamples were washed to remove the mobile tight oil, 

then subjected to electron microscopy, mercury porosimetry, and helium and powder pycnometry. 

Simulated void networks were generated that are based on the PoreXpert inverse modelling of the entire 

mercury intrusion curve, extended to nanometer scale using helium pycnometry, with the completely 

integrated percolation behaviour of around 43000 voids of sizes closely matched to the experimental input.  

The absolute permeability of the network is calculated as the maximum flow through the pore-throat-pore 

arcs, determined by parametrised Navier Stokes equations. Relative permeability is modelled as a mobile 

phase moving past a static phase that restricts the flow. The resulting oil relative permeabilities vary 

according to the wettability of the sample surfaces. The unique characteristics of our results are that quasi-

static and dynamic aqueous relative permeabilities vary according to local flow conditions, and that absolute 

relative permeabilities are presented that vary widely between samples, in contrast to the usual normalized 

values.   

1 Introduction 

Absolute gas permeabilities of tight-oil shale are very 

low, of the order of nanoDarcies, and therefore difficult 

to measure [1].  Although gas-liquid relative 

permeabilities in shale can be measured, oil/water relative 

permeabilities cannot. So the oil/water relative 

permeability characteristics inserted into reservoir models 

are often estimated from standard equations such as 

Brooks-Corey, an approach which is dubious even for 

conventional reservoirs [2]. We present a novel method of 

simulating oil/water relative permeability characteristics, 

based on precise inverse modelling of the full mercury 

intrusion characteristic extended down to micropore 

diameters with helium pycnometry.   

The approach provides relative permeability estimates 

that vary with flow conditions, and that can be compared 

in absolute value between different samples.  The 

preliminary results that we present are based on a priori 

physics with no calibration factors or semi-empirical 

fitting parameters. As described in Section 4, some 

validation of the core algorithms has been carried out, but 

further validation and calibration is required.  The 

approach is therefore work in progress, rather than a 

calibrated and fully validated study.  

Once completed, the new method has the potential 

significantly to improve the yield from existing tight-oil 

plays, not only by making existing reservoir models more 

precise, but also by giving an improved understanding of 

tight-oil retrieval in huff-puff scenarios, improved 

guidance for where to frack based on better 

characterisation of shale subsamples from cores, and by 

providing a better understanding of the reduction in yield 

with time, and hence better estimates of total field 

capacity.  

2 Experimental 

2.1 Sample selection 
Cuboid subsamples were taken from a series of cores 

drilled from different depths of a tight-oil play.  They had 

a side length of 0.76 ± 0.19 cm, and volume 

0.41 ± 0.13 cm3  (mean ± 1 standard deviation). Due to 

client confidentiality, the specific samples discussed here 

are generic rather than actual.  Sample 1 is representative 

of the mid range of the samples we studied, and sample 2 

is representative of low permeability outliers.  To further 

protect client confidentiality, we give limited details of 

our detailed characterisations of the samples, and some 

results, such as extent of mercury porosimetry intrusion, 

are redacted. Nor can we provide measurements of 

absolute gas permeabilities, but based on our modelling, 

they are in the nanoDarcy to micro-Darcy range.  The 

oil/water wettabilities of the samples are discussed below. 

2.2 Sample cleaning 
The standard process for cleaning core samples of 

infiltrated drilling fluids, salt and water, is the Gas 

Research Institute method for Soxhlet Extraction (1996), 

[3, 4], based on the Dean-Stark toluene solvent 
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extraction [5]. This method involves refluxing liquid 

toluene to its vapour with boiling point 110 OC. A closed 

system is used in which the the vapour extracts oil and 

water from the sample.  The water is condensed in a 

receiver vessel, and the toluene is continually cycled 

through the sample. When production of water ceases or 

the fixed period reflux has passed, the sample is then oven 

dried to remove any residual toluene.  

Although toluene is the standard solvent to use for 

standard core samples, it is not suitable for tight samples.  

Toluene has a lower surface tension than water, so can wet 

the rock surfaces being exposed by the removal of the 

water, thereby lowering the overall chemical potential of 

the process. Furthermore, water has a small but significant 

solubility in toluene. So refluxing the sample for many 

days over an excess of toluene, while continuously 

stripping out the water, provides a slow but efficient and 

continuous method of water removal. This causes 

excessive desiccation of clays and shaley sandstones, by 

stripping the hydration water. Another concern over the 

use of toluene is the formation of secondary porosity from 

aggressive removal of bituminous material and kerogen 

from the shale [6].  

Therefore in this project we have followed the 

suggestion of Cornwall [7], who advocated using iso-

propyl alcohol (IPA) rather than toluene, to remove the 

infiltrated mud but leave any kerogen and bituminous 

material, thus reducing the likelihood of creating addition 

porosity during the cleaning process. However, that 

protocol specified refluxing for a week, which was 

impractical within the time constraint of this study.  

Therefore a preliminary study was carried out based on 

rotary evaporation of extracts of the IPA solvent at 24 

hour intervals during the cleaning process, to leave a 

sludge residue. The sludge was dissolved in two drops of 

IPA, and pipetted onto an FT-IR plate. The IPA was then 

removed by blowing down with N2. FT-IR spectral 

analysis of the solvent after 72 hours showed that the FT-

IT spectrum was the same as the pure  solvent, and that 

therefore sample extracts were no longer present. All 

interim spectra were discarded. 

Following these analyses, the protocol was changed so 

that all samples were subjected to Soxhlet extraction for 

three days rather than seven.  Methanol extraction for 

another three days was then used to displace and remove 

IPA and residual salts within the sample, since failure to 

perform a methanol extraction can lead to incorrect pore 

and grain volume measurements.  Finally, samples were 

dried for a seven day period in a drying oven at 60 OC in 

accord with the API guidance for shale sample 

preparation or until the sample maintained a constant 

weight. 

2.2 Characterisation 
The cleaned subsamples were subjected to electron 

microscopy, helium pycnometry, powder pycnometry and 

mercury intrusion porosimetry, a combination of methods 

that we have previously used to characterise Gilsocarbon 

nuclear graphite [8].   

Prior to electron microscopy, sample faces were 

polished using a series of ever finer wet and dry abrasive 

paper.  Electron microscopy was used to survey the core 

samples to find regions for subsectioning which appeared 

likely to have contained mobile tight oil.  Those regions 

were then examined in more detail, and natural cracks 

identified.  Cracks were assumed to be natural, rather than 

generated by coring or subsampling, initially on the basis 

that one or both ends of the crack terminated within the 

samples.  The surfaces of the natural cracks were 

examined using in-built electron dispersive spectroscopy 

(EDS) detectors as being carbon-rich, thus strongly 

implying that they had contained tight oil under oil-wet 

conditions.  Successive 10 nm thick slices of exemplar 

samples including the natural cracks were prepared by 

focussed ion beam ablation (FIB-SEM), and SEM images 

of the slices were reconstructed to give 3D videos.  These 

videos confirmed two further criteria for assuming that a 

crack was naturally formed, namely moderately or high  

tortuosity, and that opposite faces of the crack had 

differently shaped surface characteristics. The videos 

characterised volumes of sample of around 200 nm cubic 

side length.  Such volumes were too small to provide a 

usefully representative sample volume, so the videos were 

only used for the identification of natural cracks, and not 

in the subsequent modelling. All subsamples for 

modelling contained natural cracks identified in this way.  

Typically two or three neighbouring subsamples were 

used for the various experiments.  Although the 

neighbouring samples were selected to be within zones 

with the same mineralogy and crack characteristics, there 

nevertheless could have been some heterogeneity 

between the neighbouring subsamples.  Due to the 

selection process, the subsamples were not representative 

of the overall shale cores, which contained large regions 

which appeared non-porous under electron microscopy, 

but only representative of those, often smaller, regions of 

the samples that contained natural cracks.  

The modelling itself was based on properties covering 

the whole 0.4 cm3 volumes of the cleaned samples, 

namely helium and powder pycnometry combined to give 

a precise accessible porosity of each sample, and mercury 

intrusion porosimetry up to an applied pressure of 400 

MPa.  The porosities determined in this way were: helium 

accessible void volumes as fractions of sample bulk 

volumes 0.21 ± 0.10, and from mercury intrusion 

0.066 ± 0.039. These porosities are higher than they 

would be for typical subsamples of shale that had not been 

selected as containing natural cracks.   

3 Modelling 

3.1 Simulating the void network 
The mercury porosimetry intrusion curves supplied most 

of the percolation characteristics of the samples. 

Traditionally, it is assumed that void features exposed to 

the mercury are cylindrical, with diameter d. Then the 

features intruded at an applied pressure P are calculated 

by the Laplace equation: 

𝑑 =  −
4 𝛾 cos 𝜃

𝑃
   . (1) 

With respect to the mercury porosimetry in this work we 

use the commonly accepted value of 140
◦ for the contact 

angle θ of mercury intruding sandstone against residual 
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air, and 0.48 Nm−1 for the surface tension γ, whereupon 

the numerator of Equation (1) becomes 1.47 Nm−1. The 

uncertainties in these parameters have been discussed by 

Van Brakel [9]. Despite numerous published works to the 

contrary, it is not valid to assume that the void size 

distribution corresponds to the first derivative (slope) of 

the intrusion curve [10]. Such an approach implicitly 

assumes that the void structure comprises a bundle of 

capillary tubes, with sizes that differ but do not vary along 

their possibly tortuous lengths, aligned in the direction of 

fluid flow or percolation. To underline the avoidance of 

this false approximation, in this work the throat-entry 

sizes derived from Equation (1) are referred to as Laplace 

void diameters, Fig. 1. 

As can be seen in Fig. 1, at the maximum applied 

mercury pressure of 400 MPa, the mercury intrudes pore-

throat entry diameters of 4 nm, whereas in shale, tight oil 

can be confined in features smaller than that. If decane is 

taken as a proxy for tight oil, then its effective molecular 

diameter is around 0.7 nm. So molecules could occupy 

features of 1 nm and above. Molecules so constrained 

would be difficult or impossible to extract / produce, but 

the potential applications of the proposed method also 

include total reservoir capacity and the tail-off of 

production, so all possible tight-oil molecules need to be 

included. 

For samples with homogeneous surfaces, pore sizes 

below 4 nm can be determined by interpreting N2 and/or 

Kr adsorption isotherms using Density Functional Theory 

(DFT) or Grand Canonical Monte Carlo (GCMC) 

methods. The pore size distribution can then be converted 

to the equivalent percolation characteristic, by assuming 

that all voids are surface-accessible throats, so as to 

extend the experimental percolation characteristic, Fig. 1, 

to smaller sizes.  However in the present study, the shale 

surfaces are heterogeneous and not characterizable by 

DFT or GCMC simulations.  As neither simulation nor 

experiment is available to provide the percolation 

characteristic between the percolation at minimum size / 

maximum pressure and the helium pycnometry point, the 

simplest assumption has been made, namely a linear 

interpolation to give the intercept shown at 1 nm .  

 

 

 
Fig. 1. Combined porosimetry and pycnometry for shale  

 

At the low pressure / high diameter end of the 

intrusion characteristic, sample edge effects would 

produce an identifiable step, but no such step exists in 

Fig. 1.  Intrusion at pressures lower than that 

corresponding to 1 m via Equation (1) was negligible, as 

can be inferred from Fig. 1, so the modelled percolation 

curve was truncated to zero intrusion at that Laplace void 

diameter.  The percolation characteristic used as input to 

the inverse modeller PoreXpert was therefore that shown 

in Fig. 1 between 1 nm and 1 µm.  

Guided by a Boltzmann-annealed simplex, the inverse 

modeller generates a series of void structures with 

characteristics progressively closer to the experimental 

data. This is not simply a curve fitting exercise – the 

simplex searches 5-dimensional parameter space for void 

structures that fit the experimental data using 

experimentally related parameters: the void network 

connectivity, the degree of short-range structuring as 

described below, and the shapes and spread of the pore 

and throat-entry size distributions.  The extent or shape of 

each parameter is characterised by a single number, 

normalised within parameter space to be of equal 

importance.  The goodness of fit is measured by scaling 

the range of the x and y axes to 100%, and measuring the 

average distance  of each experimental point to the 

closest simulation point within that two-dimensional 

parameter space. Consequently there is no constraint on 

the fit between 1 nm and 4 nm, because there is no 

experimental data within that range.  For the fit shown in 

Fig. 1,  = 1.4%. 

The simulated void structure is in the form of a unit 

cell, Fig. 2, with periodic boundary conditions.  It is an 

inverse image, in that voids are shown solid, and the solid 

phase is shown transparent, to facilitate viewing of the 

whole void network rather than just its outer surface.  The 

network comprises cylindrical ‘throats’ connecting cubic 

nodes (‘pores’) in the three Cartesian directions.  These 

shapes are simplistic, but when formed into a large 

network, provide a representation of the actual void 

volumes and topology to a useful degree of accuracy, 

within the context of the approximations and trade-offs 

required in generating a network model [11]. The size of 

the unit cell is adjustable.  It was found that the minimum 

size of unit cell that would provide a fit to the percolation 

data over the three orders of magnitude in size was one 

based on a cubic grid of N pores in each Cartesian 

direction, where N = 25.  Although the number of pores 

is fixed in this way, the number of throats that join them 

is determined by the connectivity of the network.  The unit 

cell shown in Fig. 2 comprises 15 625 pores and 27 460 

throats, i.e. 43 085 fully integrated void features in total.  

As each throat connects two pores, the average 

coordination number in this case is 3.5.  All percolation 

and permeability occurs from only the top face of the unit 

cell shown in Fig. 2 in the downward (-z) direction, as 

percolation from all sides produces an unrealistically 

early and sudden point of inflexion in the simulated 

percolation characteristic. 

An important parameter not investigated by the 

simplex is the short-range size autocorrelation between 

pore-throats, or ‘structure type’. The ‘vertically banded’ 
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structure type invokes bands of throats of similar size 

parallel to the -z direction of fluid flow for percolation and 

permeability.  So in the vertically banded case the 

percolation is parallel to the layers. The appropriate 

degree of any structure type is characterised by a 

parameter σ that varies from 0 (random) to 1 (fully 

structured).  For the unit cell shown in Fig. 2, σ = 0.18, so 

the degree of banding, emphasised by the intrusion of 

non-wetting fluid such as mercury from the top 

(maximum z) face, is not very marked. The ‘horizontal 

large to small’ structure type invokes layers of similarly 

sized pore-throats normal to the flow direction, Fig. 3.  

The effects of different structure types on the simulated 

percolation characteristic are accentuated by the periodic 

boundary conditions, and because the simulated 

percolation only occurs at the top face of every, semi-

infinitely repeating, unit cell. In a natural sample, the 

actual short-range size autocorrelation would be between 

these two extremes, so the two structure types were used 

to give upper and lower bounds to the relative 

permeability simulations. A very few samples were even 

more extreme than the outliers represented by sample 2, 

in that they were almost impermeable to mercury up to 

400 MPa applied pressure (average porosity 0.005), but 

nevertheless had significant porosity when immersed in 

helium.  For these, the only structure type that fitted the 

results is exemplified in Fig. 4, i.e. large voids or clusters 

entirely surrounded by micropores of less than 4 nm 

diameter, such that the samples would be effectively 

impermeable to both water and oil, despite having a 

porosity measurable by helium.  They were not included 

in the overall relative permeability simulations described 

below. 

Inverse modelling gives a large range of possible void 

networks, all of which have percolation characteristics 

which closely match those of the experimental samples.  

Therefore at least five stochastic realisations for each 

structure type of each sample were generated.  The 

various network fitting parameters are coupled due to 

their concerted convergence onto the experimental 

percolation characteristic.  The representative structure 

was therefore taken to be that which had all parameters as 

close as possible to the means of the distribution of the 

values of the five or more stochastic generations. The 

convergence onto experimental percolation 

characteristics gives confidence that the behaviour of pore 

fluids within the representative simulated network is 

usefully similar to that in the experimental shale samples.  

The inverse modeller identifies possible void clusters 

[10], as shown stippled in Figs. 2 and 3 overleaf, and 

numerically in Fig. 5.  In the current relative permeability 

simulation, a cluster is assumed to behave in the same way 

as the envelope volume that it occupies.   

The maximum asymptote of the cumulative Total 

Voids distribution in Fig. 5 is the sample porosity.  The 

linear axes give little information about the sizes of the 

smallest voids that contain the tight oil.  So a more 

informative plot is obtained using logarithmic axes, 

Fig. 6, which in this case shows the volumes as discrete 

rather then cumulative.  Both figures emphasise that there 

is no maximum in the void size distribution around 10 nm, 

as would be inferred from the intrusion curve, Fig. 1, 

using the traditional first derivative (capillary bundle) 

assumption. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Void size distributions for representative Sample 1 

Fig. 6. The distributions shown in Fig. 3, but plotted on logarithmic 

axes with discreet rather than cumulative volumes. 
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Fig. 3.  Unit cell for sample 1 with horizontal banding, giving the lower permeability bound. Small scale bar 1.73 m. 

 

Fig. 4. The only structure type that would fit extreme outliers almost impermeable to mercury but with significant porosity accessible 

to helium, i.e. larger voids or void clusters entirely surrounded by micropores. Small scale bar 1.32 m. 

Fig. 2. The unit cell of the simulated void structure of shale, 40% percolated by a dark grey non-wetting fluid. Vertically banded 

structure type, giving upper permeability bound.  Detail on the right of part of the nanoporous zone shows that even under 

magnification some of the nanoporosity is almost invisibly small.  
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3.2 Permeability calculation 
The permeability algorithm within the inverse modeller 

calculates the network permeability for liquids or gases.  

The permeability is independent of the solid phase, and 

only varies according to the geometry of the void network 

and the mean free path λ between collisions in the fluid.   

For the calculation of permeability, each pore-throat-

pore arc of the network has a flow capacity Farc calculated 

from parametrized Navier-Stokes equations [12]:  

 

(2) 

 

where h is the length of a throat of radius r connecting two 

cubic pores with sides L1 and L2, respectively.  The 

simultaneous solution of around 27500 arcs within the 

unit cell shown in Figs 2 and 3 is computationally 

intractable.  So instead, an operational network algorithm 

(Dinic) is used to calculate the maximum capacity of the 

network.  The result is an approximation of the total flow, 

in that it allows for separate flows of fluid through the 

same throat up to the maximum capacity of that throat, an 

approximation that we call ‘trickle flow’.  For the 

incompressible fluid case, this provides a useful 

approximation to the total flow capacity of a unit cell, but 

is likely to underestimate the total flow capacity for a gas.  

To emphasise the approximation, we refer to the results 

as void network capacities, not absolute permeabilities.  

Larger unit cells provide more realistic values of network 

void network capacity because there are fewer unit cell 

replications to represent the experimental sample, but 

computation time rises approximately as N 4 .  For N = 

25, computation time for a single permeability calculation 

with this trickle flow approximation on a fast, multi-

threaded personal computer is of the order of 5 hours. 

For gases, Eqn (2) scales precisely from laminar flow 

to Knudsen (slip) flow according to the relative length of 

λ and L.  The effect of Knudsen flow is referred to as the 

Klinkenberg effect.  It typically increases flow rates for 

gaseous N2 near ambient pressure by around 1% for 1 m 

throats.  However, for the systems studied in this work, 

the relative increase in flow is around three orders of 

magnitude.  The approach here differs from other studies 

in that the Knudsen flow correction is applied to each 

throat within the void network, rather than as a 

Klinkenberg factor for the whole sample typically 

correlated with permeability [1].  

In the current study, both oil and water are liquids.  For 

liquid systems, λ is ill-defined and we assume it to be 

zero.  Although that should be a good approximation 

physically, experimental measurements of decane and 

hexadecane through photoresist (hydrocarbon polymer) 

channels of height h between horizontal confining plates 

of 50 nm to 130 nm [13] show a slip length  of 15 to 

30 nm, where the flow rate Qslip is increased from the flow 

rate Q0 without slip according to : 

𝑄𝑠𝑙𝑖𝑝 = 𝑄0 (1 +  
6Ʌ

ℎ
)                            (3) 

At an even smaller scale, flow can only be simulated 

rather than measured.  The flow rate of gaseous argon in 

a single nanometre tube has been modelled by applying 

Navier-Stokes equations to a lattice-gas model [14], and 

shows deviations from laminar Poiseuillian flow, from 

which it can be inferred that liquids would also 

demonstrate deviations.  Overall, however, our 

approximation that λ = 0 makes the computation over the 

whole network of around 16 000 pores and 27 000 throats 

both scalable and tractable. On the basis of slip flow 

alone, the results in [12] suggest that the permeabilities of 

the upper bounds described below, which are not so 

limited by flow through micropores, will be good 

approximations, whereas the lower bound permeabilities 

are likely to be too low.  

3.3 Water relative permeability simulation 
For an oil-wet sample, we calculate the aqueous 

relative permeability in the presence of static oil. The 

assumptions vary according to whether the situation is 

dynamic or static.  By dynamic, we refer to the forced 

movement of water through the samples, such as during a 

water flood.  We assume that oil coats the pores, but not 

the throats, to an equal film thickness through the sample. 

Fig. 7 shows diagrammatically that assumption applied to 

the macroporous, mesoporous and nanoporous regions of 

the sample.  For static conditions, the oil films are 

assumed also to occupy throats, as shown, so obstruct 

channels within meso- and nano-porous regions as shown.  

The static assumption is shown applied to a small section 

of a shale unit cell in Fig. 8. 
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Fig. 8.  Oil film within void features of a shale unit cell 

Fig. 9 demonstrates that for the static case, the oil film 

blocks the micropores  and small mesopores at very low 

oil saturation So of 0.006. The effect of this on the relative 

permeability is explained below.   

 

Fig. 9.  Graph of thickness of the oil film illustrated in Fig. 8 

versus oil saturation for the shale unit cell 

Fig. 10 is a two-dimensional map of only the aqueous 

ganglia in the surface layer of the shale unit cell at an oil 

saturation So of 0.2.  

 

Fig. 10. 2D map of aqueous ganglia in the surface layer of the 

shale unit cell at S0 = 0.2. 

The resulting relative permeabilities are shown in 

Fig. 11.  The graph shows the upper and lower bounds for 

the dynamic and static cases. As stated previously, for the 

upper bound, the unit cell structure type is parallel to the 

direction of flow, as in Fig. 2.  For the lower bound, the 

structure type has banding perpendicular to the flow 

direction, Fig. 3.  The most extreme effect of the oil film 

shown in Figs. 8 and 9 is for the lower bound of the static 

case.  Here, oil blocks the throats in the band of micro- 

and meso-pores perpendicular to the direction of fluid 

flow, Fig. 3, so the permeability drops off very rapidly as 

water saturation decreases, as shown by the triangular 

symbols in Fig. 11.  

Fig. 7. Assumptions for the calculation of dynamic and static relperms 
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Fig. 11. Water relative permeabilities for an oil wet shale sample 

Table 1), shown with a linear relative permeability scale.  

Every relative permeability calculation arises from a 

complete mapping of the flow within the unit cell, as 

shown in Fig. 12 overleaf for the upper, parallel bound.  

3.4 Oil relative permeability simulation 

For the calculation of oil relative permeabilities, 

disconnected aqueous ganglia are assumed to occupy and 

obstruct the central zones of all voids above a certain size, 

with the size dependant on the wettability of the shale 

surface layers.  We do not have measured wettabilities our 

samples, although we assume from the EDS 

measurements mentioned earlier that they were very 

probably highly oil wet.  Instead we have calculated 

relative permeabilities for a wide range of wettabilities, 

and report two examples in this work. The wettabilities 

are incorporated into the simulation via arbitrary 

qualitative descriptors linking them to aqueous ganglia 

size, as shown in Table 1.     

 

Table 1. Aqueous ganglia sizes relative to qualitative oil 

wettability descriptors 

 
 

Fig. 13 shows aqueous ganglia within a small section 

of the shale unit cell with moderate water content in a 

medium high oil wet sample. As can be seen, the flow of 

oil around the static aqueous ganglia is annular.  Again, to 

keep the computation of annular flow within the c. 27500 

throats tractable, the annular flow is approximated as the 

equivalent flow through cylinders, as shown in Fig. 14. 

The approximation of static aqueous ganglia only 

obstructing features large enough to accommodate them 

does not allow for oil contents below those at maximum 

stable water content. So for very low oil concentration, 

proportional reduction of all features must be invoked, as 

shown on the right of Fig. 14 overleaf.  This is equivalent 

to assuming that for very low oil concentrations, the oil 

was not present in the first place, rather than simply being 

displaced by water. The asymptote as So → 0 is then as 

shown in Fig. 15.  

 

 

Fig. 13. Mapping of aqueous ganglia for a medium high oil wet 

sample 

 

 

Fig. 15.  Absolute oil permeability at very low oil saturation 

Fig. 16 shows the oil relative permeabilities over the full 

range of water saturations. As for the water relative 

permeabilities, the oil relative permeabilities are based on 

full mappings of the oil permeability routes through the 

unit cell at each water saturation, as shown in Fig. 17 

overleaf. 

 

Fig. 16.  The range of oil relative permeabilities between the 

upper and lower bounds over the full range of water saturation 
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Fig. 12. Unit cells showing water flow mapping for the upper bound of the water relative permeabilities 

 

 

Fig. 14 . Approximations used for modelling the effect of static aqueous ganglia, and for even lower oil content 

 

Fig. 17.  Unit cells showing the oil flow mapping at increasing water saturations for the lower bound of the relative permeability 

calculations. 
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3.5 Absolute permeability simulation 

Traditional relative permeability estimates are relative, all 

normalised to the same scale of e.g. 0 to 1, so much 

information about the difference between samples is lost. 

The PoreXpert inverse modeller has the important ability 

to estimate absolute void network capacities, although 

there is likely to be a discrepancy between those and 

absolute permeabilities as explained in Section 3.2 above.  

However, an indirect validation of the model, described 

below, supports the postulate that the relative differences 

in absolute permeabilities between samples trend 

correctly.  Fig. 18 shows the results for Sample 1 and the 

low permeability outlier Sample 2.   

 

 

 

4 Validation 

As mentioned in the introduction, absolute gas 

permeabilities of tight-oil shale are difficult to measure, 

and relative oil/water permeabilities  impossible.  It 

follows that there is no method of direct validation of the 

relative permeability simulations reported in this work.  

FIB-SEM measurements cannot be used for a direct 

validation of the micropore and small meso-pores void 

sizes because, as explained previously, they cover too 

small a sample volume.  

Indirect validation could be achieved by comparing 

absolute gas permeability measurements of small plugs 

[1] with the corresponding void network capacities. With 

a sufficiently large and well characterised sample set, the 

discrepancies could be identified as to the degree to which 

they are systemic within the core algorithms or specific to 

sample type, thus resulting in a robust calibration of the 

model to support its relative permeability predictions.  

 

 

 

Meanwhile the model’s fundamental algorithms have 

already  been validated for conventional rock samples, 

building on the validation of the predecessor to the 

PoreXpert model, named Pore-Cor.  Five rock samples of 

varying compositions of quartz, sandstone and carbonate, 

had permeability and porosimetry characteristics 

published in a British Gas database [15].  The fits of first 

realisations of the percolation characteristics of the 

inverse model to the experimental porosimetry curves are 

shown in Fig. 19.  

Fig. 18.  Absolute relative permeabilities for Sample 1(typical) and Sample 2 (low permeability 

outlier) under mainly mixed wet conditions (Table 1), showing ranges of values between dynamic 

and static conditions on a logarithmic permeability scale.  
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Fig. 20 shows experimental void sizes of one of the 

samples derived from image analysis of thin sections. It 

also shows estimates based on the traditional capillary 

bundle (first derivate) interpretation of the porosimetry 

curves, compared to several realisations of the 

PoreXpert’s predecessor Pore-Cor and a single realisation 

of the PoreXpert model.  Although the PoreXpert 

agreement is not perfect, it is nevertheless significantly 

better than the smaller Pore-Cor estimate, based on 

smaller unit cells, and orders of magnitude better than the 

capillary bundle approximation.  

 

 

Fig. 20.  Estimation of void sizes made by the inverse models 

Pore-Cor and PoreXpert. 

We have also simulated the absolute permeability for 

N2 under ambient conditions (1 atm pressure, 20o C, λ = 

72 nm), Fig. 21  [16].  The network permeabilities tend to 

be less than the experimental values because of the 

simplifying flow assumptions described in Section 3.2, 

and the fact that the inverse modeller cannot replicate the 

true complexity and intricacy of void networks in most 

natural materials. However, the trend in permeabilities 

does follow the experimental trend, although in a greatly 

exaggerated manner. The network permeabilities do track 

precisely according to the mercury intrusion porosimetry 

curves, so a possible reason for the discrepancy is that the 

experimental measurements, for which we have no 

provenance, were measured over different sample sizes.  

Validation with more reliable data is therefore required.  

 

Fig. 21.  Comparison of permeability estimates with 

experimental measurements for the five rock samples. 

A current development of the inverse modeller is to 

base the model on porosity from image-analysed 

micrographs rather than pycnometry.  This would require 

surface scans which could be assumed to be representative 

of the whole sample. It will provide a possible extra 

means of validating the model. 

Ultimately, validation will need to be carried out by 

insertion of the relative permeability estimates into 

relevant oil reservoir models, and testing whether the 

results are realistic and a worthwhile improvement on 

existing Brooks-Corey type approaches. Such validation 

should also include assessment of the qualitative 

relationships listed in Table 1.  

5. Conclusions 

We have presented relative permeability estimates based 

on generic members of an actual sample set from a 

hydraulic fracturing play. The a priori estimates arise 

from simulated void structures generated by the inverse 

modelling of the experimental percolation characteristics 

of IPA washed samples.  Once validation and calibration 

has been completed, the results should be capable of 

providing (i) quasi-static and dynamic aqueous relative 

permeabilities that vary according to local flow 

conditions, (ii) oil relative permeabilities that vary 

according to the oil versus aqueous wettability of the 

sample surfaces, and (iii) absolute as well as normalised 

values of permeability, for comparison between samples. 

The robustness of the fundamental physics behind the 

relative permeability simulations, and their indirect 

validation, gives confidence that the approach should 

provide a very significant and useful improvement on 

current reservoir characterisations of unconventional 

reservoirs. 
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Fig. 19.  Fits of the simulation to the validation samples 
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