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Abstract. With the anticipated decline in oil demand over the coming decades, fast appraisal of oil fields becomes 

crucial for energy companies. In this regard, accelerating petrophysical synthesis plays a significant role in fast 

appraisal and development of oil fields. Digital Rock Physics (DRP) simulation offers a cost-effective and rapid 

approach to compute relative permeability curves for rock/fluid systems. It also presents an opportunity to provide 

reservoir engineers with additional data, thereby enhancing the quality of petrophysical input for their simulations. 

Previous research demonstrated the predictive capabilities of DRP simulation coupled with a wettability anchoring 

experiment for a mixed-wet Bentheimer formation [1]. In this study, we applied TotalEnergies' DRP simulation 

workflow, coupled with a wettability anchoring experiment, in an operational context on a Reservoir sandstone 

sample. The study was conducted as a blind test prior to the SCAL (Special Core Analysis) measurements. Initial 

images representing large volumes with low resolution were enhanced using Enhanced Super Resolution Generative 

Adversarial Networks (ESRGAN) to obtain high-resolution images. Subsequently, a pore network was extracted, 

and a parallel pore network simulator was utilized for multiphase flow simulations, incorporating the constraints 

derived from the anchoring experiment to minimize uncertainty. The obtained results were then compared against 

an in-house SCAL experiment to assess the predictive power of our DRP workflow and the accuracy of the 

wettability anchoring experiment. Furthermore, new simulations were conducted on a different facies using a new 

sample without the need for a new anchoring experiment. Finally, the extrapolated simulation results were compared 

to an in-house SCAL experiment, allowing for an evaluation of the extrapolation capabilities of DRP simulation. 

 

1 Introduction 

Over the past 25 years, Digital Rock Physics (DRP) has 

emerged as a highly enticing technology within the oil and 

gas industry. Its potential to accurately predict petrophysical 

properties of Reservoir rocks numerically without the need 

for extensive SCAL experiments, has captured the attention 

and interest of energy companies. However, the actual imple-

mentation of DRP has proven more challenging than initially 

anticipated. Two major limitations have been identified: the 

constraint on image resolution [2]  and the characterization of 

rock/fluids wettability [3,4]. 

One criticism directed towards DRP is its limitation to com-

pute properties based on relatively small rock volumes, with-

out providing sufficient evidence that the Representative El-

ementary Volume (REV) for single phase and two-phase flow 

has been reached. Additionally, concerns have been raised re-

garding the potential dominance of finite size and boundary 

effects in the simulations. To address these limitations, our 

previous work [5] employed the ESRGAN method to en-

hance image resolution, resulting in larger images with im-

proved clarity. Moreover, we developed a stitching algorithm 

to extract pore networks from these enlarged images. 

We have also focused on advancing our capabilities for large-

scale simulations by parallelizing our in-house pore scale 

simulator [6,7]. By harnessing the power of parallel compu-

ting, we overcame the computational challenges associated 

with simulating large rock volumes accurately. The charac-

terization of wettability plays a crucial role in DRP simula-

tion, as it governs the capillary forces and, consequently, the 

order of invasion. However, it is a challenging task to accu-

rately characterize wettability, especially in scenarios involv-

ing mixed-wet conditions. In such cases, it becomes im-

portant to determine the fraction of oil-wet (OW) and water-

wet (WW) pores, as well as the spatial distribution of oil-wet 

pores and their correlation with pore radii. These parameters 

need to be appropriately incorporated into the model to avoid 

excessive degrees of freedom and enhance the accuracy of 

predictions. 

Sorbie and Skauge [3] emphasized that wettability assign-

ment is the most complex and least validated stage in the DRP 

simulation workflow. Similarly, Bondino et al. [4] concluded 

that achieving "genuine prediction" of multi-phase flow prop-

erties hinges upon significant advancements in the character-

ization of wettability at the pore scale. 

Recent developments have made contact angle measurements 

from micro-CT images of multiphase flow experiments 
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highly appealing [8]. However, these measurements rely on 

the computation of the three-phase contact line, making them 

sensitive to image resolution. Insufficient resolution can lead 

to contact angle values close to 90 degrees, accompanied by 

large standard deviations [9]. Moreover, automated contact 

angle measurements account for the presence of pinned me-

nisci, which differ from the contact angle input required by a 

PNM simulator. 

Recent observations [10,11] have indicated spatial correlation 

of wettability, with pores of similar wettabilities tending to be 

located in close proximity. However, verifying the existence 

of this correlation and measuring the correlation length for a 

specific system is not a straightforward task. It necessitates 

conducting multiphase flow experiments and ensuring the 

presence of multiple menisci in neighboring pores, which is 

not always feasible. Additionally, quantifying the correlation 

length requires intensive image processing, which is not ideal 

for an industrial workflow [11]. 

In order to address these challenges, we have created an in-

novated DRP simulation anchoring [1,7], which offers a rapid 

and straightforward implementation within an industrial 

workflow. This experiment provides valuable insights into 

the wettability of a sample. Through our analysis, we are able 

to quantify the proportions of oil-wet (OW) and water-wet 

(WW) pores, establish correlation between wettability and 

pore radius, and even estimate the correlation length of wet-

tability if there is spatial correlation present. This innovative 

approach offers an efficient solution to overcome these limi-

tations. This experiment also provides some measurements 

such as the endpoints of the relative permeability curves that 

help constrain the DRP simulations and reduce the uncer-

tainty further. 

In this paper, we present an operational study where our Dig-

ital Rock Physics technology has been used to predict relative 

permeability and provide a fast wettability measurement on a 

Reservoir Sandstone rock that we name Reservoir Rock C.  

Initially, we employ ESRGAN to enhance the resolution of 

our images. This enables us to obtain high-quality images that 

accurately capture intricate details, even when dealing with 

larger volumes.   

Subsequently, Generalized Network Modelling (GNM) [12] 

technique is used to extract a pore network with conductivi-

ties computed using Direct Numerical Simulation (DNS) on 

the rock image. Several pore networks are then assembled us-

ing an in-house stitching methodology [5] 

A wettability anchoring experiment was performed on this 

sample and allows us to find the wettability input of the sim-

ulation as well as performing some measurements that are 

used to constrain our model further. 

Large simulations are performed using TotalEnergies parallel 

in-house PNM simulator. These simulations are performed 

using a statistical uncertainty approach that is used to vary the 

uncertain simulation parameters and only keep the realiza-

tions in agreement with the wettability anchoring experiment 

results. Hundreds of different realizations are used to produce 

P10, P50 and P90 (scenarios defined in Section 5) relative 

permeability sets. 

In order to validate the approach, simulated relative permea-

bility curves are compared in a blind test to an in-house SCAL 

experiment performed on the same sample/fluids to assess the 

predictive potential of our simulation workflow. 

Once the simulation validated, the simulation workflow is ap-

plied (without repeating the wettability anchoring experi-

ment) on a new sample from another facies. Then, the results 

are compared to a second SCAL experiment performed on the 

new sample.  

2 Higher resolution images using Enhanced Su-

per Resolution Generative Adversarial Network 

(ESRGAN) 

The initial step in DRP simulation involves the acquisition of 

micro-CT images of a rock. Subsequently, these images are 

segmented to differentiate the rock from the pore space. The 

final stage entails conducting flow simulations to calculate 

advanced rock properties like relative permeability and 

capillary pressure. Research conducted by [13] has 

demonstrated that well-characterized pore space geometry 

leads to good performance of flow simulators. 

Nevertheless, the geometry of actual rocks is not always 

adequately characterized, primarily due to limited image 

resolution. This limitation introduces uncertainties in the pore 

and throat geometry, thereby generating errors in the 

computation of rock properties. Additionally, compromises 

are often made during image acquisition regarding the trade-

off between acquisition speed, scanned volume size, and 

obtained resolution. Typically, increasing the resolution 

reduces the field of view, thus limiting the amount of 

information extracted from the image. Consequently, this 

compromises the representativeness of DRP simulations.  

In order to solve these issues, we have implemented 

ESRGAN method [14]  with some adjustment to adapt it to 

micro-CT images (check [5] for more details).  

We have made the training parallel using multiple nodes and 

multiple GPUs in each node. The training is performed using 

two scans of the same small volume (1.34 microns image and 

5.36 microns image), 3000 crops of 384*384 pixels images 

are made to form the training dataset.   

We divided the dataset into training and test datasets. After 

the training and the resampling of the low-resolution dataset 

in the Z direction, the generator is applied on 2D slices of 

1172×1290 pixels to generate a 3D image of 

4688×5160×4800 voxels.  The testing was performed on a 

sub-volume of this image. 

Fig 1 showcases the results obtained through ESRGAN, 

demonstrating high perceptual quality that effectively 

captures intricate rock textures and previously unresolved 

clay features in the low-resolution image. The ESRGAN 

outputs exhibit a striking resemblance to their high-resolution 

counterparts. It is important to note, however, that this study 

does not evaluate or report conventional image-based metrics 

such as Peak Signal to Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM). Such metrics can be misleading 

when applied to micro-CT images trained using independent 

acquisitions and may not be the most suitable indicators for 

the specific context at hand. Consequently, we also chose to 

evaluate our results by comparing relevant petrophysical 

properties. In order to achieve this, we performed single and 

multiphase flow DRP simulations using the exact same image 

volumes of high-resolution, low-resolution, and ESRGAN-

enhanced images. 
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Fig 1 : Comparison between low resolution (5.36 microns) (a), high 

resolution (1.34 microns) (b) and super resolution (1.34 microns) (c) 

cropped images of Reservoir Rock C with a factor 4 resolution 

enhancement on the test dataset 

In our image segmentation approach, we utilized the 

Trainable WEKA Segmentation method [15], which employs 

the Random Forest (RF) machine learning algorithm. 

Previous research [16] demonstrated that, when properly 

trained, Trainable WEKA Segmentation outperformed seven 

other image-processing pipelines without the need for prior 

filtering. Moreover, a benchmark study conducted by 

Reinhardt et al [17] revealed that RF-based approaches 

minimized user bias compared to other machine learning and 

conventional segmentation techniques, thanks to continuous 

interaction between experienced users and the RF classifier. 

However, it should be noted that high classification 

uncertainty may arise in areas with phase transition voxels 

and tight pore connections due to the partial volume effect. 

This uncertainty can introduce increased user bias, as 

highlighted by [17]. To address this, we performed three 

realistic segmentations that mimic the choices made by 

experienced users. The "base" case represents the ideal 

segmentation with high confidence, which would be chosen 

if only a single segmentation were performed for each image. 

From this base case, we derived two additional cases, "min" 

(lower porosity than the base case) and "max" (higher 

porosity than the base case), by focusing on the pore-grain 

transition voxels, as depicted in Fig 2. This approach allowed 

us to evaluate a range of feasible segmentation results instead 

of relying solely on a single solution. It further emphasized 

the increased susceptibility of low-resolution (LR) images to 

user bias for the same given volumes.

 

Fig 2 : Example of the several segmentation hypotheses considered 

in this work for low-resolution (LR), high resolution (HR) and 

super-resolution (ESRGAN) with factor 4 resolution enhancement 

on Reservoir C image. 

After segmenting the images, we proceeded to compare the 

porosity and absolute permeability of the test subset using 

computations performed with OpenFOAM. In Fig 3, it can be 

observed that the enhanced resolution of ESRGAN images 

reduced segmentation uncertainty, resulting in lower 

dispersion in the porosity and permeability results. While the 

base segmentations of the low-resolution images did not 

consistently yield poor results, we noted that different users 

may have segmented the images differently, particularly due 

to the large uncertainty range in porosity and permeability 

estimations for low-resolution images. 

 

Fig 3 : Porosity (a), permeability (b) and percolation threshold (c) 

evolution depending on image resolution and segmentation 

hypothesis on Reservoir C images for factor 4 enhancement 
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Following the validation of our method on single-phase 

properties, we proceeded to verify whether ESRGAN-

generated images produced comparable results to high-

resolution images of the same volume in terms of multiphase 

flow behavior. To achieve this, we conducted multiphase 

flow simulations utilizing our DRP simulation workflow, 

which is based on a pore network modeling technique 

described by [6,7,18]. 

In Fig 4, we present the simulated primary drainage capillary 

pressure curves obtained using low-resolution, high-

resolution, and super-resolution images for Reservoir C. As 

mentioned earlier, we performed several realistic 

segmentations for each case to illustrate the associated 

uncertainty, resulting in the presentation of capillary pressure 

curve envelopes. It is evident from the figure below that the 

utilization of ESRGAN improves the accuracy of our 

simulated primary drainage capillary pressure curves. 

 

 

Fig 4 :Comparison between computed capillary pressure curves 

using 3 images with several realistic segmentation: low resolution 

(red), super resolution (blue) and high resolution (green) 

 

Following the testing of the model, we perform inference on 

5.36 microns images and we generate 3 datasets representing 

each a cube of 50003 voxels that are used in the pore network 

simulations. 

 

3 Pore Network Extraction 

In contrast to certain digital rock physics methods, pore 

network models do not involve conducting two-phase direct 

flow simulations within a 3D digital rock. Instead, they rely 

on extracting a pore network from 3D reconstructions. 

Various algorithms are available to extract the skeleton of the 

3D model, which contains essential geometric and 

topological information about the underlying pore system. In 

this study, we utilize a pore network extraction platform 

called GNextract, developed in collaboration with Imperial 

College London [12]. 

GNextract is employed to reconstruct an upscaled version of 

the 3D segmented image of a rock, generating a network 

composed of pore elements. The single-phase flow 

conductances within each pore are determined by solving the 

Stokes equation within the original geometry using 

OpenFOAM. However, it should be noted that the extraction 

code requires a significant amount of memory to process 

large images (more than 60 GB of RAM for a 15003 voxels 

image). To overcome this limitation, a stitching process has 

been developed (more details can be found in [5]). This 

involves extracting networks from overlapping sub-volumes 

of the given image and subsequently combining them to 

reconstruct the complete pore network. With this 

methodology, 3 pore networks have been extracted from the 

super resolution images and each had around 8 million pore 

elements. 

 

Fig 5 : Large pore network extracted from  5000 × 5000 × 5000 

voxels image 

 

4 Wettability anchoring experiment 

The role of wettability is of utmost importance in pore 

network modeling (PNM) simulations, however, accurately 

characterizing it in advance poses a significant challenge. 

Even when attempting a qualitative assessment of wettability, 

such as categorizing it as water-wet, oil-wet, or mixed-wet, 

numerous uncertain parameters persist, particularly in the 

case of mixed-wet scenarios. These parameters encompass 

contact angles, fractions of oil-wet and water-wet pores, 

spatial correlation of wettability, and correlation of 

wettability radii. Each of these parameters can exert a 

substantial influence on simulation outcomes, introducing 

considerable uncertainties when considering the entire range 

of potential values for these inputs. 

Conducting traditional wettability tests, such as the Amott 

Harvey or USBM methods, is time-consuming and may not 

provide all the necessary information required for accurate 

simulations. To address these challenges and reduce 

uncertainty, we have developed a fast wettability anchoring 

experiment utilizing micro-CT imaging. This experiment 

provides crucial data for the wettability inputs in our 

simulations, along with measurements that help constrain the 

simulation and reduce uncertainty. It also provides a much 

faster wettability characterization experiment comparing to 

the classical methods [1]. In a previous work, we applied this 
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approach to a Bentheimer sample [7] and the details of this 

experimental setup and results will be described in the 

following section. The goal is to leverage this fast wettability 

anchoring experiment to obtain essential information for 

input parameters and improve the reliability and accuracy of 

our PNM simulations. 

The experiment starts by installing a Reservoir C sample with 

a diameter of 10 mm into a flow cell under a confining 

pressure of 50 Bars, as illustrated in Fig 6. The initial step 

involves achieving the initial water saturation (Swi) viscous 

displacement with mineral oil (Marcol52). The experimental 

conditions, including capillary number and choice of fluids, 

remain consistent with the validation SCAL experiment 

outlined in the subsequent section. 

Once Swi has been established, 5 pore volumes (PVs) of 

toluene are injected to replace the mineral oil, followed by 5 

PVs of the reservoir dead crude oil. The sample is then 

subjected to a four-week dynamic aging process at 90°C, 

following a similar protocol as the SCAL experiment : 

injection of 10 PVs of crude oil at a very low capillary 

number. After aging, the dead crude oil relative permeability 

(Kro @ Swi) is measured, revealing no decrease during aging. 

Without the possibility of conducting the entire experiment in 

the micro-CT under high temperature, we had to return to 

ambient temperature for the acquisition of 3D X-ray images. 

To prevent the wax formation from the crude oil, we had to 

replace it with a mineral oil (M52) before reducing the 

temperature. To do so, 2.5 pore volumes of decaline are 

injected to minimize any alteration in the plug’s wettability 

while avoiding a direct contact between the dead crude and 

the mineral oil. Subsequently, 10 pore volumes of mineral oil 

(Marcol52) are introduced to replace the decalin. Notably, the 

fluid replacement process is carried out at low flow rates to 

minimize any changes in the initial water saturation after 

ageing. 

Once the temperature is reduced and the replacement is 

completed, an image acquisition step is carried out. 

Subsequently, a spontaneous imbibition phase is initiated 

using a one-end-opened protocol. In this process, water 

spontaneously infiltrates the sample from the bottom face 

while oil is expelled from the same side, establishing a 

counter-current imbibition phenomenon. To ensure 

controlled conditions and a continuous contact between water 

and the rock bottom face, we use a water leaching process 

with an extremely low capillary number (8x10-9) to remove 

the generated oil from the diffuser without inducing forced 

water flow into the sample.  

 

 

 

Fig 6 : Experimental set-up of the wettability anchoring experiment. 

In spontaneous imbibition c and d are closed, a and b are opened. In 

spontaneous drainage a and b are closed, c and d opened. 

We perform the spontaneous imbibition process for two 

weeks. Then, water is injected into the sample in a forced 

imbibition with the same maximum capillary number used in 

our SCAL lab. Finally, using a similar protocol we perform a 

spontaneous drainage in the other face of the sample. Micro-

CT acquisitions are made at the end of each phase of the 

experiment. At the end of this step, water relative 

permeability at Remaining Oil Saturation (ROS) is 

determined. 

Subsequently, a spontaneous drainage process is conducted 

on the opposite face of the sample, employing a similar 

protocol to the spontaneous imbibition. 

At the conclusion of each phase of the experiment, micro-CT 

acquisitions are conducted to capture detailed imaging data. 

This enables us to have valuable insights into the fluid 

behavior and distribution within the sample at different stages 

of the experiment. 

The analysis of the images acquired before and after 

spontaneous imbibition reveals that there is no change in 

water saturation, indicating the absence of any connected 

water-wet clusters within the sample. Additionally, the 

saturation profile of the oil at ROS in  displays a capillary end 

effect, confirming that a significant portion of the pore space 

is oil-wet. 

During the spontaneous drainage phase, only a small volume 

of oil (0.05 PVs) is observed to imbibe, indicating that only a 

few pores with receding contact angles greater than 90 

degrees are connected to the inlet. 

Based on these observations, we interpret the wettability of 

the sample as follows: 

• Interpretation 1: a weakly oil-wet system:  

• Interpretation 2: a weakly oil-wet system with some 

water-wet pores that are disconnected 

• Interpretation 3: a weakly oil-wet system with some 

strongly oil-wet pores that are predominantly 

disconnected 
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Fig 7 : Oil saturation profile at ROS (black) and after spontaneous 

drainage (grey) 

 

An Amott test conducted on a sister sample, concluded a few 

months after the wettability anchoring experiment, exhibited 

no spontaneous imbibition or spontaneous drainage. This 

closely aligns with the results of the DRP test, further 

confirming the reliability and robustness of the wettability 

anchoring method. 

This experiment also provided end point measurements that 

will be valuable in the simulation’s selection process: 

• Kr @ ROS=0.35  

• 0.1 < Sor < 0.2 

 

5- Pore network simulations and statistical 

analysis 

After extracting a pore network from single-phase Direct 

Numerical Simulation (DNS) with the associated 

conductance values and characterizing the wettability, we 

proceed to conduct two-phase flow simulations. For these 

simulations, we employ DynaPNM, which our inhouse pore 

network simulator, as described in reference [18], that we use 

in quasi-static mode as all the cases that we study in this paper 

are capillary dominated.  

The pore network simulation commences by initially 

saturating the network with water. A primary drainage 

process is then simulated to establish the initial water 

saturation (Swi). As the network is assumed to be water-wet, 

the injection of oil follows an invasion percolation regime. As 

water can escape through the wetting layers, low Swi values 

can be achieved. 

Following the primary drainage, waterflood is carried out 

after an aging process that alters the wettability of oil-filled 

pores. Initially, water spontaneously fills the water-wet 

portion of the network through piston-like displacement and 

snap-off mechanisms. During this phase, the smallest pores 

are filled first, followed by progressively larger ones. The 

defending oil phase can escape by flowing through oil-filled 

pores. Upon the conclusion of spontaneous imbibition, 

negative capillary pressure is applied to overpressure the 

invading water, initiating the filling of the largest pore 

elements first. This allows the oil to escape through the outlet 

via the center of oil-filled pores or oil films. The simulation 

continues until all the oil is trapped within the network. 

The simulator has been parallelized enabling the simulation 

on large networks comprising tens of millions of elements can 

be simulated within a few hours as described in [7]. 

Despite conducting a wettability anchoring experiment, there 

remains a significant uncertainty in the input parameters. To 

address this, we developed a statistical uncertainty workflow  

[6] to incorporate this information. Within this workflow, we 

varied the uncertain parameters of the pore network 

simulation within ranges determined from the anchoring 

experiment. While the experiment did not directly provide 

information about contact angles, the observed capillary end 

effect indicating oil wetness and the limited oil imbibition 

during spontaneous drainage suggest that a considerable 

number of the oil-wet pores have receding contact angles 

below 90°. Thus, we selected medium to low oil-wet contact 

angles to align with this observation. Based on this, we 

interpreted the wettability distribution in three possible 

interpretations mentioned in the previous section.  

Using the parameters specified in Table 1, we generated a 

thousand input files for DynaPNM simulations using the 

WSP method [18] to honor interpretations 1 and 2. 

Additionally, parameters from Table 2 were used to generate 

five hundred realizations to honor interpretation 3. No 

wettability correlations to the radius or in space were 

observed in the anchoring experiment therefore wettability 

has been distributed randomly in the networks. 

These generated files were then used to run flow simulations 

on a supercomputer. A selection process was performed to 

retain only those realizations that aligned with the observed 

Sor (residual oil saturation) and Krw (relative permeability of 

water) obtained from the wettability anchoring experiment. 

Following the selection exercise, a simulation ranking 

procedure was implemented based on the oil production 

achieved after a specified amount of water injection 

corresponding to each relative permeability curve. This 

ranking process allowed us to define three scenarios: 

• P10: an optimistic scenario in which only 10% of the 

simulations produce more than this case 

• P50: a median scenario in which 50% of simulations 

produce more than this case 

• P90: a pessimistic scenario in which 90% of the 

simulations produce more than this case 

 

Finally, the generated DRP relative permeability curves were 

Corey fitted to facilitate their use in Reservoir simulations 

(Fig 8). As the first part of the curves is dominated by the 

layer flow, we focus the Corey fitting after the water 

breakthrough. 

Table 1 : Simulation parameters used to account for wettability 

interpretation 1 and 2. 1000 realizations were performed.  

Parameters Value/Range 

PD receding contact angle distribution Normal distribu-

tion  

PD receding contact angle standard devia-

tion 

3°-6° 

Mean receding PD distribution 
20°-30° 
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WF dist1 (oil-wet) advancing contact an-

gle distribution 

Normal distribu-

tion 

WF dist1 (oil-wet), advancing contact an-

gle standard deviation 

4°-8° 

Mean advancing WF dist1 (oil-wet)  con-

tact angle 

100°-130° 

 

WF dist 2 ( water-wet) advancing contact 

angle distribution 

Normal distribu-

tion 

WF dist2 ( water-wet), advancing contact 

angle standard deviation 

4°- 8° 

Mean advancing WF dist2 ( water-wet) 

contact angle 

60°-89° 

 

Fraction of distribution 2 (water-wet frac-

tion) 

0.0-0.2 

Correlation length  0 

Wettability model Fractional wet 

Initial water saturation  0.19 

 

 

Table 2 : Simulation parameters used in to account for  wettability 

interpretation 3. 500 realizations performed using these parameters. 

Parameters Value/Range 

PD receding contact angle distribution Normal distribu-

tion  

PD receding contact angle standard devia-

tion 

3°-6° 

Mean receding PD distribution 
20°-30° 

 

WF dist1 (oil-wet) advancing contact an-

gle distribution 

Normal distribu-

tion 

WF dist1 (oil-wet), advancing contact an-

gle standard deviation 

4°-8° 

Mean advancing WF dist1 (oil-wet)  con-

tact angle 

130° 

 

WF dist 2 ( water-wet) advancing contact 

angle distribution 

Normal distribu-

tion 

WF dist2 ( water-wet), advancing contact 

angle standard deviation 

20°- 30° 

Mean advancing WF dist2 ( water-wet) 

contact angle 

60°-89° 

 

Fraction of distribution 2 (water-wet frac-

tion) 

0.0 

Correlation length  0 

Wettability model Fractional wet 

Initial water saturation  0.19 

 

 

 

Fig 8 : Simulated and ranked relative permeability curves (at 1PV 

injected). P10 (Green) represents and optimistic scenario, P50 

(orange) represents a median scenario and P90 (red) represents a 

pessimistic scenario. Dashed lines represent raw curves and continue 

lines represent the Corey fitted curves. 

6 Comparison to SCAL experiment 

After performing the blind simulation test, the numerical 

results are compared with those obtained during an unsteady-

state experiment performed in-house.  

The SCAL experiment was performed on a large Reservoir 

rock C core of 5 cm diameter and 20 cm length. This full -

size core had a porosity of 22% with an absolute brine 

permeability of 328 mD. Primary drainage was achieved 

through viscous oil displacement, up to a targeted low Swi 

value, with minimized capillary end-effect. A homogeneous 

Swi profile was obtained, corresponding to an equivalent 

average saturation Sw of 19%. The same dead oil used on the 

anchoring wettability experiment was used to replace the 

mineral oil (with intermediate toluene replacement to avoid 

any asphaltene precipitation) and perform 30 days of dynamic 

ageing at 80°C to alter wettability of the SCAL full size plug. 

Afterwards, multi-rates waterflood at 80°C was performed. 

Initial flow rates were sized to fit Hagoort criteria [19] to 

avoid viscous fingering. It started at around 0.3ft/day. Oil 

production-pressure gradient vs time, and transient to 

equilibrium saturation profiles through 2D X-ray imaging in-

house devices were acquired during the experiment, and the 

numerical interpretation was performed using the 1D core 

analysis software called CYDAR® to history-match oil 

production, pressure gradient and saturation profiles 

(transient and equilibrium) and to finally determine a 

representative couple of Kr and Pc.  

Fig 9 and Fig 10 depict our simulated relative permeability 

curves, incorporating the P10, P50, and P90 scenarios derived 

from ranking oil production after injecting one pore volume.  

To account for uncertainties in the inversion of experimental 

data, the SCAL data was represented by two realizations. 

We would like to highlight that in unsteady-state relative 

permeability measurements, the comparison only makes 

sense after breakthrough (achieved at water saturation of 

59.5%) and before ROS (achieved at water saturation of 

73%). In this range of saturations the DRP agreed well with 

SCAL data. This good level of agreement instills confidence 
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in the predictive capabilities of DRP simulation when 

supported by anchoring experimental data.  To further 

validate the simulated relative permeability curves, we 

compare the fractional flow curves obtained from the 

simulation with the SCAL experiment. Fig 11 illustrates this 

comparison, demonstrating good agreement as the simulated 

fractional flow curves lie between the experimental curves. 

Additionally, we analyze the ratio of relative permeability 

between the simulations and experiments. Fig 12 presents the 

results, indicating a strong agreement between the simulated 

and experimental data.  

To evaluate the recovery factors associated with the 

experimental and DRP curves, we employ the Buckley 

Leverett approach. Fig 13 showcases the recovery factors, 

revealing close agreement between the experimental and 

DRP data. These findings further reinforce the robustness of 

our approach. With confidence in our methodology 

established, we proceed to apply it to a new sample from 

different facies, assuming consistent wettability between the 

two samples. 

 

 

Fig 9 : : Comparison between the simulated relative permeability 

curves: P10 (green), P50 (yellow) and P90 (red) and experimental 

data (dashed blue and black). We present the plots in linear scale   

 

 

 

Fig 10 : Comparison between the simulated relative permeability 

curves: P10 (green), P50 (yellow) and P90 (red) and experimental 

data (dashed blue and black). We present the plots in log scale   

 

 

 

Fig 11 : Comparison between the fractional flow curves obtained 

from simulated Krs : P10 (green), P50 (yellow) and P90 (red) and 

from the experimental Krs (dashed blue and black).  

 

 

Fig 12 Comparison between the simulated ratio of relative 

permeability curves: P10 (green), P50 (yellow) and P90 (red) and 

experimental data (dashed blue and black).  

 

 

 
 

Fig 13 : Comparison between the recovery factors obtained using 

DRP simulated relative permeability curves (blue) and the SCAL 

measured relative permeability curves (red) 

 

7 Simulations on new facies 

 Although performing a wettability anchoring simulation is 

interesting as it cuts the time of computing relative 

permeability by a factor 2 comparing to SCAL, there a 

potential to accelerate even further these measurements. If a 
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first wettability anchoring experiment is performed, then, 

assuming that wettability remains the same on other facies of 

the Reservoir, generating new relative permeability curves 

can be done in less than 2 weeks which is 12 times faster than 

SCAL.  In order to assess the robustness of this approach, a 

DRP simulation study was performed on a new facies from 

Reservoir Rock C without repeating the wettability anchoring 

experiment. As same wettability was assumed, the input of 

the previously selected realisations (previous section) were 

used, then ranked to obtain P10, P50 and P90 scenarios as 

shown in Fig 14 and Fig 15.   

A second SCAL experiment was performed on a sample from 

the new facies. The experiment was performed on a large 

Reservoir rock C core of 5 cm diameter and 20 cm length. 

This full -size core had a porosity of 23.3% with an absolute 

brine permeability of 299 mD. 

It is important to emphasize that in unsteady-state relative 

permeability measurements, measured data are only obtained 

after breakthrough (occurring at a water saturation of 57.4%) 

and before ROS (reached at a water saturation of 73.3%).  The 

remaining part of the Kr curve is only an extrapolation of 

these measured data. Within this saturation range, the DRP 

simulation data aligned well with the SCAL data, 

demonstrating a high level of agreement.  

To further validate the accuracy of the simulated relative 

permeability curves, we conducted a comparison of the 

fractional flow curves obtained from the simulation and the 

SCAL experiment.  Fig 16 visually represents this 

comparison, illustrating a favorable agreement as the 

simulated fractional flow curves fall within the range of the 

experimental curves. Furthermore, we performed an analysis 

of the relative permeability ratio between the simulations and 

experiments. The results, presented in Fig 17, reveal a strong 

agreement between the simulated and experimental data. This 

serves as an additional confirmation of the reliability and 

accuracy of the simulated relative permeability curves. 

These results gave us confidence about the methodology for 

this Reservoir, however, it is difficult to generalize the 

validity of this approach for other systems with a single test 

especially if the wettability is correlated to pore sizes.  

 

 

Fig 14 : Comparison between the simulated relative permeability 

curves: P10 (green), P50 (yellow) and P90 (red) and experimental 

data (dashed blue and black). We present the plots in linear scale   

 

 

Fig 15 : Comparison between the simulated relative permeability 

curves: P10 (green), P50 (yellow) and P90 (red) and experimental 

data (dashed blue and black). We present the plots in log scale   

 

 

Fig 16 :  Comparison between the fractional flow curves obtained 

from simulated Krs : P10 (green), P50 (yellow) and P90 (red) and 

from the experimental Krs (dashed blue and black). 

 

 

Fig 17 : Comparison between the simulated ratio of relative 

permeability curves: P10 (green), P50 (yellow) and P90 (red) and 

experimental data (dashed blue and black). 
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8- Conclusions 

In this study, we have applied TotalEnergies’ DRP workflow 

in an operational context. First, a DRP wettability anchoring 

experiment was performed to assess the wettability of the 

sample. This experiment provided wettability 

characterization consistent with the Amott Harvey test 

performed on a sister core. DRP accelerated this 

characterization by a factor 4.  Furthermore, a simulation 

study was performed to compute relative permeability. This 

simulation study was informed by the anchoring experiment 

to provide the wettability input of the PNM simulator. This 

approach provided us with relative permeability data in 

agreement with SCAL experiment performed later. DRP 

coupled with wettability anchoring experiment was twice as 

fast as the SCAL. Finally, assuming that wettability does not 

change in this Reservoir, a simulation study was performed 

on a new facies using the same wettability parameters as the 

first test. This simulation study was 12 times faster than a 

SCAL experiment performed on a sister sample and good 

agreement was found between DRP simulations and SCAL 

during a blind test.  However, more tests are needed to have 

a better understanding of the domain of validity of the 

constant wettability hypothesis especially for rocks with 

wettability correlated to the size of the pores. 

This study was another example of the robustness of our 

Digital Rock Physics workflow for the prediction of relative 

permeability and to characterize the wettability of a sample. 

This approach accelerates the petrophysical synthesis and 

helps to develop oil and gas fields faster.  
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