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Abstract. The fast diffusion regime of Brownstein-Tarr theory is commonly employed to interpret MR 

signal lifetime distributions in terms of the pore size distribution. The intermediate regime of Brownstein-

Tarr theory, which we and others believe is commonly encountered in rock core systems, is more 

complicated and diffusion to the pore surface influences the observed relaxation time distributions. In this 

work, we introduce glass microcapillaries to experimentally explore the intermediate regime. We employ 

Brownstein-Tarr theory in the intermediate regime to estimate the dominant pore size and surface relaxivities 

of a series of sandstone core plugs. Modest changes in the sample temperature shifts the Brownstein-Tarr 

number and permits a non-linear fitting of the ground mode peak lifetime shift to permit these estimations. 

Knowledge of the surface relaxivity and non-ground mode behaviour permits the T2 distribution to be 

converted to a pore size distribution.

1 Introduction 
 

It is widely recognized that enhanced magnetic resonance 

(MR) relaxation of fluids within porous media occurs due 

to surface relaxation [1]. Fluid molecules diffuse to, and 

relax, on or near the pore surface. This process is 

influenced by variables such as the size and shape of the 

pores, the presence of paramagnetic substances on the 

pore surface, and the diffusivity of the fluid [2]. The 

application of surface relaxation for estimating pore size 

stems from the pioneering work of Brownstein and Tarr 

[3]. The method commonly employed establishes a direct 

correlation between relaxation time and pore size, 

founded on the assumption that the fluid relaxation occurs 

within the fast diffusion regime of Brownstein-Tarr (BT) 

theory [4, 5]. However, if the fluid relaxation occurs 

outside of the fast diffusion regime, a direct pore size 

measurement is problematic since the observed relaxation 

times also depend on fluid diffusion to the pore surface. 

Following the work of Bloch and Torrey [6], 

Brownstein and Tarr [3] successfully interpreted multi-

exponential MR decay in unimodal pore systems. They 

accomplished this by defining three diffusion regimes, 

fast, intermediate, and slow, based on the BT number. The 

BT number is a unitless quantity that relates the pore size, 

surface relaxivity, and fluid self-diffusion coefficient. The 

MR behavior distinctly varies depending on whether the 

fluid relaxation occurs in the fast diffusion or the 

intermediate regime. Specifically, within an individual 

pore, the MR signal displays a multi-exponential behavior 

in the intermediate regime, while it displays a single 

exponential decay in the fast diffusion regime. 

Brownstein and Tarr successfully solved the Bloch-

Torrey equation, categorizing the solutions into zero 

mode (also called the ground mode) and non-zero modes 

(or non-ground modes). In the fast diffusion regime, the 

ground mode dominates, and the non-ground modes are 

undetectable. The multi-exponential MR decay observed 

experimentally in such a case results from a distribution 

of pore sizes. However, in the intermediate regime, while 

the ground mode still dominates, there is an increase in 

the amplitudes of non-ground modes. The non-ground 

modes from larger pores may contribute to the MR signal 

at short lifetime, which, under the fast diffusion 

assumption, would be considered as originating from 

smaller pores. An accurate estimation of surface relaxivity 

can help mitigate this overlap by calculating the 

distribution of non-ground mode relaxation times [7]. 

The characteristic feature of the intermediate regime 

is the detection of short lifetime signals originating from 

the so-called non-ground modes of relaxation. In this 

work, we consider the basics of BT theory, with a specific 

focus on the intermediate regime. We employed a model 

glass microcapillary system to validate BT theory. One 

major difficulty with BT theory applied to porous media 

has been the lack of a well characterized model system. 

By altering the size of the pore space in a series of glass 

microslides, we observed shifts in both diffusion regime 

and relaxation time, which are in accordance with the 

predictions of BT theory. The intermediate regime was 

employed to interpret measurements of sandstone core 

plugs, which we will detail further in this paper.  
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BT theory has previously been utilized to estimate the 

pore size of porous media, based on the observed 

relaxation times of fluid within the pore space [5, 8-13]. 

It is important to note that the relaxation time depends on 

the diffusion regime. In the fast diffusion regime, only the 

ground mode relaxation time can be detected and it is 

directly connected to the pore size, where 
1

𝑇2
= 𝜌2𝑆/𝑉 , 

with S/V representing the surface-to-volume ratio. 

However, if the fluid relaxation occurs outside the fast 

diffusion regime, the relaxation times are proportional to 

the square of the pore size. The difficulty in detecting non-

ground modes has led to the fast-diffusion method being 

widely employed.  

Many recent studies, however, have shown that fluid 

relaxation may occur in the intermediate regime [9-15].  

Müller-Petke et al. [11] proposed an approach to 

determine the average pore size, stressing that relaxation 

may occur outside the fast diffusion regime. Afrough et 

al. [9, 10] emphasized the importance of nonground 

modes, successfully detecting these modes and using 

them to estimate the pore size and surface relaxivity of the 

employed porous systems. Our recent work [13] focused 

on the correlation between the relaxation time and the 

temperature-dependent fluid self-diffusion. We observed 

that the observed relaxation times change across a range 

of temperatures. Notable highlights of this method include 

simple temperature control and straightforward nonlinear 

fitting. These features make our new method both easy to 

implement and practical. 

Within the intermediate regime of BT theory, 

relaxation times are inversely proportional to the fluid 

self-diffusion coefficient, which has a strong dependence 

on temperature. Both the diffusion-relaxation regime and 

the observed relaxation times experience shifts with 

temperature variation. These shifts when observed 

indicate that the fluid relaxation must be in the 

intermediate regime. Importantly, these shifts vary among 

different pore systems, due to their distinct petrophysical 

characteristics. In this work we shift the relaxation time 

for employed reservoir rock core plugs by changing 

sample temperatures in order to estimate the pore size and 

the surface relaxivity. Three pore geometrical models 

were utilized for sandstone core plugs, and the calculated 

pore sizes were compared with imaging methods, 

including scanning electron microscopy (SEM) and CT 

[16]. The pore size distribution may be determined based 

on BT theory [7]. 

CPMG measurement was employed to detect the first 

non-ground mode for glass microcapillary model systems, 

and to explore the correlation between T2 relaxation time 

and the temperature-dependent self-diffusion of fluid in 

sandstone core plugs. This work is based on three 

assumptions: 1, the estimated pore size is the dominant 

pore size; 2, the surface relaxivity is independent of 

temperature over the range of temperatures employed; 3, 

fluids are in a localization regime, meaning the fluid 

diffuses within the pores rather than between them [17, 

18]. 

 

 

 

2 Theory  

2.1. Brownstein-Tarr theory  

Diffusion effects in MR can be elucidated with the Bloch-

Torrey equations. Brownstein and Tarr provided a 

mathematical solution to the Bloch-Torrey equations. 

This approach ultimately leads to an ordinary diffusion or 

heat equation. 

𝐷∇2𝑀(𝑟, 𝑡) =
𝜕𝑀(𝑟, 𝑡)

𝜕𝑡
 (1) 

Where D is the fluid self-diffusion coefficient in the pore 

space, M(r,t) is the net magnetization. 

With a Fourier boundary condition, Brownstein and 

Tarr found the multi-exponential MR decay 

                       𝑀(𝑟, 𝑡) = 𝑀(0) ∑ 𝐼2,𝑛𝑒
−

𝑡

𝑇2,𝑛𝑛
𝑖=1             (2) 

Where I2,n is the n-th relative intensity, T2,n is the 

transverse relaxation time; n=0 is the ground relaxation 

mode, and n>0 are non-ground relaxation modes. 

Pore shape and size significantly influence the fluid 

relaxation process. Therefore, Brownstein and Tarr 

proposed three geometries (planar, cylindrical, and 

spherical) to represent the pore space. The solutions 

corresponding to each of these geometries are as follows:  

(a) For the planar geometry: 

                     𝐼2,𝑛 = 4
sin(𝜉2,𝑛)

2

𝜉2,𝑛[2𝜉2,𝑛+sin(𝜉2,𝑛)]
            (3) 

                           𝑇2,𝑛 =
𝑎2

𝐷𝜉2,𝑛
2                           (4) 

                          𝜉2,𝑛 tan(𝜉2,𝑛) =
𝜌𝑎

𝐷⁄             (5) 

(b) For the cylindrical geometry: 

                     𝐼2,𝑛 =
4 𝐽1

2(𝜉2,𝑛)

𝜉2,𝑛
2[𝐽0

2(𝜉2,𝑛)+𝐽1
2(𝜉2,𝑛)]

             (6) 

                           𝑇2,𝑛 =
𝑎2

𝐷𝜉2,𝑛
2                                   (7) 

                       𝜉2,𝑛
𝐽1(𝜉2,𝑛)

𝐽0(𝜉2,𝑛)
=

𝜌𝑎
𝐷⁄                           (8) 

(c) For the spherical geometry: 

              𝐼2,𝑛 =
12[sin(𝜉2,𝑛)−𝜉2,𝑛cos (𝜉2,𝑛)]2

𝜉2,𝑛
3[2𝜉2,𝑛−sin (𝜉2,𝑛)]

              (9) 
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                            𝑇2,𝑛 =
𝑎2

𝐷𝜉2,𝑛
2                               (10) 

            1 − 𝜉2,𝑛cot (𝜉2,𝑛) =
𝜌𝑎

𝐷⁄                        (11) 

where a is the pore size;  is the surface relaxivity; D is 

the self-diffusion coefficient; The 2,n are the positive 

roots of the characteristic Eqs. (5), (8), and (11). 

The diffusion regime is defined by the BT number, 

represented as a/D. When a/D < 0.1, relaxation is 

within the fast diffusion regime [19]. In this regime, the 

fluid relaxation is uniform and the MR behavior exhibits 

an exponential decay. However, in the case where a/D ~ 

1 or a/D >> 1, the fluid relaxation occurs within the 

intermediate or slow diffusion regimes. Within these 

regimes, the MR decay is multi-exponential, even for a 

single pore size, but it is dominated by the ground mode. 

2.2 Direct measurement of pore size and surface 

relaxivity 

In this section, we employ our new method to estimate the 

pore size and surface relaxivity for porous media [13]. 

The correlation between temperature and relaxation 

behavior was utilized. The proposed method was 

employed to measure three sandstone samples. Three pore 

geometries were utilized for analysis, with three different 

nonlinear fitting equations.  

By integrating the characteristic Eqs. (5), (8), (11) and 

relaxation time equation (4) yields the distinct equations 

for planar, cylindrical, and spherical pore geometries: 

                         𝜌2√
𝑇20

𝐷
= tan (

𝑎

√𝑇20𝐷
)                         (12) 

                           
𝜌2

𝐷
=

1

√𝑇20𝐷

𝐽1(
𝑎

√𝑇20𝐷
)

𝐽0(
𝑎

√𝑇20𝐷
)
                            (13) 

                      
𝜌2𝑎

𝐷
= 1 −

𝑎

√𝑇20𝐷
cot (

𝑎

√𝑇20𝐷
)                 (14) 

For spherical and cylindrical geometries, we defined 

the same variables y1 and x: 

                                   𝑦1 = 1/𝐷                                   (15) 

                               𝑥 = √𝑇20𝐷                                       (16) 

Therefore, the nonlinear fitting equations for spherical 

and cylindrical geometries were: 

                       𝑦1 =
1

𝜌2
[

1

𝑎
−

1

𝑥
 cot (

𝑎

𝑥
)]                         (17)  

                             𝑦1 =
1

𝜌2𝑥
 
𝐽1(

𝑎

𝑥
)

𝐽0(
𝑎

𝑥
)
                                   (18) 

In the case of the planar geometry, we defined y2 and 

retain the same variable x as in Eq. (16): 

                                  𝑦2 = √
𝑇20

𝐷
                                      (19)  

Combining y2 with x changes Eq. (20), enabling the 

determination of the nonlinear fitting equation for the 

planar geometry: 

                            𝑦2 =
1

𝜌2
tan (

𝑎

𝑥
)                                   (20) 

The three nonlinear fitting equations (17), (18), and 

(20) were utilized to determine the pore size and surface 

relaxivity for the sandstone samples.  

3 Experimental 

In our work to detect the first non-ground mode and to 

validate BT theory, we utilized three glass microcapillary 

samples (Borosilicate glass, VitroCom, New Jersey, 

USA). We conducted experiments with three planar glass 

microslides, Glass-I, Glass-II, and Glass-III, with slit 

sizes of 100 m, 50 m, 30m. Additionally, a cylindrical 

microcapillary, Glass-IV, with a diameter of 100 µm, was 

employed. Fig. 1 shows the dimensions of the four glass 

microcapillaries. Given the small volume of the pore 

space, multiple pieces were required for MR measurement 

to achieve a satisfactory SNR. Accordingly, 10, 35, 60, 

and 30 pieces were employed for Glass-I, Glass-II, Glass-

III, and Glass-IV measurements, respectively.  

CPMG experiments with the glass microcapillaries 

were carried out on a 4.7 T vertical-bore superconducting 

magnet (Cryomagnetics, Inc., Oak Ridge, TN) paired with 

a Redstone NMR spectrometer console (Tecmag, TX, 

USA). The sample vial was positioned within the 

sensitive region of a Doty DSI-874 1H RF probe (Doty 

Scientific, Inc., Columbia, SC), with a dead time of 6 s. 

Radio frequency excitation was conducted with the RF 

probe, driven by a 300 W M3205A pulse amplifier 

(American Microwave Technology, Inc., Brea, CA). The 

90o pulse duration was 24 s. The echo spacing was 500 

s, with 8192 echoes. For all glass microcapillary 

samples, the repeat delay was 20 seconds, with a total of 

128 scans. The total experimental duration for each 

microcapillary sample was approximately 0.8 hours. 

These measurements were conducted at ambient 
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temperature, and no temperature control was 

implemented.  

Sandstone samples of Berea, Buff Berea, and Nugget 

were obtained from Kokurek Industries (Caldwell, Texas, 

USA) and cut into cylindrical core plugs with a diameter 

of 25 mm and a length of 50 mm. The sandstone samples 

were saturated with a 2% (w/v) NaCl brine solution.  

CPMG experiments for sandstone samples were 

conducted with a 8.5 MHz Maran DRX-HF instrument 

(Oxford Instruments, Abingdon, UK). The 90o pulse 

duration was set at 10.5 s, with an echo spacing of 200 

s. The short echo time employed minimizes the effect of 

diffusion through internal magnetic field gradients. The 

number of echoes was set at 2048 for Berea, Buff Berea, 

and Nugget. For Berea, Buff Berea, and Nugget, the 

number of scans was 8 with a 3-second repeat delay, 

resulting in a total measurement time of 24 seconds at 

each temperature. The signal to noise ratio (SNR) was 

greater than 200 for Berea, and Buff Berea sandstones, 

and greater than 100 for the Nugget sandstone.  

In this work, we utilized sample temperatures of 5 oC, 

15 oC, 25 oC, 35 oC, and 45 oC. These temperatures were 

maintained with a thermal DryBath (HC110-pro, 

Scilogex, Hartford Country, CT, US). The DryBath 

approach to temperature control was advantageous since 

temperature control was primarily by conduction from the 

metal block surrounding the core plug samples. The 

DryBath was used to temperature control multiple 

samples simultaneously.  We calculated the necessary 

heating or cooling time for each desired temperature by 

solving the heat conduction equation. For this work, we 

employed 30 minutes for the largest temperature 

difference of 20 degrees. CPMG measurement was rapid 

so we assume the sample temperature is the pre-

equilibrated temperature of the DryBath. We assumed that 

the diffusion coefficient of the brine solution is 

approximately equivalent to the diffusion coefficient of 

water. The self-diffusion coefficient of water was 

1.3210-9 m2/s, 1.7610-9 m2/s, 2.3010-9 m2/s, 2.9010-9 

m2/s, and 3.610-9 m2/s at the temperatures employed. 

These values were obtained by quadratic fitting to 

experimental results in references [21-25]. 

 

Fig. 1. Schematic diagram of the Glass-I (a), Glass-II (b), Glass-III (c), and Glass-IV (d) samples. The Glass-I, Glass-II, and Glass-

III samples have the same length of 50 mm, while they differ in the width and slit size. The widths are 1 mm, 0.5 mm, and 0.3 mm, 

for Glass-I, Glass-II, and Glass-III, respectively. The slit sizes (pore sizes) are 0.1 mm, 0.05 mm, and 0.03 mm for Glass-I, Glass-

II, and Glass-III, respectively. The Glass-IV sample (d) has a length of 100 mm and a diameter of 0.1 mm. 
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4 Results and discussion 

 

4.1 Glass microcapillaries 

 

To identify the non-ground modes and assess BT theory, 

we conducted CPMG measurements with Glass-I, II, III, 

and IV samples. The T2 distribution of the CPMG decay 

data was determined with the Butler-Reeds-Dawson 

(BRD) method. Fig. 2 (a-d) shows the T2 distribution for 

the four glass samples. 

Fig. 2 (a) shows the T2 distribution of the Glass-I 

sample, which includes three peaks. The two small peaks 

are located at 168 ms and 24 ms. The known pore size, 

along with these two T2 times, allows for the calculation 

of the parameters 2,1 and 2,2 based on Eq. 4. Upon 

determining these 2,n parameters, we can proceed to 

calculate the surface relaxivities, using Eq. 5, which are 

found to be 68 m/s and 69 m/s. This proves that the two 

small peaks represent non-ground modes originating from 

a single pore size. In addition the existence of these peaks 

in the T2 distributions measured in these model systems 

confirms the correctness of BT theory for analogous 

inorganic porous media. The pore shape of the glass 

microslide samples was obviously planar. For the Glass-

II sample, the T2 distribution, shown in Fig. 2 (b), exhibits 

a dominant peak along with one smaller peak, which is the 

first non-ground mode. The first non-ground mode 

relaxation time is 157 ms. Fig. 2 (c) shows the T2 

distribution of the Glass-III sample. The first and second 

non-ground modes were observed at 150 ms and 20 ms, 

respectively.  

Fig. 2 (d) shows the T2 distribution from water filled 

100 m glass microcapillaries with a cylindrical pore 

geometry. This distribution features a dominant peak 

accompanied by a smaller peak, which is the first non-

ground mode. The amplitude of the first non-ground mode 

for the Glass-IV sample is significantly higher than those 

observed in the planar glass microslide samples. The first 

non-ground relaxation time was measured to be 68 ms. 

Knowing the pore size and observed T21 time, the surface 

relaxivity of Glass-IV sample was estimated to be 76 

m/s. This value is quite close to the 68 m/s from the 

Glass-I sample. The same glass material should have 

comparable surface relaxivities.  

Fig. 2. (a)-(d) T2 distributions of Glass-I, II, III, and IV samples. The dominant peak in T2 distribution represents the ground mode relaxation 

time distribution from the three glass samples. Non-ground modes were observed in all samples. 
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The fast diffusion assumption permits the direct 

conversion of the T2 distribution to the pore size 

distribution. However, if applied to Glass-I to Glass-IV 

samples, this approach would result in erroneous peaks in 

a pore size distribution. This conflicts with the single pore 

size of the model systems utilized. This discrepancy is 

particularly noticeable for the Glass-IV sample, where the 

first non-ground modes could easily be misinterpreted as 

signal emanating from small pores. 

Based on the calculated surface relaxivities and the 

known pore sizes, the BT numbers for the four samples 

were calculated as 1.5, 0.75, 0.5, and 1.65. As the pore 

size decreased from Glass-I to Glass-III, the calculated 

BT numbers suggest a shift of the fluid relaxation regime 

towards fast diffusion. BT theory predicts that decreasing 

the BT number will reduce the amplitude of the non-

ground modes. The decrease in amplitude of non-ground 

modes is not clearly visible in the displayed T2 

distributions, but a decrease is observed when calculating 

the area under the curve of the first non-ground mode 

distributions.  
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Fig. 3. (a)-(c) T2 distributions of Berea, Buff Berea, and Nugget sandstones at variable temperature: 5 oC (——), 15 oC (---), 25 oC (——), 35 oC 

(—.), and 45 oC (---). The shift in the T2 distribution is clearly observed. 
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Fig. 4. (a)-(c) Nonlinear fitting of experimental results with Berea, Buff Berea, and Nugget sandstones. (.) is the experiment result and (-) is the 

nonlinear fitting result with a spherical pore geometry. (d)-(f) The BT number of the three sandstones with variable temperature. The BT number 

decreases as the temperature increases. Th BT number shows the three sandstones are in the intermediate regime. 
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Table 1. Pore size and surface relaxivity for Berea, Buff Berea, and Nugget sandstones. Independent pore size estimates from imaging 

methods are included. 

Sandstone 
Pore size (m) SEM (3D)  

(m) 
CT (m) 

Surface relaxivity (m/s) 

Spherical Cylindrical Planar Spherical Cylindrical Planar 

Berea 26 20 25 26 22 80 63 117 

Buff Berea 37 32 35 44 36 45 42 64 

Nugget 25 34 24 42 42 101 104 176 

4.2 Sandstone 

 

CPMG measurements were performed on sandstone 

samples, Berea, Buff Berea, and Nugget at variable 

temperature. The T2 distributions of these three sandstone 

samples are shown in Fig. 3 (a-c). The T2 distributions of 

Berea and Buff Berea consist of one dominant peak along 

with a series of smaller peaks, while that for the Nugget 

sandstone exhibits one dominant peak and two smaller 

peaks.  

This work focuses on the dominant pore size, which 

corresponds to the MR signal at the peak of the T2 

distribution. The peak of the T2 distribution is the ground 

mode relaxation time of large pores within the examined 

pore systems. The shifts in the peak of the T2 distributions 

is clearly observed in Fig. 3 (a-c). It confirms that the 

sandstone samples are in the intermediate regime. The 

relaxation time would be unchanged, as temperature 

changed, if the fluid relaxation occurred in the fast 

diffusion regime. This assumes the surface relaxivity is 

temperature independent. The observed relaxation times 

of the dominant peak T2 distributions across five 

temperatures were utilized to estimate the pore size and 

surface relaxivity of Berea, Buff Berea, and Nugget 

sandstones. All three geometrical models derived from 

BT theory were applied to estimate pore size and surface 

relaxivity. The nonlinear fitting equations were discussed 

earlier. Fig. 4 (a)-(c) show the nonlinear fittings with a 

spherical pore geometry for Berea, Buff Berea, and 

Nugget, respectively. The variations of BT number with 

temperature are depicted in Fig. 4 (d)-(f). Based on the 

lowest BT number of 0.17, the sandstones examined in 

this work are in the intermediate regime.  

Table 1 shows the estimated dominant pore size and 

surface relaxivity for the three sandstones, along with the 

pore size determined from SEM and CT. The dominant 

pore size estimate for Berea was 26 m, 20 m, and 25 

m, corresponding to the spherical, cylindrical, and planar 

geometries, respectively. These estimations align well 

with the 26 m obtained from SEM measurement and 22 

m derived from CT measurement. The surface 

relaxivities calculated with the three geometrical models 

were 80, 63, and 117 m/s for the Berea sample. For Buff 

Berea sandstone the estimated pore size was 37 m with 

a spherical geometry, 32 m with a cylindrical geometry, 

and 35 m with a planar geometry. These results are in 

close agreement with the CT method of 36 m, while 

they are slightly smaller than the SEM method of 44 m. 

The surface relaxivity of Buff Berea, calculated using the 

three geometries, was determined to be 45, 42, and 64 

m/s for spherical, cylindrical, and planar models. In the 

case of Nugget sandstone, the shape of the pore may 

influence the pore size estimates. The calculated pore size 

of 34 m with a cylindrical geometry aligns with the 

measurements from imaging methods. However, the pore 

size estimates of 25 and 24 m with the spherical and 

planar geometries, differ from the imaging methods. This 

may suggest that the pores in Nugget sandstone are more 

likely to exhibit a cylindrical shape. It is widely 

recognized that paramagnetic material on the pore surface 

significantly affects the surface relaxation. The surface 

relaxivity is anticipated to scale with the amount of 

paramagnetic material. Nugget sandstone, with a 

discernible red color, suggests a substantial presence of 

paramagnetic substances. As a result, the surface 

relaxivity of Nugget sandstone is higher than that of Berea 

and Buff Berea sandstones.  The calculated surface 

relaxibity of Nugget with three geometries were 101, 104, 

107 m/s. 

Fig. 4 (d-f) shows the variation in the BT number 

with temperature. These figures clearly show that fluid 

relaxation within the sandstones moves towards the fast 

diffusion regime as we increase temperature. The fluid 

relaxation would move into the fast diffusion regime if we 

increased the fluid temperature to 70 or 80 degrees for 

these samples. In such a case, the fluid self-diffusion 

would no longer impact the MR relaxation times, 

resulting in a direct relationship between the pore size and 

the relaxation time. 

 

4.3 Pore size distribution determination of sandstone 

The pore size distribution is a critical parameter in 

petrophysics and core analysis. The results described 

above show how we may determine the surface relaxivity 

and non-ground modes of relaxation. The MR signal 

decay in the intermediate regime results in an individual 

pore size contributing to the first non-ground mode signal 

at a shorter lifetime. This signal could be interpreted as 

originating from smaller pores, based on the fast diffusion 

assumption. Our recent work has been aimed at resolving 

this discrepancy [7]. Outside of the fast diffusion regime, 

the observed shorter relaxation times could potentially 

result from a combination of T20 lifetime of small pores 

(T20_S) and T21 lifetime of large pores (T21_L). In this study, 

we sought to convert the T20 distribution to the pore size 

distribution. Long experimental T2 times can be regarded 

as the T20 times of the large pores (T20_L) neglecting bulk 

relaxation. However, determining the T20_S becomes
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challenging due to the overlap between the T20_S and T21_L. 

Determination of T20_S requires the subtraction of T21_L, in 

cases when they are overlap.  

In section 4.2, we reported the surface relaxivities for 

our measured sandstones. With knowledge of the T20_L, 

surface relaxivity, and the diffusion coefficient of fluid, 

we can determine the parameter of 2,0, and consequently 

the first non-ground mode of larger pores (T21_L). We then 

calculated the first non-ground mode T21 distribution for 

larger pores, and subtracted this from the observed T2 

distribution. This enabled us to determine the entire T20 

distribution for the sample being studied. Following BT 

theory, we transformed the T20 distribution into a pore size 

distribution.  

In this work we assume the pore size distribution 

dominates the width of the T2 distribution. We need to 

ensure the regularization parameter  does not dominate 

the width of the peaks in the distributions. A smaller , 

such as  <0.1, results in a narrow T2 distribution. A large 

, such as =100, will blur the T2 distribution and 

overwhelms discrimination of the ground and first 

nonground modes. In this work, we employed =1 for the 

inversion of the T2 distribution because it facilitates the 

detection of non-ground modes. Testing shows this  does 

not artificially increase the width of the experimental 

distribution. 

In this work, we estimated the pore size distribution of 

the Nugget, Berea, and Buff Berea sandstones. Fig. 5 (a) 

shows the observed T2 distribution of the Nugget sample. 

Using the symmetry of the distribution, we decomposed it 

into three independent peaks, as shown in Fig. 5 (b). These 

independent peaks suggest that the Nugget sandstone is 

characterized by three dominant pore sizes, large, medium, 

and small. Applying BT theory, we calculated the T21 

distribution of large pores. This distribution is located at 

the T2 times contributed by the medium and small pores. 

The subtraction of this component allows for an accurate 

determination of the proportion of medium and small 

pores in the sample. 

Fig. 5.  (a) (-) is the experimental T2 distribution of Nugget sandstone. (b) (-) is the T2 distribution of larger pores, (-) and (----) 

are the T2 distribution of small pores ; (---) is the calculated first non-ground T21 distribution of the larger pores. 
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Fig. 6.  (a) (-) the determined pore size distribution of Nugget sandstone. (b) (-) and (---) are pore size distributions with and 

without the substraction of the first non-ground mode of larger pores. 
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By removing the T21 distribution of larger pores, we 

were able to determine the T20 distribution for Nugget 

sandstone. This T20 distribution was then converted into 

the pore size distribution, as shown in Fig. 6 (a).  Fig. 6 

(b) shows two pore size distribution, one with and another 

without the subtraction of the first non-ground mode of 

large pores. The difference shows the impact of the first 

non-ground mode of large pores on the experimental pore 

size distribution. 

 It is worth noting that the BT number controls the 

amplitude of the first non-ground mode of the employed 

sample. The first non-ground mode of Nugget sandstone 

is large enough to merit attention. In the case of the 

Nugget sandstone employed, with a BT number of 0.7 at 

25 oC, the area of the first non-ground mode is 

approximately 10 % of the ground mode. In samples with 

higher BT numbers, the proportion of the first non-ground 

mode will be more significant. If the BT number were 1.5 

or even 2, the first non-ground mode area would be 20 % 

or 30 % of the ground mode. However, for samples with 

lower BT numbers, the amplitude of the first non-ground 

mode will likely be less than 10%, thus, its influence on 

the pore size distribution becomes less significant. In this 

study, BT numbers of the Buff Berea and Berea sandstone 

at 25 oC were 0.45 and 0.3, respectively. These lower BT 

numbers mean the relaxation behavior of the employed 

samples is closer to the fast diffusion regime, suggesting 

a smaller amplitude of the first non-ground mode. Fig. 7 

(a) shows the observed T2 distribution alongside the 

calculated T21 distribution of larger pores. The amplitude 

of the first non-ground mode is approximately half that of 

the third peak of the T2 distribution. This suggest that its 

presence will influence the proportion of small pore sizes, 

specifically around the pore size of 5 um. Fig. 7 (b) shows 

the pore size distribution of Buff Berea sandstone after 

removing the influence from the first non-ground mode of 

larger pores. Fig. 8 (a) shows the observed T2 distribution 

of the Berea sample accompanied by the calculated first 

non-ground mode distribution of larger pores. The 

determined pore size distribution is shown in Fig. 8 (b). It 

should be note that the T2 distributions utilized in Figs. 
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Fig. 7.  (a) (-) the T2 distribution of Buff Berea sandstone, (---) the calculated first non-ground T21 distribution of larger pores. (b) 

(-) the calculated pore size distribution of Buff Berea sandstone. 
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Fig. 8.  (a) (-) the T2 distribution of Berea sandstone, (---) the calculated first non-ground T21 distribution of larger pores. (b) (-) 

the calculated pore size distribution of Berea sandstone. 
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7(a) and 8 (a) originate from Fig. 3. The distribution used 

in Figs. 7 and 8 has a zero amplitude in the short lifetime 

limit.  

In this section, we described the method for 

determining the pore size distribution based on BT theory, 

using three sandstone samples for illustration. We 

calculated the first non-ground mode of larger pores based 

on BT theory, and discussed the necessity of its 

subtraction for determination of pore size distributions, 

with the BT number. A comparison of pore size 

distributions with direct imaging work is an effective tool 

to validate the method developed in this study.  

Incorporation of such a comparison will be considered in 

future work. 
 

5 Conclusion 

 

Determinations of pore size and pore size distribution are 

fundamental to core analysis. The MR relaxation time is 

commonly employed for this purpose, based on an 

assumption of fast diffusion. However, this assumption is 

not universally true, especially for samples with larger 

pore sizes or higher surface relaxivity. In this study, we 

follow BT theory, emphasizing the intermediate regime to 

estimate both pore size and surface relaxivity for 

sandstone core plugs. 
Glass microcapillaries served as an ideal model 

system to validate BT theory. A fixed and known pore 

sizes, and pore geometry, makes the glass microslides a 

superior system for control measurements. We were able 

to detect non-ground modes, and by changing the 

microslide pore size, the observed shift in relaxation times 

was found to align with predictions made by BT theory.  

MR signal decay from fluids within the pore space 

is influenced by factors including the pore size, the 

surface relaxivity and fluid self-coefficient, as described 

by BT theory. In this work, we employed the correlation 

between the temperature-dependent self-diffusion 

coefficient of the fluid and its relaxation behavior within 

the pore space, to estimate the pore size and surface 

relaxivity. By changing the fluid self-diffusion coefficient 

with temperature, we observed shifts in both the diffusion 

regime and the relaxation times of the sample. The 

amplitude of the shift depends on the distinct properties 

of the sample being examined. We utilized this shift to 

estimate the pore size and surface relaxivity of sandstone 

samples, with a nonlinear fitting approach. Three 

nonlinear fitting equations were derived, based on the 

three pore geometrical models of BT theory. Sandstones 

were employed to test our proposed method. The 

determined pore sizes align well with direct imaging 

methods. The calculated BT numbers indicate that all 

samples utilized in this work are within the intermediate 

regime. 

In this paper, we have validated and applied BT theory 

to sandstone reservoir rock core plugs. The correlation 

between relaxation time and temperature underscored the 

importance of the intermediate regime. The fast diffusion 

regime is not universal for core plug systems.  
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