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Abstract. The mathematical theory underpinning the permeability measurement on homogeneous anisotropic 

porous media is reviewed. The effect of sample anisotropy properties, dimensions, and imposed no-flow boundaries 

on the directional permeability measurement, and its reciprocal—the directional viscous resistivity—are discussed 

and illustrated graphically through numerical simulation. In general, the directions of the specific discharge and 

potential gradient vectors are not collinear, and therefore two different definitions are possible for the directional 

permeability, each yielding a different value for a given set of conditions, and significantly different values for 

different sample diameter-length ratios (𝐷/𝐿). However, it is shown that the one and only directional permeability 

as dictated by the three-dimensional form of Darcy’s law is the permeability in the direction of the potential gradient 

𝑘Φ = 𝑘𝑖𝑗𝑢𝑖𝑢𝑗 = 𝑘, which requires a sample geometry of 𝐷/𝐿 = ∞. In practice, it is an apparent directional 

permeability 𝑘𝑎 that is measured on a finite dimensioned sample, and thus a sample geometry of 𝐷/𝐿 ≫ 1 is 

required to approximate 𝑘Φ. This geometry is contrary to what is generally used and recommended to measure 

permeability, 𝐷/𝐿 ≤ 1, resulting in sometimes significant error. It is shown that the apparent directional viscous 

resistivity 𝑟𝑎 is what is to be measured when sample 𝐷/𝐿 geometries < 1 are being evaluated and its measurement 

accuracy improves as 𝐷/𝐿 → 0. The relations between the measured 𝑘𝑎 and 𝑟𝑎 of a cylindrical three-dimensional 

sample and its 𝐷/𝐿, 𝑘𝑖𝑗 , 𝑟𝑖𝑗, and 𝑢𝑖 properties are presented. Approximate analytical solutions for 𝑘𝑎 and 𝑟𝑎 are 

provided, which can be used to guide choice of experimental setup and to approximate measurement accuracy. An 

extended definition for the unit of directional permeability for anisotropic flow is provided based on this work. 

1 Introduction 

The fundamental law of fluid flow through porous media as 

given by Darcy [1] assumes the porous medium to be 

isotropic in permeability; the permeability parameter was 

represented as a single scalar quantity. Ferrandon [2] 

theoretically showed that for the case of anisotropic media, 

permeability is a material tensor of second rank. Nye [3] 

provided the experimental methodology for measuring the 

magnitude of an anisotropic parameter in a particular 

direction, taking into consideration sample dimensions and 

boundary conditions. Bear [4] (p.148), provides the principle 

(and steps) underlying the experimental determination of 

coefficients appearing in the macroscopic description of 

phenomena (e.g., the permeability and viscous resistivity 

coefficients of Darcy’s law) – where emphasis is placed on 

understanding the flow pattern of the experiment and if it 

permits the desired coefficient to be measured. This paper 

seeks to marry these two ideas given by Nye and Bear. To do 

so, numerical flow simulations were conducted and analyzed 

under the guise of Nye and Bear, the results from which can 

be used to guide physical experimental work for determining 

the permeability and viscous resistivity coefficients of 

Darcy’s law. 

2 Background 

The issue of measuring permeability of an anisotropic sample 

of finite dimension using a conventional “axial” permeameter 

[5], where boundaries must be imposed, was investigated by 

Marcus and Evenson [6] and Marcus [7]. As noted by Bear 

[4] (p.146), “it becomes obvious that knowledge of both 𝑘𝑖𝑗 

(e.g., by knowing the principal values 𝑘1, 𝑘2, and 𝑘3, and the 

principal directions) and the boundary conditions is required 

to determine the flow pattern. This conclusion has an 

important bearing on the determination of permeability by 

permeameters in anisotropic media.” Much has been 

published on the theory of anisotropic permeability. More 

generally, the mathematical theory of matter tensors and their 

laboratory determination has been discussed in detail in 

literature outside the field of fluid flow in porous media, e.g., 

see [3, 8, 9]. Hydraulic resistivity 𝑅 is the reciprocal of 

hydraulic conductivity 𝐾 [4] (p.140). Viscous resistivity 𝑟 is 

the reciprocal of permeability 𝑘 ([10] (p.6-1, Sec. 6.1); [11] 

(p.10, Sec. 2.4)). These coefficients and their measurement 

have been discussed to a lesser extent in porous media 

literature. The following three background subsections 

contain material mostly given in Nye, material that will set 

the stage for the experimental work and analysis given in this 

paper. The material is limited to the key points that will be 
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used to support the analysis and discussion of this work and 

is provided for completeness. Following the third subsection 

is a note on the significance of what is said in these three 

background subsections. 

2.1 The magnitude of a second-rank tensor and its 

geometric interpretation 

The scalar magnitude 𝑆 of a symmetrical second-rank tensor 

𝑆𝑖𝑗  in a specific direction defined by a unit vector 𝑢𝑖 is found 

by contracting the unit vector with the indices of 𝑆𝑖𝑗  as shown 

in Equation (1) [3] (p.26) 

 𝑆 = 𝑆𝑖𝑗𝑢𝑖𝑢𝑗. (1) 

The tensor 𝑆𝑖𝑗  relates the respective force-flux (cause-effect) 

vectors 𝑏𝑗 and 𝑎𝑖 to each other by the matrix product, 

 𝑎𝑖 = 𝑆𝑖𝑗𝑏𝑗 . (2) 

Invoking Equation (2) into Equation (1), we find the 

geometrical relationship between the magnitude of 𝑆𝑖𝑗  and 

vectors 𝑎𝑖 and 𝑏𝑗, 

 

𝑆 = 𝑆𝑖𝑗𝑢𝑖𝑢𝑗 =
𝑆𝑖𝑗𝑏𝑗𝑏𝑖

|𝑏𝑖|
2

=
𝑎𝑖 ⋅ 𝑏𝑖

|𝑏𝑖|
2

 

=
|𝑎𝑖||𝑏𝑖| cos(𝜃)

|𝑏𝑖|
2

=
|𝑎𝑖| cos(𝜃)

|𝑏𝑖|
, 

(3) 

where 𝜃 is the angle between vectors 𝑎𝑖 and 𝑏𝑗. Equation (3) 

states that the magnitude 𝑆 characterizing 𝑆𝑖𝑗  in a specific 

direction is the ratio of the scalar projection of vector 𝑎𝑖 onto 

this direction to the magnitude of the vector 𝑏𝑖. Equation (3) 

also instructs how the magnitude 𝑆 of the property 𝑆𝑖𝑗  in a 

specific direction is to be obtained experimentally — apply 

𝑏𝑖 in that direction and measure 𝑎∥/|𝑏𝑖|, where 𝑎∥ =
|𝑎𝑖| cos 𝜃 is the component of 𝑎𝑖 parallel to 𝑏𝑖. 

2.2 The Permeability and Viscous Resistivity Tensor 

Darcy’s law for the flow of a single-phase incompressible 

Newtonian fluid through a porous medium is 

 𝑞𝑖 = 𝐾𝑖𝑗𝐽𝑗 = −𝐾𝑖𝑗𝜕ℎ/𝜕𝑥𝑗 = −𝜇−1𝑘𝑖𝑗𝜕Φ/𝜕𝑥𝑗 , (4) 

where 𝑘𝑖𝑗 is the symmetrical second-rank permeability tensor 

and 𝑖, 𝑗 = 1, 2, 3, corresponds to the direction of the 

coordinate axes 𝑥, 𝑦, 𝑧. (See nomenclature for definitions of 

other variables). Equation (4) may be solved for the 𝜕Φ/𝜕𝑥𝑗 

in terms of the viscus resistivity tensor 𝑟𝑖𝑗  

 −𝜕Φ/𝜕𝑥𝑖 = 𝜇𝑟𝑖𝑗𝑞𝑗 . (5) 

The viscous resistivity tensor 𝑟𝑖𝑗  is the reciprocal of the 

permeability tensor, determined through Equation (6) 

 𝑟𝑖𝑗 = 𝑘𝑖𝑗
−1 = cofactor of 𝑘𝑖𝑗/det 𝑘𝑖𝑗 . (6) 

2.3 Experimental Measurement of Permeability and 

Viscous Resistivity 

Consider Darcian flow through two right-circular cylinder-

shaped porous solids with different diameter to length ratios 
(𝐷/𝐿). The porous solids are macroscopically homogeneous 

and anisotropic with respect to permeability. The cylinders 

are of the same porous solid and have 𝑘𝑖𝑗 in the same 

orientation, that is, they are identical in every way except for 

their diameter to length ratio. In the following descriptions 

and illustrations, the gravitational acceleration vector 𝑔𝑖 is 

collinear with the 𝑥1 axis. 

Figure 1A shows a relatively large-diameter and short-

length sample (𝐷/𝐿 ≫ 1), i.e., a “thin-disc”, between two 

flow distributor plates. The fluid potential at the inlet plate is 

greater than the fluid potential at the outlet plate. Since the 

sample is of large cross section compared with its length, the 

isopotential surfaces must run parallel to the planar end faces 

of the porous medium apart from edge effects near the outer 

cylindrical surface — over the region roughly outlined by the 

dashed line. The fluid potential gradient vector is therefore 

prescribed to be perpendicular to the end faces, and the 

specific discharge vector, is in general, oriented in some other 

direction due to the sample’s anisotropic permeability (the 

flow will take the path of least resistance). Since it is the 

direction of −𝜕Φ/𝜕𝑥𝑖 rather than 𝑞𝑖 that is prescribed in this 

experiment, it is better to work with permeabillities than with 

viscous resistivities; from Equation (4) we write, 

 𝑞𝑖 = −𝜇−1𝑘𝑖1𝜕Φ/𝜕𝑥1, (7) 

where 𝑥1 is taken to be perpendicular to the sample’s end 

faces. According to Equation (3) the component of 𝑞𝑖 parallel 

to −𝜕Φ/𝜕𝑥1 needs to be measured. If done so, 𝑘11 is the 

quantity most readily measured in this experiment. 

Figure 1B shows a relatively small-diameter and long-

length sample (𝐷/𝐿 ≪ 1), i.e., a “long rod”, between two 

flow distributor plates. The cylindrical surface of the sample 

is sealed by an impermeable barrier. In this case, the specific 

discharge vector must be compelled along the cylinder's long 

axis (aside from effects at the end faces in the region roughly 

outlined by the dashed line). However, with such boundaries 

the orientation of the potential gradient vector is unknown, 

the isopotential surfaces are generally oblique to the 

cylinder's long axis due to the sample’s anisotropic 

permeability. Since the direction of 𝑞𝑖 is prescribed to be 

parallel to 𝑥1 it is now better to work with viscous 

resistivities. Thus, from Equation (5) we write, 

 −𝜕Φ/𝜕𝑥𝑖 = 𝜇𝑟𝑖1𝑞1. (8) 

The component of the fluid potential gradient along the length 

of the sample, which is what would be most easily measured 

in the experiment, is −𝜕Φ/𝜕𝑥1. Since −𝜕Φ/𝜕𝑥1 ≡ (−𝜕Φ/
𝜕𝑥𝑖)∥, where (−𝜕Φ/𝜕𝑥𝑖)∥ is the component of −𝜕Φ/𝜕𝑥𝑖  

parallel to 𝑞𝑖, then 𝑟11 is the quantity most readily measured 

in this experiment. 

 

A 

 

B 

 
Figure 1. Fluid flow through (A) a large-diameter and short-length 

cylindrical core, illustrated with isopotentials and regions where 

cylindrical-edge effect occurs, and (B) a small-diameter and long-
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length cylindrical core, illustrated with isopotentials and regions 

where planar-end effect occurs (modified and sourced from [3]). 

 

The above description and figures parallels what is found 

in [3] (pp.213-216), [8] (pp.37-40), and [9] (pp.203-206). 

However, after reading the above description the following 

questions come to mind: 

I. Should the cylindrical surface of the thin-disc testing (for 

measuring permeability) be sealed by an impermeable 

barrier or not? Based on the description given—which 

does not explicitly state to have the cylindrical surface 

sealed by an impermeable barrier in [3, 8, and 9]—it 

might seem that the cylindrical surface should not be 

sealed and only the flow that exits the outlet planar face 

should be taken as 𝑞1. Otherwise, if the cylindrical 

surface was made to be sealed to flow, the components 

of the specific discharge vector in the 𝑥2 and 𝑥3 

directions will be diverted to the 𝑥1-direction and 

included in the flow measurement. Hence, the ratio of the 

total flow (in all directions) to the potential gradient 

(prescribed to be oriented along the 𝑥1-direction) would 

be computed instead. 

II. How do the fluid potential contours and specific 

discharge vector field change as a function of sample 

dimension? 

III. How does the permeability and viscous resistivity value 

change as a function of sample dimension? 

IV. What does it mean to be “relatively large-diameter and 

short-length sample”, “of large cross section compared 

with its length”, and “a relatively small-diameter and 

long-length sample”? 

A series of numerical simulations were conducted to 

address these questions. Before describing the numerical 

simulations, a comment to the significance of the statements 

made in these background sections is warranted. 

2.4 Significance of Statements Made in Sections 2.1 

through 2.3 

To compare the second-rank permeability tensor of Equation 

(4) with the scalar value determined from physical 

measurements, Scheidegger [12,13] introduced the notion of 

a “directional permeability”. In doing so, Scheidegger 

defined two kinds of scalar directional permeabilities, a 

“permeability in the direction of flow”, 

 𝑘𝑞 =
𝜇|𝑞𝑖|

|𝜕Φ/𝜕𝑥𝑖| cos(𝜃)
= −

𝜇|𝑞𝑖|

𝜕Φ/𝜕𝑥𝑖 ⋅ 𝑚𝑖

, (9) 

where 𝜃 is the angle between vectors 𝑞𝑖 and −𝜕Φ/𝜕𝑥𝑖  and 

𝑚𝑖 is a unit vector in the direction of the 𝑞𝑖, and a 

permeability in the direction of the fluid potential gradient, 

 𝑘Φ =
𝜇|𝑞𝑖| cos(𝜃)

|𝜕Φ/𝜕𝑥𝑖|
=

𝜇𝑞𝑖 ⋅ 𝑛𝑖

|𝜕Φ/𝜕𝑥𝑖|
, (10) 

where 𝑛𝑖 is a unit vector in the direction of the negative of the 

potential gradient1. The “permeability in the direction of 

flow” corresponds to what would be measured using the 

sample dimensions and boundary conditions described for the 

“long rod” experiment described in Section 2.3, Figure 1B; 

 
1 The notion of two kinds of scalar directional permeabilities 

stemming from the permeability tensor is not isolated to porous 

media. The “conductivity in the direction of the flux vector” and the 

the “permeability in the direction of the fluid potential 

gradient” corresponds to the “thin disc” experiment, Figure 

1A. Strictly, 𝑘𝑞 and 𝑘Φ are limiting expressions of what 

would be measured in a conventional axial permeameter 

where boundary conditions are imposed, in the limit that 

sample dimensions 𝐷/𝐿 → 0 and 𝐷/𝐿 → ∞, respectively. 

These two values are the extremes, and the actual 

conventionally measured permeability of a finite-

dimensioned sample is called the apparent permeability 𝑘𝑎 =
𝑄𝜇𝐿/(𝐴ΔΦ), whose value will generally fall between the two 

extremes 𝑘𝑞 and 𝑘Φ. 

The values of these two directional permeabilities, as 

defined, are not the same unless measurements are made with 

𝑞𝑖 and −𝜕Φ/𝜕𝑥𝑖  in the direction of one of the permeability 

tensor’s principal axes. Scheidegger [13] (p.65) stated that, 

“The fact that there are two different kinds of ‘directional 

permeability,’… is somewhat disconcerting.” However, this 

issue may be alleviated. The mathematical structure of 

Equations (2) and (4) are analogous, therefore, Equation (3) 

provides the one and only relationship that should define the 

scalar directional permeability, which is Equation (10) – the 

“permeability in the direction of the fluid potential gradient” 

𝑘Φ. Explicitly, 

 𝑘 = 𝑘𝑖𝑗𝑢𝑖𝑢𝑗  =
𝜇|𝑞𝑖| cos(𝜃)

|𝜕Φ/𝜕𝑥𝑖|
=

𝜇𝑞𝑖 ⋅ 𝑛𝑖

|𝜕Φ/𝜕𝑥𝑖|
= 𝑘Φ. (11) 

The scalar directional permeability defined by Equation 

(10) relates to the components 𝑘𝑖𝑗 of the permeability tensor 

as shown in Equation (11). Since the permeability tensor is 

defined by Darcy’s law, Equation (4), three points are of note: 

1. The permeability tensor is a linear operator that 

operates on the potential gradient vector to produce 

a specific discharge vector (Equation (4)). 

2. The term “permeability” is defined by Darcy’s law 

[15] (p.10), which refers to the magnitude of the 

fluid potential gradient vector and the component of 

the specific discharge vector colinear with it 

(Equation (10)). 

3. The unit of permeability is defined by Darcy’s law. 

That is, a material has a directional permeability of 

one darcy if through a face of one square centimeter, 

which is normal to the direction of the potential 

gradient, one cubic centimeter per second of fluid 

having viscosity one centipoise is caused to flow by 

a potential gradient of one atmosphere per 

centimeter. 

Thus, it is the “thin disc” experiment, where the diameter 

of the sample (core) is relatively large and length is relatively 

short (𝐷/𝐿 ≫ 1), that permits the measurement of 

permeability. However, this disagrees with recent literature 

concerning the recommended practice for measuring 

permeability (and with Darcy's experiments, where the 𝐷/𝐿  
ratios for his sand packs ranged from 0.6 to 0.2, and possibly 

as low as 0.13 [16,17]). For example, [18] recommends 

testing samples with a length between 1.3 and 1.7 times the 

diameter of the sample. According to [19] (p.106), “Most 

routine and special core analysis tests are performed on plug 

samples cut from the full diameter core. The plug samples are 

“conductivity normal to the isothermals” have been defined in the 

exact same manner in the study of conduction of heat in anisotropic 

solids [14] (pp.38-49). 
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right cylinders typically 1- or 1.5-inches in diameter and 1-3-

inches long. The rule of thumb is that the plugs for RCA or 

SCAL should have a length equivalent to one to two times the 

plug diameter.” This rule of thumb for dimensions can lead 

to a 𝐷/𝐿 ratio as low as 0.5 and at most a ratio of 1. Indeed, 

as noted in [10] (Section 6.3.1.1.1.1), core plugs having either 

a 1.0- or 1.5-inch diameter, 0.75- to 3-inch length are 

dimensions that have become virtually standard in 

conventional analysis. This range of dimensions can lead to a 

𝐷/𝐿 ratio as low as 0.33 and at most a ratio of 2. 

The so-called scalar directional “permeability in the 

direction of flow”, 𝑘𝑞, is related to 𝑘𝑖𝑗 and 𝑟𝑖𝑗  as shown in 

Equation (12), 

 

𝑘𝑞 =
𝜇|𝑞𝑖|

|𝜕Φ/𝜕𝑥𝑖| cos(𝜃)
= −

𝜇|𝑞𝑖|

𝜕Φ/𝜕𝑥𝑖 ⋅ 𝑚𝑖

 

=
1

𝑘𝑖𝑗
−1𝑚𝑖𝑚𝑗

=
1

𝑟𝑖𝑗𝑚𝑖𝑚𝑗

. 
(12) 

If the goal is to measure values to be used in Darcy’s law 

while employing the “long rod” experiment, then, the 

directional viscous resistivity in the direction of flow 𝑟𝑞  is the 

value to be measured, not 𝑘𝑞, and used in Darcy’s law written 

in viscous resistivity form, Equation (8). Explicitly, the 

relations for 𝑟𝑞 are, 

 

𝑟 = 𝑟𝑖𝑗𝑢𝑖𝑢𝑗  =
|𝜕Φ/𝜕𝑥𝑖| cos(𝜃)

𝜇|𝑞𝑖|
 

=
−𝜕Φ/𝜕𝑥𝑖 ⋅ 𝑚𝑖

𝜇|𝑞𝑖|
= 𝑟𝑞 . 

(13) 

Scheidegger’s two directional permeabilities can lead to 

confusion and error due to the use of the name “permeability” 

for the value 𝑘𝑞. In the general case where one does not know 

the orientations of principal permeabilities for the sample that 

they are measuring, one should not try to determine values for 

𝑘𝑖𝑗 when measuring 𝑘𝑞 using the “long rod” experiment and 

subsequently use these 𝑘𝑖𝑗 values in Darcy’s law, Equation 

(4). Rather, the correct procedure would be to measure six or 

more values of 𝑟𝑞  using the “long rod” experiment (see 

Appendix), determine values for 𝑟𝑖𝑗  and either use these 

values in the viscous resistivity form of Darcy’s law, 

Equation (5), or determine 𝑘𝑖𝑗 by taking the reciprocal of 𝑟𝑖𝑗  

and using these 𝑘𝑖𝑗 in the permeability form of Darcy’s law, 

Equation (4). This is important for “highly” anisotropic 

samples. An example of this procedure is provided in Section 

4.III, Figure 14. 

As noted by [20], to avoid the difficulty of selecting the 

experimental setup and employing the correct corresponding 

analysis, “most measurements are made parallel or 

perpendicular to the bedding plane with the direction 

perpendicular to the bedding plane being assumed to be one 

of the principal directions. Measurements are made at all 

angles parallel to the bedding plane and the maximum and 

minimum permeabilities in this plane, if perpendicular, are 

assumed to be the principal permeability components in that 

plane. The direction of the bedding plane, however, does not 

necessarily have to correspond to a principal direction of the 

specimen, a situation which complicates the interpretation of 

the measurements.” (Emphasis added). This statement also 

assumes the sample has visually identifiable bedding or 

bedding at all. Therefore, to avoid having to make 

assumptions and to avoid having to face complicated 

interpretations, one should determine permeability 𝑘(= 𝑘Φ) 

using the thin disc experiment, and viscous resistivity 

𝑟(= 𝑟𝑞) using the long rod experiment; from which 𝑘𝑖𝑗 and 

𝑟𝑖𝑗  can be determined (see Appendix). Lastly, with the 

apparent permeability 𝑘𝑎 now defined, questions III and IV 

can be combined and refined to the following, similar to how 

[7] had posed: What dimensions does the sample need to have 

to yield 𝑘 with a certain desired accuracy or, more generally, 

what is the relation between the geometry of a cylindrical 

sample, expressed by the 𝐷/𝐿 ratio, and the apparent 

permeability 𝑘𝑎 for a given anisotropy 𝑘𝑖𝑗 and orientation 𝑢𝑖? 

The same can be asked for 𝑟, where 𝑟𝑎 = 𝐴ΔΦ/(𝑄𝜇𝐿). 

3 Description of the Numerical model 

For the three-dimensional simulations the cylindrical core’s 

main (symmetrical) axis was made to be collinear with the 

right-handed Cartesian (𝑥, 𝑦, 𝑧) 𝑥-axis as depicted in Figure 

2. The principal values of the permeability tensor (denoted as 

𝑘𝑖𝑗
′ ;  𝑖 = 𝑥′, 𝑦′, 𝑧′) were defined as 

 𝑘𝑖𝑗
′  (𝑥′, 𝑦′, 𝑧′) = [

20 0 0
0 1 0
0 0 1

]  md. (14) 

The permeability tensor for the core is geometrically 

represented as an ellipsoid in Figure 2. With 𝑘𝑖𝑗
′  initially 

coordinate-axis-aligned (Figure 2A), it was rotated using a 

rotation matrix 𝑅𝑖𝑗 [21], rotated with respect to the core’s 

(fixed) 𝑥𝑦𝑧 coordinate system (Figure 2B), according to 

 𝑘𝑚𝑛 = 𝑅𝑚𝑖𝑅𝑛𝑗𝑘𝑖𝑗
′  (15) 

It was desired to have the maximum principal permeability 

axis orientated at a +45° angle 𝛼 (positive counterclockwise) 

from the 𝑥-axis, and one of the two identical intermediate and 

minimum principal permeability axes collinear with the 𝑧-

axis. The symmetry of this system permits the three-

dimensional flow simulation results to be understood when 

viewed in a two-dimensional view (in the 𝑥-𝑦 plane) as 

conceptually illustrated in Figure 2C. To achieve the desired 

tensor orientation (as depicted in Figure 2), the rotation 

matrix was defined through three successive rotations 

according to the so-called Roe convention [21], which 

consists of a rotation through angle 𝜓 about the 𝑧-axis, then a 

rotation of angle 𝜃 about the new 𝑦-axis (which has already 

rotated itself due to the first rotation about the 𝑧-axis), and 

finally, a second rotation of 𝜙  about the now-tilted 𝑧-axis. 

The rotation matrix as a product of these three successive 

rotations is then 

𝑅𝑖𝑗 = [

c 𝜓 c 𝜃 c 𝜙 − s 𝜓 s 𝜙 − c 𝜓 c 𝜃 s 𝜙 − s 𝜓 c 𝜙 c 𝜓 s 𝜃
s 𝜓 c 𝜃 c 𝜙 + c 𝜓 s 𝜙 − s 𝜓 c 𝜃 s 𝜙 + c 𝜓 c 𝜙 s 𝜓 s 𝜃

− s 𝜃 c 𝜙 s 𝜃 s 𝜙 c 𝜃
], (16) 

where c and s are trigonometric functions cosine and sine, 

respectively. For other conventions see [22]. For the desired 

tensor orientation, the Roe angles required are: 𝜓 = 45°;  𝜃 =
0°; 𝜙 = 0°, which results in the rotation matrix: 

 𝑅𝑖𝑗 = [
√2/2 −√2/2 0

√2/2 √2/2 0
0 0 1

]. (17) 

Invoking Equations (14) and (17) into Equation (15), the 

permeability tensor used in the simulations is then, 
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 𝑘𝑖𝑗  (𝑥, 𝑦, 𝑧) = [
10.5 9.5 0
9.5 10.5 0
0 0 1

]  md. (18) 

The main (symmetry) axis of the core is made to be aligned 

with the 𝑥-axis in the simulations as depicted in Figure 2, 

which is an orientation defined by the unit vector 𝑢𝑖 =
[1, 0, 0]. Thus, from Equation (1), the magnitude of the 

permeability tensor along the 𝑥-axis is 10.5 md. The 

magnitude of the viscous resistivity tensor along the 𝑥-axis is 

found by taking the reciprocal of the permeability tensor [see 

Equation (6)], 

 𝑟𝑖𝑗  (𝑥, 𝑦, 𝑧) = [
0.525 −0.475 0

−0.475 0.525 0
0 0 1

] md
−1, (19) 

hence its value along the 𝑥-axis is 0.525 md-1. All simulations 

were subjected to steady-state, isothermal, incompressible, 

Darcian flow in the absence of a gravitational field 

(𝑔 = 0 cm/s2), thus, Φ = 𝑝. Core porosity was 10%, and the 

fluid viscosity and density were made to be 1 cp and 1 g/cm3, 

respectively. A pressure difference of 1 atm was used 
(𝑝i = 2 atm; 𝑝o = 1 atm). 

 

 

 

 

 

 

 

 

 

 

 

 

A 

 

B 

 

C 

 
Figure 2. (A) Illustration of a generic cylindrical core and its 

permeability tensor 𝑘𝑖𝑗  – geometrically represented as an ellipsoid – 

initially coordinate-axis-aligned. (B) The permeability tensor 

(ellipsoid) is rotated +45 degrees about the z-axis. (C) View of the 

core and representation ellipsoid in the x-y plane. The green arrows 

(both originating from the origin) represent the maximum principal 

permeability, 𝑘𝑥𝑥
′ = 20 md, which when represented geometrically 

in the ellipsoid have a magnitude (length) equal to 1/√𝑘𝑥𝑥
′ =

1/√20 md
−1/2

. Likewise, the blue and red arrows represent 

respectively the intermediate and minimum principal permeabilities. 

See [3], pp.16-19, 26-27, for details. 
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4 Simulation Results 

I. Should the cylindrical surface of the thin-disc 

testing (for measuring permeability) be sealed by 

an impermeable barrier or not? 

To address this question several simulations were conducted 

in which the outer cylindrical surface of the core was made to 

be either a no-flow boundary (“sealed”) or an open-flow 

boundary (“not sealed”). Two-dimensional illustrations of 

these scenarios are given in Figure 3 and example simulation 

results are given in Figure 4. Further, for a given core length 

(i.e., thickness), the core diameter was varied to understand 

how the results change as a function of diameter-to-length 

ratio. From the simulations the volumetric flow rate 𝑄 that 

exits the outlet planar face of the core, denoted as 𝑄o, is 

obtained. With this value the apparent directional 

permeability is calculated as 

 𝑘𝑎 = 𝑄o𝜇𝐿/(AΔ𝑝𝑥). (20) 

Δ𝑝𝑥 is the pressure difference between the inlet and outlet 

planar faces of the core, i.e., the pressure change that occurs 

along the 𝑥-axis (denoted and calculated as Δ𝑝𝑥 = 𝑝𝑥𝑖 −
𝑝𝑥𝑜). 𝐴 = 𝜋𝐷2/4 is the bulk cross-sectional area of the planar 

face of the core. The “measured” apparent directional 

permeabilities calculated through Equation (20) are 

compared to the known (“actual”) directional permeability 

value of 10.5 md in terms of relative percentage error, 

calculated as 

 Relative Error (%) =
100(Meas. − Act.)

Act.
 (21) 

The results of the simulations, in terms of relative 

percentage error in permeability, are plotted in Figure 5. The 

following observations are made from Figure 5: 

1. For both testing boundary conditions the 𝑘𝑎 values 

measured were always less than the actual 

permeability value, 𝑘𝑥𝑥. 

2. For a given core diameter-to-length ratio the 𝑘𝑎 

values measured for the non-sealed testing boundary 

condition was always less than the 𝑘𝑎 values 

measured for the sealed testing boundary condition. 

3. The 𝑘𝑎 values converge towards the actual 𝑘𝑥𝑥 value 

when the diameter-to-length ratio was increased. 

Considering observation number 2, the reason for the non-

sealed scenario to have a relatively larger, negative, error is 

due to the cross-sectional area assumed and used in the 

measured permeability value. As qualitatively illustrated in 

Figure 6, the area 𝐴 assumed and used in Equation (20) is 

larger than the actual area perpendicular (𝐴⊥) to the intended 

pressure gradient vector, thus making the denominator of 

Equation (20) large and the calculated 𝑘𝑎 small. Further, there 

is fluid flux through the area bordered between 𝐴⊥ and 𝐴 that 

is being captured for 𝑄o. However, most of the unit volume 

of fluid from which this flux originates at the inlet-face 

bordered between 𝐴⊥ and 𝐴 is exiting the core through the 

cylindrical surface, thus the value of 𝑄o is relatively small 

(relative to the inlet volumetric flow rate 𝑄𝑖). This, in turn, 

makes the numerator of Equation (20) small and the 

calculated 𝑘𝑎 small. As the diameter of the core increases, the 

ratios 𝐴⊥/𝐴 and 𝑄o/𝑄𝑖  tend toward 1, and 𝑘𝑎 tends towards 

𝑘𝑥𝑥 as seen by the relative error tending towards zero in 

Figure 5. Based on these results it is recommended that the 

cylindrical surface of the thin disc be sealed by an 

impermeable barrier when measuring its permeability. 

 

A B 

  

 

Figure 3. Two-dimensional illustrations of flow boundary 

conditions for thin-disc permeability measurement, where (A) a no-

flow boundary is imposed on the cylindrical surface and (B) an 

open-flow boundary condition is imposed on the cylindrical surface. 
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Figure 4. Example thin-disc permeability simulation results for 

cylindrical boundary sealed (left) and not sealed (right). 

 

 
Figure 5. Permeability measurement error for thin-disc simulations 

with and without core cylindrical boundary sealed. 

 

 
Figure 6. Pressure contours for a thin-disc permeability 

measurement without the core cylindrical boundary sealed. 

 

II. How do the potential contours and specific 

discharge vector field change as a function of 

sample dimension? 

To address this question several simulations were conducted 

with cores having varying 𝐷/𝐿 ratios and their cylindrical 

boundary sealed. Figure 7 gives the pressure contours and 

specific discharge vector fields for cores of varying 𝐷/𝐿 

ratios, from 10 to 1. The upper row in the figure are the 

pressure contours within the core (red = 2 atm, blue = 1 atm). 

In the row beneath are the corresponding specific discharge 

vector fields. 

 

D/L Ratio 

10 4 2 1.33 1 

     

     
Figure 7. Potential contours and flow velocity fields for cores of 

varying 𝐷/𝐿 ratios, from 10 to 1. 

 

As the core 𝐷/𝐿 ratio is decreased from 10 to 4 the area 

perpendicular to the prescribed pressure gradient vector 

decreases. Decreasing the core 𝐷/𝐿 ratio below 4, towards a 

ratio of 1, the pressure gradient vector field is distorted; the 

pressure gradient varies in space, a consequence of 

overlapping regions affected by the cylindrical edge and 

planar end effect. For a core geometry of 𝐷/𝐿 < 0.5, the 

pressure gradient vector field is constant throughout the core 

(neglecting planar end effects) as seen in Figure 8. 
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𝐷/𝐿 Pressure Contours and Flow Velocity Vector Field 

0.5  

 

0.25  

 

0.1  

 
Figure 8. Potential contours and flow velocity fields for cores of 

varying D/L ratios, from 0. 5 to 0.1. 

 

The above results show what has been noted by [23]: the 

specific discharge vectors are not constant inside the 

anisotropic sample, and they are systematically oriented in a 

direction imposed by the principal direction of anisotropy. 

Similarly, the potential gradient vectors inside an anisotropic 

sample vary in space. These specific discharge and potential 

gradient vectors are macroscopic variables — they are pore-

volume averages over the porous medium’s representative 

elemental volume (REV). What is measured in experiment 

are the 𝑥1-direction components of the averaged specific 

discharge and the averaged potential gradient vectors over the 

entire sample, and it is these values that are used in Darcy’s 

law to calculate 𝑘𝑎. For these situations where 𝐷/𝐿 < 0.5, the 

components of the sample-averaged pressure gradient vector 

can be determined through Equation (8) given that the 

variables 𝜇, 𝑟𝑖𝑗 , and Δ𝑝𝑥/𝐿 are known. The components of the 

pressure gradient vector are solved for in two steps: 1) Solve 

for 𝑞1: 𝑞1 = (−𝜕Φ/𝜕𝑥1)/(𝜇𝑟11); where (−𝜕Φ/𝜕𝑥1) ≈
Δ𝑝𝑥/𝐿. 2) Solve for the other two components of the pressure 

gradient vector through Equation (8) using the known values 

of 𝑟21 and 𝑟31. The angle 𝜃 at which the pressure gradient 

vector is oriented in the x-y plane can be computed using 

 𝜃 = tan−1 (
−𝜕Φ/𝜕𝑥2

−𝜕Φ/𝜕𝑥1

) = tan−1 (
𝑟21

𝑟11

). (22) 

For the three scenarios given above, for 𝐷/𝐿 = 0.5, 0.25, and 

0.1, 𝜃 ≅ −42.138° (Figure 9). 

 

 
Figure 9. Illustration of the (negative) pressure gradient vector 

− ∂𝑝/𝜕𝑥𝑖 and its orientation angle with the x-axis for the cores 

simulated having 𝐷/𝐿 ratios less than 0.5 and their cylindrical 

boundary sealed. 

 

III. What dimensions does the sample need to have to 

yield 𝑘 with a certain desired accuracy or, more 

generally, what is the relation between the geometry 

of a cylindrical sample, expressed by the 𝐷/𝐿 ratio, 

and the apparent permeability 𝑘𝑎 for a given 

anisotropy 𝑘𝑖𝑗 and orientation 𝑢𝑖? How about for 

viscous resistivity 𝑟? 

In the previous section the change in the fluid potential 

contours and specific discharge vector field as a function of 

core geometry was examined. In this section we look to see 

how the apparent permeability and apparent viscous 

resistivity values change as a function of core geometry for 

these same simulations. The simulated volumetric flow rates 

were used to calculate the apparent directional permeability 

using Equation (20) and the apparent directional viscous 

resistivity, calculated as 

 𝑟𝑎 = AΔ𝑝𝑥/(𝑄o𝜇𝐿). (23) 

The calculated 𝑘𝑎 and 𝑟𝑎 values are plotted on a semi-log 

scale in Figure 10. A five-parameter logistic (5PL) function 

[24], Equation (24), was fitted to the calculated 𝑘𝑎 and 𝑟𝑎 data 

and plotted in Figure 10 as dashed curves.  

𝑦 = 𝑑 +
(𝑎 − 𝑑)

(1 + (𝑥/𝑐)𝑏)𝑔
. (24) 

The parameter values that define these curves are given in 

Table 1. 

 

 
Figure 10. 𝑘𝑎 and 𝑟𝑎 as a function of core D/L ratio for 𝑘𝑖𝑗  as defined 

in Equation (18). 
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Table 1. 5PL parameters for 𝑘𝑎 and 𝑟𝑎. 

5PL Curve Fit 

Parameter 𝑘𝑎 𝑟𝑎 

𝑎 2.16 0.49 

𝑏 2.52 1.60 

𝑐 1.18 1.46 

𝑑 10.28 0.10 

𝑔 0.54 2.30 

 

In Equation (24) 𝑦 is the dependent variable (in this case 

either 𝑘𝑎 or 𝑟𝑎), and 𝑥 is the independent variable (in this case 

𝐷/𝐿). The parameter 𝑎 is the asymptotic value obtained as 𝑥 

tends towards zero. The parameter 𝑑 is the asymptotic value 

obtained as 𝑥 tends towards infinity. See [24] for a detailed 

description of the roles played by parameters 𝑏, 𝑐, and 𝑔. 

The 𝑘𝑎 data plotted in Figure 10, whether plotted on a 

linear-linear, linear-log, or log-log plot, is sigmoidal in shape, 

monotonically increasing as the core 𝐷/𝐿 ratio is increased. 

As indicated by the asymptote parameter 𝑑 fitted to the 𝑘𝑎 

data, the best one could do according to the 5PL model fit is 

measure a permeability value within -2.01% [Equation (21)] 

of the true 𝑘𝑥𝑥 value (10.5 md). (The magnitude of this 

relative error is specific for this permeability tensor’s 

principal values and orientations with respect to the core and 

core shape (right-circular cylinder)). The inability to measure 

the true 𝑘𝑥𝑥 value is due to the edge-effect. In principle, one 

could eliminate the edge-effect and measure the true 𝑘𝑥𝑥 

value by shaping the cylindrical thin-disc into a rectangular 

flat-plate and then shaping the edges of the plate to be parallel 

to the direction taken by 𝑞𝑖 at the center of the plate [3] 

(pp.197-200). 

As indicated by the asymptote parameter 𝑎 fitted to the 𝑘𝑎 

data, a value as low as 2.16 md could be measured, a -79.4% 

relative error. Just as the 𝑘𝑎 value approaches 𝑘𝑥𝑥 as the core 

𝐷/𝐿 ratio approaches infinity, the 𝑘𝑎 value obtained as the 

core 𝐷/𝐿 ratio approaches zero is an approximation of the 

reciprocal of the true resistivity value 𝑟𝑥𝑥 = 0.525 md
−1

, 

which is 1/𝑟𝑥𝑥 = 1.905 md. This result is in accordance with 

Equation (12). 

For the two-dimensional case, using the method of 

conformal mapping, Marcus [7] solved the problem of 

determining 𝑘𝑎 for any condition of 𝐷/𝐿 ratio and 𝑘𝑖𝑗. 

Marcus [7] provides the exact solution in the form of 

equations and graphs. An approximate solution for 𝑘𝑎 for the 

more general three-dimensional case is given by [25], 

 𝑘𝑎 = √
𝑘𝑖𝑗𝑢𝑖𝑢𝑗

𝑟𝑘𝑙𝑢𝑘𝑢𝑙

[
1 + √𝑘𝑖𝑗𝑢𝑖𝑢𝑗𝑟𝑘𝑙𝑢𝑘𝑢𝑙(𝐷/𝐿)

√𝑘𝑖𝑗𝑢𝑖𝑢𝑗𝑟𝑘𝑙𝑢𝑘𝑢𝑙 + (𝐷/𝐿)
], (25) 

and the general approximate solution for 𝑟𝑎 is given here, 

 𝑟𝑎 = √
𝑟𝑘𝑙𝑢𝑘𝑢𝑙

𝑘𝑖𝑗𝑢𝑖𝑢𝑗

[
√𝑘𝑖𝑗𝑢𝑖𝑢𝑗𝑟𝑘𝑙𝑢𝑘𝑢𝑙 + (𝐷/𝐿)

1 + √𝑘𝑖𝑗𝑢𝑖𝑢𝑗𝑟𝑘𝑙𝑢𝑘𝑢𝑙(𝐷/𝐿)
]. (26) 

Values for 𝑘𝑎 and 𝑟𝑎 using these approximate solutions are 

calculated for the simulation scenarios and plotted in Figure 

10 for comparison. As seen, they agree quite well. 

Equation (25) shows that 𝑘𝑎 is a function of 𝑘𝑖𝑗 (and 

inextricably 𝑟𝑖𝑗), 𝑢𝑖 , 𝐷, and 𝐿. The simulation results given 

here is for a specific 𝑘𝑖𝑗 and 𝑢𝑖, where 𝑢𝑖 was defined by 𝛼 

due to the symmetry of the system. Values of 𝑘𝑎 for a broader 

range of values of 𝑘𝑖𝑗 , 𝑢𝑖 , 𝐷, and 𝐿 are given in [7, 26, 23], 

which are presented below in Figures 12, 13, and 14, with the 

approximate solution of [25], Equation (25), superimposed 

for comparison. In these figures the apparent permeability is 

normalized to the maximum principal permeability 𝑘1 as a 

function of the dimensionless parameters 𝐷/𝐿, 𝑘1/𝑘2, and 𝛼 

(or their variants 𝐿/𝐷 and 𝑘2/𝑘1). 

 

 
Figure 11. Relation between 𝑘𝑎/𝑘1 and 𝐷/𝐿 for 𝑘2/𝑘1 = 0.10 as a 

function of 𝛼 (modified and sourced from [7]). 

 

 
Figure 12. Relation between 𝑘𝑎/𝑘1 and 𝐿/𝐷. Triangles correspond 

to 𝑘2/𝑘1 = 0.6, 𝛼 = 60°; squares to 𝑘2/𝑘1 = 0.3, 𝛼 = 45°; and 

circles to 𝑘2/𝑘1 = 0.1, 𝛼 = 45° (modified and sourced from [26]). 
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Figure 13. Relation between 𝑘𝑎/𝑘1, 𝛼, and 𝑘1/𝑘2 for three different 

𝐷/𝐿 ratios: 10 (top), 1 (middle), and 0.1 (bottom) (modified and 

sourced from [23]). 

 

The accuracy of Equation (25) (and (26)) is measured by the 

discrepancy between the value it provides, and the values 

determined through simulation. The data of [7] are from 

physical simulation using an electrical analog. As noted by 

[26], there is uncertainty in their experimentally measured 

values due to the principal permeability directions were not 

measured directly but inferred. The data of [26] and [23] were 

derived from numerical simulation, whose accuracy will be a 

function of iterative convergence error, discretization error, 

and computer round-off errors. As seen in Figure 13, for 

𝑘1/𝑘2 ≤ 33, 0.1 ≤ 𝐷/𝐿 ≤ 10, and 0° ≤ 𝛼 ≤ 90°, equation 

(25) compared quite well, and reasonably well for 𝑘1/𝑘2 =
100. In the author’s line of work [5], the largest degree of 3D 

anisotropy measured to date is 𝑘𝑚𝑎𝑥/𝑘𝑚𝑖𝑛 = 81.6 (Figure 

14) , and thus equations (25) and (26) will prove to be useful 

in evaluating the accuracy of experimentally measured 𝑘𝑖𝑗 

and 𝑟𝑖𝑗 , respectively. (A description of the experiment and 

analysis to derive the 3D viscous resistivity and permeability 

tensors shown in Figure 14 is given in a separate paper. See 

Appendix for a brief description.) 

 

A 

 

𝑟𝑖𝑗(𝑥, 𝑦, 𝑧) = [
1.07 −0.20 −0.12

−0.20 0.06 0.01
−0.12 0.01 0.05

] md
−1

 

𝑟𝑖𝑗
′ (𝑥′, 𝑦′, 𝑧′) = [

1.12 0 0
0 0.05 0
0 0 0.014

] md
−1

 

B 

 

𝑘𝑖𝑗(𝑥, 𝑦, 𝑧) = [
4 13 6

13 62 17
6 17 29

] md 

𝑘𝑖𝑗
′ (𝑥′, 𝑦′, 𝑧′) = [

0.09 0 0
0 21.5 0
0 0 72.7

] md 

Figure 14. A) Experimentally measured directional viscous 

resistivity values (red points), best-fit viscous resistivity tensor 𝑟𝑖𝑗 to 

the measured values -- geometrically represented as an ellipsoid, and 

principal viscous resistivity values and axes (arrows). B) 

Permeability tensor 𝑘𝑖𝑗  derived from the viscous resistivity 

measurements. Note, to maintain parity the viscous resistivity 

principals are listed as 𝑟1 > 𝑟2 > 𝑟3 and therefore the permeability 

principals are listed as 𝑘1 < 𝑘2 < 𝑘3. 

5 Summary 

Darcy’s law is considered the fundamental law of fluid 

motion in porous media. The relationships embodied in 

Darcy’s law form the necessary basis upon which any 

analytical theory of fluid motion through porous media must 

rest [27] (p.792). Darcy’s law defines permeability, the basic 
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flow property of a porous medium, and is “probably the most 

important single physical property of oil and gas sands” 

(George Fancher in [28]). Darcy’s law is meaningless unless 

the numerical values of the permeability coefficients 

appearing in it can be determined [4] (p.148). Permeability is 

a parameter of ignorance, and in practice must be deduced 

from actual experiments [4] (p.25). In this paper the 

mathematical theory and physical underpinnings of a 

permeability experiment have been explored. 

It is shown that in the general and likely case of an 

anisotropic medium that is to be measured, and the 

measurement orientation is not along one of the principals, a 

sample with a 𝐷/𝐿 ratio ≫ 1 is to be used if permeability is 

to be measured; and 𝐷/𝐿 ≪ 1 if viscous resistivity is to be 

measured. Since permeability and viscous resistivity are 

second-rank tensors, the values measured in experiment are 

apparent scalar directional values. This means that for a 

permeability experiment, which is measured using the “thin 

disc” geometry with the cylindrical surface sealed, an 

apparent permeability in the direction of the potential 

gradient is measured. The value is labelled “apparent” 

because the directional permeability is only approximately in 

the direction of the sample-averaged potential gradient 

vector, which is due to end/edge-effects caused by the 

sample’s right-circular cylindrical shape and imposed 

boundary conditions. The degree to which the apparent value 

for the measured directional permeability 𝑘𝑎 (or viscous 

resistivity 𝑟𝑎) differs from the true value is a function of 

𝑘𝑖𝑗 , 𝑟𝑖𝑗 , 𝑢𝑖 , 𝐷, and 𝐿. This relationship has been explored and 

approximate analytical solutions for 𝑘𝑎 and 𝑟𝑎 as function of 

𝑘𝑖𝑗 , 𝑟𝑖𝑗 , 𝑢𝑖 , 𝐷, and 𝐿 have been provided, which can be used to 

guide choice of experimental setup, “thin-disc” or “long rod”, 

and to approximate measurement accuracy (in addition to 

standard measurement error analysis). It is noted that 

end/edge-effects may be eliminated, in principle, if the 

samples are shaped as described in [3] (pp.199-200). 

The term “permeability” is defined by Darcy’s law, which 

refers to the magnitude of the fluid potential gradient vector 

and the component of the specific discharge vector collinear 

with it. Therefore, the unit of permeability is defined by 

Darcy’s law: a material has a directional permeability of one 

darcy if through a face of one square centimeter, which is 

normal to the direction of the potential gradient, one cubic 

centimeter per second of fluid having viscosity one centipoise 

is caused to flow by a potential gradient of one atmosphere 

per centimeter. 

For experiments employing “long rod”-like sample 

dimensions (𝐷/𝐿~0.5), such as those used by Darcy and as 

recommended in recent literature [18, 19, 10], values for 

apparent viscous resistivity in the direction of flow should be 

measured. As shown, the smaller the 𝐷/𝐿 ratio is the more 

accurate the 𝑟𝑎 value is to the true 𝑟𝑞 . In the general case 

where the orientations of principal permeabilities for the 

sample being measured are not known, one should not try to 

directly determine values for 𝑘𝑖𝑗 when using the “long rod” 

experiment (𝐷/𝐿 ≪ 1). Instead, measure six or more values 

of 𝑟𝑎 (see Appendix), determine values for 𝑟𝑖𝑗  and either use 

these values in the viscous resistivity form of Darcy’s law, or 

determine 𝑘𝑖𝑗 by taking the reciprocal of 𝑟𝑖𝑗  and using these 

𝑘𝑖𝑗 in the permeability form of Darcy’s law. Example results 

of this procedure has been shown, where the three-

dimensional resistivity tensor was measured from several 𝑟𝑎 

measurements, from which the three-dimensional 

permeability tensor was determined. 

Nomenclature 

The text is written in an indicial notation whereby quantities 

with a single index represents components of vectors, and 

quantities with two subscripts are components of second rank 

tensors. Letter indices 𝑖, 𝑗, etc., stand collectively for the 

integer number subscripts 1, 2, or 3. Indices 1, 2, 3, 

correspond respectively to Cartesian coordinate system axes 

𝑥, 𝑦, 𝑧. Einstein summation convention is used. Where the 

context prevents confusion with a scalar, the magnitude of a 

vector 𝑎𝑖 or tensor 𝑆𝑖𝑗  quantity is denoted by non-indexed 

variable, e.g., 𝑎 and 𝑆, respectively. Where the context 

prevents confusion with a vector, principal values of second-

rank tensors are designated with a single subscript, e.g., 

𝑆1, 𝑆2, and 𝑆3, with the convention, 𝑆1 ≥ 𝑆2 ≥ 𝑆3. 

 

𝑎𝑖 = flux or effect vector 

𝐴 = bulk cross-sectional area of the planar face of the 

cylindrical core, 𝐿2 

𝐴⊥ = actual bulk cross-sectional area perpendicular to the 

intended pressure gradient vector as illustrated in Figure 6, 𝐿2 

𝑏𝑖 = force or gradient or cause vector 

c = trigonometric function cosine 

𝐷 = diameter, 𝐿 

𝑔 = acceleration due to gravity, 𝐿𝑇−2 

ℎ = hydraulic head or piezometric head, defined as 
𝑝

𝜌𝑔
+ 𝑧, 𝐿 

𝐽𝑖 = hydraulic gradient vector, defined as −𝜕ℎ/𝜕𝑥𝑖, 

dimensionless 

𝑘𝑖𝑗 , 𝑘 = permeability, 𝐿2 

𝐾𝑖𝑗 , 𝐾 = hydraulic conductivity, 𝐿𝑇−1 

𝑘𝑎 = the apparent directional permeability of a finite-

dimensioned sample in the 𝑢𝑖 direction measured using a 

conventional axial permeameter, 𝐿2 

𝑘Φ = permeability in the direction of the fluid potential 

gradient, 𝐿2 

𝑘𝑞 = permeability in the direction of flow, 𝐿2 

𝑚𝑖 = unit vector in the direction of the specific discharge 

vector 

𝑛𝑖 = unit vector in the direction of the negative of the 

potential gradient vector 

𝐿 = length, 𝐿 

𝑝 = fluid pressure, 𝑀𝐿−1𝑇−2 

𝑝𝑖 , 𝑝𝑜 = core inlet and outlet fluid pressures, respectively, 

𝑀𝐿−1𝑇−2 

Δ𝑝𝑥 = the fluid pressure difference between the inlet and 

outlet planar faces of the core, 𝑀𝐿−1𝑇−2 

𝑞𝑖 = specific discharge vector (volumetric flux), 𝐿𝑇−1 

𝑄 = volumetric flow rate, 𝐿3𝑇−1 

𝑄𝑖 , 𝑄𝑜 = volumetric flow rate that passes through the inlet 

and outlet planar faces of the core, respectively, 𝐿3𝑇−1 

𝑟𝑖𝑗 , 𝑟 = viscous resistivity, 𝐿−2 

𝑟𝑎 = the apparent directional viscous resistivity of a finite-

dimensioned sample in the 𝑢𝑖 direction measured using a 

conventional axial permeameter, 𝐿−2 

𝑟𝑞 = viscous resistivity in the direction of flow, 𝐿−2 
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𝑅𝑖𝑗 , 𝑅 = hydraulic resistivity, 𝐿−1𝑇 

𝑅𝑖𝑗 = rotation matrix 

s = trigonometric function sine 

𝑆𝑖𝑗 = symmetrical second-rank tensor 

𝑢𝑖 = unit vector in the specific direction for which the 

magnitude of a second-rank tensor is sought. 

𝑥𝑖 = general Cartesian coordinate, or component, final 

position vector, (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧). 

𝑥𝑖 = right-handed Cartesian coordinate system axes, 𝑥1 ≡
𝑥, 𝑥2 ≡ 𝑦, 𝑥3 ≡ 𝑧. The 𝑧-axis is vertical and positive upward, 

and colinear with gravitational acceleration vector 

𝑔𝑖  (0, 0, 𝑔). 

𝑥𝑖
′ = right-handed Cartesian coordinate system axes aligned 

with the principal axes of the tensor. The axes 𝑥𝑖 and 𝑥𝑖 ′ have 

the same origin. 

𝑧 = elevation of the point at which the piezometric head is 

being considered in reference to some datum level, 𝐿 

𝛼 = angle between the maximum principal permeability axis 

and the core’s symmetry axis, dimensionless 

𝜃 = angle, dimensionless 

𝜃, 𝜙, 𝜓 = rotation angles as used in Equation (16), 

dimensionless 

𝜇 = dynamic viscosity, 𝑀𝐿−1𝑇−1 

𝜌 = volumetric mass density, 𝑀𝐿−3 

Φ = fluid potential, defined as 𝑝 + 𝜌𝑔𝑧, 𝑀𝐿−1𝑇−2 
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Appendix 

The 3D symmetric viscous resistivity tensor 𝑟𝑖𝑗  contains nine 

components, six of which are independent. To retrieve these 

six components, one needs at least six independent directional 

viscous resistivity measurements in independent directions. 

A regression analysis to these measurements is then 

performed to determine the values of 𝑟𝑖𝑗 . It is more accurate 

to measure more than six independent apparent directional 

viscous resistivities and combine these observations to give 

the best value of 𝑟𝑖𝑗 . The same can be said for the 3D 

symmetric permeability tensor 𝑘𝑖𝑗, where six or more 

independent directional permeability measurements are 

required to be analyzed. Since the symmetric 𝑟𝑖𝑗  and 𝑘𝑖𝑗 

tensors are reciprocals of each other, the experimentation for- 

and determination of- only one tensor is required, and the 

other tensor can be found immediately by computing its 

reciprocal (matrix inverse). The accuracy of the six tensor 

components determined will be a function of the accuracy of 

directional measurements. The accuracy of the individual 

apparent directional permeability measurements increases as 

the 𝐷/𝐿  ratio of the samples is increased. The accuracy of 

the individual apparent directional viscous resistivity 

measurements increases as the 𝐷/𝐿  ratio of the samples is 

decreased. 


