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Abstract. Surface roughness is a scale-dependent property and it is defined and characterized at different length 

scales depending on the application. When simulating nuclear magnetization decay in digital rocks, the irregular 

pore geometry, acting as the visible “roughness”, accelerates surface relaxation and shortens T2 relaxation time. To 

accurately characterize pore structures from NMR T2 responses, the surface roughness effect must be considered; 

on top of that, it is necessary to characterize and quantify surface roughness. In this study, an innovative pore surface 

roughness characterization workflow is proposed to directly characterize 3D surface roughness from segmented μ-

CT images. A two-level pore separation algorithm divides the connected pore structure into separated pore bodies 

to ease the surface reconstruction step. The pore surface is reconstructed by the combination of spherical 

parameterization and spherical harmonic (SH) expansion, producing a set of SH coefficients, which are then used 

to build the reference surface. We then define the local roughness at each vertex of the reference surface, and a 3D 

surface roughness coefficient is calculated by weighted averaging of all the local roughness over the reference 

surface. Numerical results show that the combination of spherical parameterization and SH expansion provides a 

technologically feasible approach to characterize the surface roughness of pore structures in 3D space.  

1. Introduction  

Surface roughness is a persistent challenge in the petroleum 

industry that may significantly influence the determination of 

reservoir rock properties such as pore sizes and contact angles 

[1, 2]. As one of the NMR logging measurements, T2 

relaxation times are correlated with the pore structure within 

the fast diffusion regime [3]. When interpreting pore sizes 

from NMR T2 responses, the analytical solution assumes 

idealized pore shapes with smooth surfaces [4]. Under this 

circumstance, the surface relaxivity becomes an adjustable 

parameter to characterize pore sizes, which shows its own 

drawback in reliably calculating pore size distributions [5]. 

Moreover, this treatment overlooks the effect of irregular 

pore shapes and surface roughness on NMR T2 relaxation; as 

a result, pore sizes are often underestimated [2, 6, 7, 8]. To 

correctly characterize pore structures from T2 relaxation 

times, it is necessary to account for these geometry effects. 

This requires practical methods to accurately characterize 

pore shape irregularity and surface roughness in 3D space.  

Typically, surface roughness is measured in the laboratory 

using sophisticated microscopes, such as atomic force 

microscopy and laser scanner confocal microscopy [2, 6]. 

These instruments measure surface roughness on a cross-

section plane of the rock sample, producing high-precision 

measurements after filtering out the pore-shape/pore-size 

effect. However, these methods are restrictive to 2D planar 

regions and cannot characterize the 3D surface roughness. 

Micro-computed tomography (μ-CT) is a 3D imaging 

technique to digitize rock core plugs into greyscale image. 

The produced greyscale data, after proper image 

segmentation, have been used to numerically investigate the 

pore structure of digital rock by simulating NMR T2 

relaxation [9, 10]. Since the length scale of surface roughness 

is much smaller than the image resolution, μ-CT images 

cannot resolve the actual surface roughness. However, the 

irregular pore geometry, which is removed from laboratory 

measurements, now plays a critical role in accelerating 

surface relaxation and shortening T2 relaxation time [7, 8]. 

From the macroscopic point of view, the irregularity of pore 

shapes acts as the “surface roughness” that is visible from 

micro-CT images. Thus, we want to seek an approach to 

effectively characterize and quantify this geometry effect for 

improving the reliability of pore structure characterization 

from NMR T2 simulation.  

It is nontrivial to directly characterize pore surface 

roughness in 3D space. To reduce the computational 

difficulty, last year Li et al. adopted a dimension reduction 

strategy to decompose a synthetic 3D pore volume into a 

plurality of 2D cross-sectional images [8]. The overall surface 

roughness was parameterized into a dimensionless number by 

weighted averaging of the pore roughness coefficients of all 

the cross-sectional images. This method only considers the 

morphological features of 2D cross sections, and it works 

under a strong assumption that the morphological features of 

2D cross-sectional images do not much differ from the 

morphological features of the 3D pore volume. This restricts  
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Fig. 1. Schematic diagram of 3D pore surface roughness characterization workflow using spherical harmonics. 

 

the application of their method to more complicated pore 

structures  

To resolve the aforementioned issues, this study develops 

an image-based workflow using spherical harmonics to 

directly characterize 3D pore surface roughness. Spherical 

harmonics are a shape descriptor particularly suited to model 

arbitrarily shaped but simply connected 3D objects [11]. It 

has been successfully applied to multiple areas, including 

computer vision [12] and medical image analysis [13, 14]. 

This class of methods creates an orthogonal basis to 

mathematically represent the 3D object surface [15]. 

Therefore, the morphology of the reconstructed surface is 

controlled by the number of spherical harmonic (SH) series. 

The reconstructed surface exhibits more surface textures with 

increasing the number of SH basis functions, while it 

preserves a general shape if only a few spherical harmonics 

are used. This characteristic enables us to calculate SH 

coefficients by fitting the pore surface and utilize a subset of 

coefficients to build the reference surface for roughness 

characterization and quantification. Inspired by this, we 

propose an innovative workflow combining spherical 

parameterization and SH expansion for direct 

characterization of 3D pore surface roughness. The proposed 

workflow includes four main steps, including image 

segmentation, pore separation and diagnosis, surface 

reconstruction, and roughness parameterization. Numerical 

results show that the combination of spherical 

parameterization and SH expansion provides a 

technologically feasible approach to characterize the surface 

roughness of pore structures in 3D space. 

2. 3D pore surface roughness characterization 

The proposed workflow includes four main steps, as shown 

in Fig. 1. The key to success is calculating proper SH basis 

functions to reproduce the pore surface. Then a subset of SH 

coefficients is then used to build the reference surface from 

which the local roughness is defined and characterized. Since 

image segmentation is not our focus in this study, we will 

detail the remaining steps of the proposed workflow in the 

following of this section.  

2.1. Image segmentation  

This step converts the grayscale μ-CT image into the binary 

volume where pore voxels are 1 and solid voxels are 0. Before 

segmentation, some preprocessing steps are conducted, 

including volume editing and calibration, image denoising, 

and subvolume extraction. The segmented image is cleaned 

by removing isolated tiny pores and solids.  

2.2. Pore separation and diagnosis 

The second step aims to divide the connected pore structures 

into a number of disconnected pore bodies to reduce the 

computational difficulty of the surface reconstruction step, as 

the entire pore space is too complicated to be modeled by any 

of the shape descriptors. In particular, watershed 

segmentation is a popular approach to segmenting individual 

objects that constitute an aggregated structure. It is 

extensively used to separate pores for pore network extraction 

and segment grains for shape analysis [16-18]. The basic idea 

behind watershed segmentation methods is to convert the 

objects of interest to catchment basins with regional 

maximum depths (equivalent to regional minimum 

numerically). However, since every regional minimum, 

regardless of how tiny and insignificant it is, forms its own 

catchment basin, this will over-segment the image data. In 

this study, we use the subnetwork of the over-segmented 

watershed (SNOW) algorithm proposed by Gostick [17] to 

reduce over-segmentation issues.  

There are two ways to complete pore separation, either 

directly separating pores or separating grains to achieve the 

same purpose. Both take almost the same computational time 

to separate the pore structures of the Berea sandstone in this 

study, but separating grains has the following shortcomings: 

• Separating gains generates more disconnected pore bodies 

than directly separating pores. For the Berea sandstone under 

study, separating grains will produce 1494 disconnected 

pores, while separating pore space generates only 520 pore 

bodies. 

• It is more likely to create pore geometries with small twigs, 

see Fig. 2 (a). This may raise a huge computational burden 

for the surface reconstruction step.  

• Some disconnected pores, marked by red circles in Fig. 2(a), 

have no actual solid-pore interfaces.  

• Furthermore, separating grains does not provide correct pore 

connectivity; however, this is the critical information we want 
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to acquire. This also motivates us to separate pores rather than 

grains.  

 

Fig. 2. Pore separation in terms of (a) grains and (b) pores. 

 

 

Fig. 3. Disconnected pore geometries of a Berea sandstone by the 

SNOW algorithm. 

Fig. 3 shows the disconnected pores generated by the 

SNOW algorithm. For illustration purposes, we randomize 

colors to label different pore bodies after separation. 

Compared to the original pore structure, the generated pore 

bodies have simpler geometry, but some of them are still 

complicated so they cannot be handled by spherical 

harmonics. In these cases, the second-level pore separation 

continues by pore skeletonization. Fig. 4 shows the skeleton 

of a disconnected pore structure by transparentizing non-

skeleton voxels. The blue and red voxels comprise the 

skeleton, with the red voxels being the nodes that connect two 

or multiple branches. We utilize the graph theory to find the 

longest path on which the connections between nodes are 

selectively broken up to generate child pore structures with 

reasonable sizes.  

 

Fig. 4. Skeletonization of disconnected pore geometry, with non-

skeleton voxels being transparent. 

After pore separation, it is important to check whether 

each individual pore has a spherical topology. If it is not 

topologically spherical, topology fixing is then applied to 

repair small vacancies or disconnectivities on the pore 

surface. This is the prerequisite of spherical parameterization; 

otherwise the mesh smoothing process fails to continue so 

that incorrect SH coefficients are calculated. In addition, 

converting the voxelized pore geometry to triangular surface 

mesh is found to mildly improve the accuracy, efficiency, and 

robustness of the surface reconstruction step. Thus, all 

voxelized pores are converted to surface mesh using 

iso2mesh [19].  

2.3. Pore surface reconstruction  

The third step is the key to the success of the proposed 

workflow by calculating SH coefficients to reproduce the 

pore surface first. At the very beginning, spherical 

parameterization is performed to create a bijective mapping 

between mesh vertices on the pore surface ( ), ,
T

x y z  and 

mesh vertices on the unit sphere surface ( ),
T

   , the latter 

of which is used to calculate SH basis functions ( ),
m

n
Y    . 

The initial parameterization usually generates a low-quality 

mesh, which can significantly reduce the accuracy and 

efficiency of the subsequent step. Thus, the Control of Area 

and Length Distortion (CALD) algorithm, proposed by Shen 

and Makedon [20], is applied here to improve the parameter 

mesh quality. The CALD algorithm alternately conducts local 

smoothing and global smoothing: the local smoothing step 

minimizes the area distortion at a local submesh, while the 

global smoothing step attempts to equalize the area 

distortions of the entire parameter surface over the spherical 

surface.  

With spherical parameterization completed, the pore 

surface can be expressed in terms of SH basis functions 
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where  and  are the polar coordinates of vertices on the 
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and the associate Legendre function 
m

n
P  is given by 
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In the above formulations, n  is the index of the SH degree 

and N  is the maximum degree of spherical harmonics. The 

SH coefficients
m

x n
c , 

m

y n
c , and 

m

z n
c  are solved using the 

standard least squares algorithm, since the number of 

equations is often greater than the number of unknowns. Fig. 

5 (b) shows the reconstructed pore surface, represented by the 

green surface with grey lines. It captures the surface textures 

of its voxelized pore geometry, as shown in Fig. 5 (a). 

 

Fig. 5. Voxelized pore structure (a) and reconstructed pore surface 

(b)  (green surface with grey lines). The reference surface is plotted 

with a semi-transparent surface and blue lines, overlapping with the 

reconstructed surface. 

2.4. Roughness evaluation and parameterization 

In the last step, we need to create the reference surface to 

define and characterize “surface roughness”. Since the 

morphology of the reconstructed surface is controlled by the 

number of SH series, reducing the series expansion gradually 

removes the surface textures; at the end only the general pore 

shape is preserved. In this study, we set the total degree 4N =  

so that 16 spherical harmonics are used to build the reference 

surface. The local roughness is defined by the shortest 

distance from mesh vertices of the reference surface to the 

pore surface. Fig. 6 shows the distribution of local roughness 

mapped to the reference surface. The cold and warm color 

represent that the reference surface lies above and below the 

pore surface, respectively. 

 

Fig. 6. Distribution of local roughness over the reference surface. 
Eventually, the 3D surface roughness is parameterized as 

a single number by calculating the average of the local 

roughness weighted by the control area of each mesh vertex 

on the reference surface, as shown by Eq. 7 
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where 
i

h  is the local surface roughness at ith vertex, ˆ
i

a is the 

controlled area of ith vertex delineated by the blue line in Fig. 

7, 
total

A is the total area of the reference surface. 

 

Fig. 7. Schematic diagram of surface roughness parameterization. 

The blue curve delineates the control area of a vertex on the 

reference surface. 

3. Numerical results 

The effectiveness of the proposed workflow is illustrated by 

characterizing 3D pore surface roughness of a Berea 

sandstone. The rock image is downloaded from the Pore-

Scale Modelling and Imaging group at Imperial College 

London. The image size is 256 256 256  with the resolution 

of 2.7745 um.  

After dividing the connected pore structures, a 

morphological opening and a hole-filling operation are 

applied to remove some surface defects caused by the first-

level pore separation. This increases the robustness of the 

surface reconstruction step at a slight compromise in 

accuracy. In this study, the maximum degree of spherical 

harmonics is fixed at 40. The maximum number of iterations 

for local and global smoothing in spherical parameterization 

is 10 and 100, respectively. 

As surface triangulation is suggested as the input rather 

than voxelized pore geometry to the surface reconstruction 

(a) (b)
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step, we first investigate their influence on the performance 

of surface reconstruction. Compared to the mildly smoothed 

triangular mesh, the voxelized pore geometry has many 

angular corners that affects the calculation of SH coefficients 

to reproduce the pore surface.  Fig. 8 shows an example of (a) 

voxelized pore geometry, (b) reconstructed surface based on 

(a), and (c) reconstructed surface from a mildly smoothed 

surface mesh. As shown in Fig. 8 (b), with voxelized pores as 

input, spherical harmonics attempt to reproduce the sharp 

corners, resulting into a poor-quality surface mesh. From the 

perspective of computational efficiency, this example 

(around 17000 pore voxels) does not show a distinct 

difference either using voxelized or mesh data as input. 

However, as the pore size becomes larger, the number of 

vertices and faces of voxelized pore geometry increases a lot. 

This means that the spherical parameterization step has to 

take more time to smooth the mesh of parameter surface and 

the spherical harmonic expansion has to solve a larger linear 

system. Through our numerical tests, reconstructing a pore 

geometry with more than 45000 pore voxels doubles the 

computational time of surface reconstruction using triangular 

surface mesh. 

 

Fig. 8. Comparison of voxelized pore structure (a) with 

reconstructed surfaces by voxelized pore geometry (b) and 

triangular surface mesh (c). 
Then a robustness test is conducted to examine whether 

the proposed approach works for elongated or plate-like 

pores. A few plate-like pores are separated from the Berea 

sandstone, and none of elongated pores is found. Fig. 9 (a) 

shows a plate-like pore, with flatness and elongation being 

0.5722 and 0.1192, calculated using the formulation proposed 

by Angelidakis et al [21]. We calculate the relative errors of 

volume enclosed by the reconstructed surface, surface area, 

and shape factor, with respect to corresponding values of the 

surface triangulation, to quantify the accuracy of the pore 

surface reconstruction. The relative errors of volume, area 

and shape are 0.6012, 0.5246 and 0.3711 respectively, 

indicating the proposed approach enable to handle plate-like 

or elongated pores without computational difficulty.    

 

Fig. 9. Illustration of a plate-like pore: (a) voxelized geometry, (b) 

surface triangulation, and (c) reconstructed pore surface. The 

flatness and elongation are 0.5722 and 0.1192, respectively. 

Fig. 10, Fig. 11, and Fig. 12 show surface roughness 

characterization for three separated pores. From top to 

bottom, three voxelized pore structures exhibit visually 

increasing surface roughness. The last column of Fig. 10 to 

Fig. 12 shows the distribution of local roughness calculated 

from Eq. 7. However, not all of the measurements contribute 

to the surface roughness evaluation, since some vertices are 

on dummy surfaces (“skin”) that do not belong to the solid-

pore interface, as shown in Fig. 13 (a). To improve the 

accuracy of surface roughness estimates, we first iterate mesh 

vertices on the reference surface and check if any vertex is on 

the skin or if its normal vector passes through the skin. These 

vertices, shown as red dots in Fig. 13 (b), will be removed 

from surface roughness parameterization. After calibration, 

the surface roughness coefficients from Fig. 10 to Fig. 12 are 

0.5852, 1.5396, and 4.2588. 

 

Fig. 10. Illustration of pore 73: (a) voxelized pore geometry, (b) pore 

(green color with grey lines) and reference surface (white color with 

blue line), and (c) local roughness distribution. 

 

Fig. 11. Illustration of pore 56: (a) voxelized pore geometry, (b) pore 

and reference surface, and (c) local roughness distribution. 

 

Fig. 12. Illustration of pore 127: (a) voxelized pore geometry, (b) 

pore and reference surface, and (c) local roughness distribution. 

 

(a) (b) (c)
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Fig. 13. Determination of (a) intersection of the reference surface 

and dummy surfaces and (b) mesh vertices (marked as red dots) that 

are not involved in surface roughness parameterization. 

Fig. 14 shows the relative errors of volume, surface area, 

and shape factor of the reconstructed pore surface with 

respect to the corresponding values of input surface mesh. 

Overall, the reconstructed surface preserves high accuracy, 

which guarantees SH coefficients are properly calculated to 

create the reference surface. Fig. 15 shows the distribution of 

surface roughness coefficients of separated pore geometries 

for the Berea sandstone. More than 80% of separated pores 

have surface roughness coefficients smaller than 2. The 

average of surface roughness coefficients is around 1.4472, 

which is smaller than the average roughness reported in [2]. 

There are two reasons that can account for the difference. 

First of all, the reported results in [2] is measured from high-

resolution images. Thus, more fine-scale surface textures can 

be resolved, which will increase the surface roughness 

estimation. Second, Ma et al. [2] utilized the laser scanner 

confocal microscope to conduct high-precision surface 

roughness measurements. The measured data are processed 

by filtering out the pore-shape/pore-size effect, while in this 

study the pore-shape effect is regarded as “surface 

roughness” from the macroscopic point of view. Even though 

their measurements are the “actual” roughness (surface 

textures visible at higher resolution), these data are measured 

from a 2D cross-sectional plane of the given rock sample and 

they may not fully represent the surface roughness in 3D 

space. Overall, the proposed method provides a 

technologically feasible approach to characterize the pore 

surface roughness at the micrometer scale, which can benefits 

to accurate evaluation of pore structures from NMR T2 

relaxation simulation. 

 

 

Fig. 14. Relative errors of volume, surface area, and shape factor for 

all separated pores. 

 

Fig. 15. Distribution of surface roughness coefficients of separated 

pores from the Berea sandstone under study. 
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4. Conclusion 

This study develops an image-based workflow utilizing 

spherical harmonics to characterize pore surface roughness 

from segmented μ-CT images. To ease surface roughness 

characterization, the connected pore structures are divided 

into a plurality of disconnected pores using a two-level pore 

separation algorithm. Then use the combination of spherical 

parameterization and spherical harmonic expansion is used to 

calculate SH coefficients by fitting the surface mesh of pore 

bodies, and build the reference surface to quantify 3D pore 

surface roughness. The calculated 3D roughness coefficients 

agree with the visual inspection of pore geometries. 

Moreover, the average of calculated 3D surface roughness 

coefficients is consistent with the reported values to some 

extent. The proposed approach provides a technologically 

feasible approach to characterize 3D pore surface roughness 

characterization at the micrometer scale.  
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