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Abstract. CoreDNA is a sustainable approach to core analysis, developed to optimize the value of cores by 

increasing the quantity of high-quality data extracted while keeping the analyst footprint to a minimum. CoreDNA 

combines a suite of cost-efficient, non-destructive tests to produce a multi-disciplinary dataset, as early as possible 

in the core analysis workflow, without causing any irreparable damage to the cores. Using a fully mobile technology, 

core analysts generate continuous high-resolution logs of rock properties, immediately upon barrel-opening, prior 

to irreversible core alteration by slabbing and plugging. The same technology can be successfully mobilised on 

whole cores, all formats of legacy cores, but also plug samples and to some extent, on cuttings. Tracks ranging from 

textural and colour indices measured on the rock surface, grain size distribution statistics, elemental concentrations, 

elastic wave velocities and rock strength are generated. This data is integrated under a unique format and used as a 

roadmap to guide core analysts during more complex and expensive discipline-specific tasks such as SCAL or RMT. 

CoreDNA data is suitable to feed high-density multidisciplinary databases with input data formatted to train high-

end predictive models for geological and petrophysical descriptions using the latest developments in Machine 

Learning. The CoreDNA workflow also benefits from a unique digital core visualization platform that enables 

detailed sedimentological core descriptions based on high and ultra-high-resolution photographs of cores. It provides 

hugely important information and data on the fabric and texture of reservoir rocks, and input into the interpretive 

elements of core description such as depositional process and environment assignments. Since compositional, 

textural, structural, and diagenetic features of the rock are concisely annotated in depth-referenced ultra-high-

resolution photographs, this objective information is adequate to train instance segmentation models for the 

automatic recognition of sedimentological features over extensive core depth intervals. With an iterative, multistage 

approach to Artificial Intelligence (AI) model building and training in mind, we developed graphic tools to visualize 

and quickly perform quality checks on the automated recognition of sedimentological features such as grains, 

laminations, fractures, fossils, etc. This helps validate the accuracy of the AI algorithms and identify areas where 

further improvements can be made. We describe these functionalities in detail and use real-world examples ranging 

from reservoir characterization and optimization in hydrocarbon-bearing formations to quantitative resource 

mapping for base mineral deposit management to demonstrate how these help materialize our vision of sustainable 

core analysis. 

 

1 Introduction  

This paper is the third instalment in a series of 

publications on the combination of high-resolution core 

data and artificial intelligence at the edge of the ongoing 

elevation of core analysis standards. In the first paper of 

this series [1], we have unravelled concepts involving our 

state of the art technology for the acquisition of high-

resolution core data and how such data could be fed to 

unsupervised machine learning schemes for the 

identification of a number of facies utilising a cluster 

analysis which establishes ‘groupings’ of data points with 

similar physical, visual and elemental characteristics. In a 

second publication [2] we have shown how recent 

developments in Deep Machine Learning (DML) schemes 

could be combined in an iterative, multi-stage and cost-

conscious approach to core analysis where complex rock 

properties, which normally requires expensive testing 

protocols, are predicted by trained Artificial Intelligence 

(AI) models, fed with inexpensive high-quality data 

obtained from transdisciplinary, high-resolution, non-

destructive measurements on whole cores. 

In this present paper we focus on the tools specifically 

developed to make this iterative approach usable in the 

context of real-world applications of core analysis for the 

technical evaluation of subsurface resources, while 

keeping in mind the importance of maintaining large and 

well-groomed databases wired to streams of high-fidelity 

data, thoroughly checked for quality before being used for 

the training of performant predictive AIs. The overarching 

architecture of this work is depicted in Figure 1, in which 
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the logic of interaction between the different components 

and the underlying data links are symbolized. Examples 

of applications of this workflow to solve technical 

challenges from the extractive industry are presented in 

the later sections of this paper.  

 

 

Figure 1: CoreDNA workflow using Artificial Intelligence 

models for the prediction of grain size distribution and 

lithofacies. 

Software and tools 
This section describes the elements symbolized in Figure 

1 and their role in a systematic iterative approach 

towards the building of performant predictive AIs. 

1.1 CoreDNA data acquisition 
CoreDNA is an integrated core analysis solution 

combining transdisciplinary, high-resolution, non-

destructive measurements on whole cores, for an early yet 

objective description of cores and the rapid estimation of 

formation properties. Details on the CoreDNA data 

acquisition platform are given in [1].  

Results of these fast tests are analysed real-time and 

turned into high-resolution, continuous profiles of 

properties (petrophysical, geomechanical and 

geochemistry). 

1.2 Lithological software 
LithoLog is a software module developed with input from 

expert sedimentologists, with the goal of digitalising 

sedimentological information using standardized 

qualifiers to minimise subjectivity and inconsistency in 

the core description process, while also generating robust, 

fully quantitative sedimentological data at a scale 

normally reserved for detailed petrographic 

analysis/optical microscopy. Since its previous version 

described in [2], the software has been transformed from 

a standalone version towards a seamless integration into 

the architecture presented in Figure 1. The interfacing 

between the LithoLog and the annotation database system 

was implemented by standardizing the annotations file 

format and organizing the project folder tree.  

1.3 Labelling software 
The labelling software module is a CoreDNA data 

visualisation platform equipped with manual and AI-

assisted annotation creation and edition tools. These tools 

have been designed for the task of object segmentation in 

the high (35m/pixel) and ultra-high (1.8m/pixel) 

definition pictures that are standard components of 

CoreDNA datasets. Custom lists of user-defined labels are 

created on a per-project basis, while polygonal 

annotations are created and edited with a manual drawing 

tool (Figure 2) or with the following AI-assisted object 

segmentation tools.  

1. The AI is tasked with the segmentation of one 

single object in the whole image. This mode is 

useful for pre-processing (third-party) images of 

multiple cores before they’re fed to subsequent 

segmentation AI searching for detailed 

sedimentological features. 

2. The AI is tasked with the segmentation of one 

single object in the area delimited with the 

rectangle selection tool (Figure 3). 

3. The AI is tasked with the segmentation of as 

many objects as possible in the area delimited 

with the rectangle selection tool 

4. The AI is tasked with the segmentation of as 

many objects as possible in the entire picture. 

The labelling software module is designed with maximum 

modularity in mind, so that fit-for-purpose AIs can easily 

be selected in adequation with the segmentation task at 

hand. The modular architecture of the labelling software 

stems from the use of a specific Application Programming 

Interface (API), which sets the rules used to communicate 

via TCP between its different components:  

• A National Instrument Labview graphical user 

interface (GUI) 

• A Python-based backend server running in the 

background, waiting for orders from the GUI to 

run one of the three tools described above. 

Labels are used for the creation of compact annotation 

datasets stored in the central annotation database. Such 

datasets are suitable for the training of classification or 

segmentation AIs. Although the labelling software is 

designed to exploit the specific attributes of CoreDNA 

data (length, the project folder tree structure and its 

well/core organisation, and various user defined 

configuration files), it can also be used with third party 

image data streams. 

 

 

Figure 2: Labelling software main panel. 
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Figure 3: Example of the AI-assisted annotation creation tool. 

The Region of Interest (ROI) defined with the rectangle selection 

tool is shown in the left-hand-side while the resulting AI-assisted 

object segmentation is visible in the right-hand-side image.  

1.4 Annotation database 
The annotation database system is the main storage 

component for labelled CoreDNA data. It is designed to 

receive data from the labelling and lithological software 

modules and to treat queries from the dataset generator. 

The two aforementioned pieces of software create and add 

tags to each annotation in order to indicate their potential 

usefulness for a variety of available AI models. Being 

centimetric classification labels or pixel-wise 

segmentation polygons, both annotation types use similar 

protocols to be stored into the annotation database. This 

annotation database is a conceptual implementation of a 

central database, meaning that no conventional 

architecture was used.  

The conceptual database consists in effect in a series of 

dedicated file naming and writing conventions. The 

annotation files are stored in project subfolders in 

accordance with the pre-existing CoreDNA data storage 

files and folders structure. The annotation file queries 

issued by end-users are handled by the dataset generator 

described in the next paragraph. These annotation files are 

also accessible with any conventional file manager. 

Furthermore, annotations can easily be retrieved, 

displayed and exported together with other relevant 

CoreDNA data subsets. 

1.5 Dataset generator 
The dataset generator module is the link between the 

annotation database and the AI models that are used for 

making predictions with technical applications such as 

object detection, segmentation, and classification in high-

resolution core photographs. The purpose of the dataset 

generator is to receive and automatically process queries 

for the selection, assembly and transformation of bundles 

of annotations stored in the annotation database into 

Common Object in Context (COCO) files suitable for the 

training of user-specified AIs for specific tasks. 

The COCO dataset is one of the most popular large-scale 

labelled image datasets available for public use. It is 

widely understood by state-of-the-art neural networks and 

defines an adequate data format suitable for standard AI 

tasks. This standard dataset format is vastly supported by 

Python DML developments and was thus the best choice 

for defining the dataset generator output format. COCO 

stores data in a JSON file formatted by information, 

licenses, categories, images, and annotations. This JSON 

formatting was initially introduced for instance 

segmentation dataset but can easily be used for object 

detection, (sub-)image classification, etc. The dataset 

generator software thus sends queries to the annotation 

database system to retrieve and consolidate datasets for 

specific AI applications by generating a COCO formatted 

file. Moreover, seeing that annotated data can be created 

by multiple users throughout multiple projects and with 

various objectives in mind, this module should be capable 

of remapping the labels from any selected project 

(possibly created by multiple users) to a new custom list 

of unified annotation classes that are wanted in the final 

dataset (Figure 4). This last feature enables multi-party 

collaborations and data gathering efforts spanning 

multiple projects without having to predefine and enforce 

the use of a global list of annotations labels. 

 

Figure 4: Handling and unifying class labels in a multiple-user 

collaborative environment. 

2 AI models 

2.1 Classification 
Classification in the field of AI applied to computer vision 

refers to the task of categorizing or labelling objects or 

images into predefined classes or categories. The goal of 

classification is to train a machine learning model that can 

automatically assign the correct class label to unseen 

images based on the patterns and features it has learned 

from a training dataset [3]. 

2.2 Segmentation 
In computer science and image processing, segmentation 

refers to the process of dividing an image into meaningful 

regions or segments. This technique is used to identify and 

extract specific objects or regions of interest from an 

image. There are several standard segmentation 

techniques in the field of AI and computer vision (Figure 

5, [4]), which specificities are addressed below  
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Figure 5: Comparison of the three presented image 

segmentation method. The original image is the top left. 

Semantic segmentation 
Semantic segmentation focuses on pixel-level 

classification, where each pixel is assigned to a label 

representing the object or region it belongs to. It involves 

deep learning models, such as convolutional neural 

networks (CNNs), to extract and analyse image features 

hierarchically, capturing local patterns and context and 

using this information in order to segment images and 

assign a class to each of their pixels. In the context of core 

analysis, semantic segmentation can help with the 

automatic classification of core intervals in predefined 

lithofacies (shales, sandstone, carbonate, etc.). 

Instance segmentation 
The goal of instance segmentation is to identify and 

classify individual objects within an image, typically by 

localizing them with bounding boxes and defining their 

contours by labelling each instance separately. In the 

context of this paper, an instance segmentation AI assisted 

by DML algorithms was developed and trained for the 

task of isolating and sizing individual grains in ultra-high-

resolution photographs of core samples and cuttings from 

clastic formations. Sizing of sub-micrometre scale objects 

in these UHR photographs is made possible by the 

knowledge of scale at a pixel level. It could also be 

applied to the automatic detection of carbonate micro-

textures, as studied in [5]. The automatic detection of 

laminations, fractures, fossils, in core images add value to 

sedimentological studies by saving a significant amount 

of time while bringing consistency and accuracy in the 

analysis process, especially when dealing with large 

datasets involving multiple wells. 

Panoptic segmentation  
Panoptic segmentation extends these concepts by unifying 

instance and semantic segmentation. It aims to partition 

an image into a set of non-overlapping regions, where 

each region is associated with a specific object instance 

and labelled with a class category. The result is a pixel-

level segmentation map that distinguishes between 

different object instances and provides semantic labels for 

each region. For instance, panoptic segmentation can be 

applied to the same use-cases than semantic or instance 

segmentations techniques while having a higher level of 

detail. For example, it can be used to derive mineral maps 

from core photographs by leveraging its ability to segment 

and classify objects within an image, or to detect and 

locate multiple cores from pictures of large core trays 

containing several core pieces. 

3 Applications 

3.1 AI models for the automatic classification of 
lithofacies 

In a previous instalment in this series of papers [2], we’ve 

shown how CoreDNA data could be fed to a supervised 

machine learning algorithm using CNNs for the 

automated identification of lithofacies, the design of fit-

for-purpose plug selections and the programming of 

subsequent steps in core analysis programs. Recent 

progresses made since this first demonstrator of study 

include the automatization of this task through the 

integration of the annotation database system and the 

dataset generator software. 

3.2 Instance segmentation of individual grains 
from an oil and gas bearing formation 

In this section we describe an application of the instance 

segmentation logic described in section 2.2 to the task of 

deriving a continuous profile of percentiles from grain 

size distributions mapped with centimetre resolution in 

ultra-high-resolution photographs of core samples from a 

clastic reservoir.  

The performances of several approaches involving AI 

models were evaluated against a “ground truth” obtained 

with a different kind of method. The ground truth for the 

grain size distribution consists in the median grain size 

derived from the analysis of topography maps produced 

with a laser beam scanning the MiniSlab surface 

continuously along whole cores, with a vertical accuracy 

of 1 micron and a horizontal resolution of 20*20 microns 

This method was checked against sieve tests and gave 

positive results for grain sizes above 15m (see [1] for 

details). 

Prior to using instance segmentation techniques, we tried 

to use an end-to-end approach that performed regression 

to predict values of the 50th percentile (P50) of the grain 

size distribution from series of one centimetre wide slices 

of the original CoreDNA images. The model was trained 

using the laser topography analysis results as ground 

truth. The results of this approach are shown for a small 

dataset in Figure 6. In this case, we can see that smaller 

grain sizes predicted by the AI compare well with the 

ground truth obtained from the laser topography analysis. 

However, the difference between both methods increases 

for larger grain sizes. 
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Figure 6 : Scatter plot of performances of an end-to-end model 

predictions compared to the ground truth (calculated from 

surface roughness measurements). 

A major inconvenience with this kind of method comes 

from the absence of intermediate results. This entails a 

low explainability of the model, which in turns makes 

iterative model refinements and performance 

improvements difficult, if not limited. 

In a second attempt, we tried Mask R-CNN [6] as a proof 

of concept for the feasibility of the instance segmentation 

approach. Mask R-CNN was judged adequate for this 

task, as the flagship architecture to tackle instance 

segmentation problems while it is also quick to get 

running. With only a small dataset of 30 images and about 

9000 instances, it proved the feasibility of the 

intermediate step of segmenting the grains as an 

intermediate result. This conclusion was established on 

the comparison of AI predictions with two independent 

methods for the evaluation of grain size distributions: a 

laser topography and a Wentworth bin classification [7] 

based on a core description performed by an experienced 

sedimentologist. In Figure 7 we show the profile of the 

median of the grain size distribution derived from the 

analysis of the laser topography of the core surface, with 

a centimetre resolution. The colour scale for the data 

points shown in this plot represents the difference in m 

between the P50 estimates from the laser measurement 

and the middle value of the bins selected by the 

sedimentologist for the corresponding 1cm interval. In 

Figure 8 we show the profile of median grain sizes 

calculated for the distribution of grains segmented by the 

AI model on 1cm strips of the original UHR photographs 

of the core sample. The colour scale for the data points 

shown in this plot represents the number of grains 

segmented in the corresponding strip. In both figures the 

light blue rectangles represent the Wentworth 

classification given by the expert. 

 

Figure 7: Profile of the median grain size estimated from the 

laser topography map. The light blue rectangles represent the 

classification in Wentworth bins. 

 

Figure 8: Profile of the median grain size measured on the 

segmentation of the grain by Mask R-CNN. The light blue 

rectangles represent the classification in Wentworth bins 

Although these results can be deemed encouraging in 

view of the very small size of the training data set 

available at the time, we decided not to pursue the work 

with Mask R-CNN because of limitations of this approach 

in terms of resolution of the input images and of the 

number of segmented objects per image. The set 

requirement for the model to detect grains in a window 

spanning 1cm in length meant that the model must be able 

to handle 5300x4000 pixels. At the time of this trial, 

feeding such a large a picture to a Mask R-CNN model 
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was not feasible so we had to resort to the following 

methods in order to be able to process the data.  

Downscaling: The first method consists in downscaling 

the image so that smaller versions can be fed to the model. 

The problem with this approach is that it removes the finer 

details in the picture and tends to bias the model toward 

bigger grains (Figure 9). 

Tiling: The second method consists in splitting the image 

into smaller pieces, or tiles (Figure 10). In this case, a 

grain spanning two adjacent tiles could be missed or 
wrongly measured. This edge effect happens more 

frequently as the grains are bigger compared to the size of 

the tiles, which tends to bias the model toward smaller 

grains. Nevertheless, it can be mitigated by allowing 

adjacent tiles to overlap. 

 

Figure 9 : grain segmentation with Mask R-CNN on a 

downscaled photograph of cuttings, courtesy of Stratum 

Reservoir. 

 

Figure 10: grain segmentation with Mask R-CNN of the full 

scale picture covering the same area with four adjacent tiles of 

a picture of cuttings, courtesy of Stratum Reservoir. 

These two methods can be combined to create unbiased 

predictions for large, high-resolution images, at the cost 

of a significant increase of the prediction time. Moreover, 

their usage duplicate the number of times a region of the 

picture is processed, which is time-consuming and 

requires a post-processing algorithm to removes grains 

that have been segmented multiple times.  

Furthermore, the architecture of Mask R-CNN imposes 

the declaration of a maximum number of instances to 

segment from a given picture a-priori. Hardware 

limitations fixed this amount to 100 instances per picture 

in our case. Even though we managed to artificially 

increase the limit with the tiling explained above, we 

chose to change the interface of our model to get rid of 

this limitation.  

In a third and latest approach, we used the labelling 

software and its embedded segmentation capabilities 

detailed in section 1.3, in order to identify and contour 

grains in a semi-automatic manner. We then tested the 

performance of our approach by computing the median 

grain size on the segmentation results and comparing it to 

the analysis of topography as shown in Figure 11. 

 

Figure 11 : Comparison of the median grain size profiles 

obtained with a segmentation AI and with the analysis of laser 

topography maps 

The performance are overall rather good, although they 

strongly depend on lithology. The Clay/Silt interval 

appearing in the middle section of Figure 11 is 

characterized by a very poor match between the P50 

predicted by the segmentation AI and the ground truth. 

This is a clear sign that a method built around the 

segmentation of individual grains from high resolution 

photographs would hit a limit when the boundary of 

individual grains can no longer be seen. Such a limit has 

not been quantified yet, and progress remains possible in 

terms of maximal image resolution that the segmentation 

logic could handle. If this resolution happens to be too low 

to give useful results in shale rocks, other models 

involving an end-to-end approach (such as the one 
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presented earlier in this section) could be used to tackle 

rocks beyond this limit.  

3.3 Mining 
In this section we describe a case study for the 

identification of Garnet mineral grains from ultra-high 

resolution (UHR) pictures of drill cores. A semantic 

segmentation AI was trained on Quantitative Evaluation 

of Minerals by Scanning Electron Microscopy 

(QEMSCAM) analysis 2D maps from rock samples for 

which UHR photographs were also available. SEM-

derived automated mineralogy was acquired using the 

QEMSCAN® platform collected by Rocktype Ltd. The 

scanning electron microscope (SEM) has backscatter 

electron (BSE) and energy dispersive X-ray (EDS) 

detectors to provide automated petrographic 

quantification of geological samples in the form of 

spatially resolved compositional and textural data. In this 

study, all data were collected using a QEMSCAN® 

WellSite instrument (Quanta 650 F FEG Scanning 

Electron Microscope) using the FieldScan mode at 15 kV 

beam energy and 5 µm or 10 µm step intervals. The 

mineral data were processed in FEI’s iDiscover software 

package using an in-house mineral library developed by 

Rocktype Ltd. The UHR photos were analysed with a 

DML model using a U-Net shape with an EfficientNet [8] 

backbone.  

A transfer learning strategy was used and a customized 

training procedure was developed by freezing specific 

parts of the model weights arrays during training. The 

dataset was acquired on ore-rich cores, studied, and then 

complemented with various cherry-picked images 

containing important visual features. A Comparison 

between the QEMSCAN mineral map and AI predictions 

for Garnet are shown in Figure 12. 

 

Figure 12: Comparison of the QEMSCAM training data (second 

picture from the top) and of results obtained by the garnet 

detector AI on a UHR photograph (first picture from the top of 

an ore-rich sample. The mineral of interest (Garnet) is 

highlighted in red in the third picture from the top. The 

corresponding mask is shown in the bottom picture. 

The trained Garnet detector was used to predict the 

mineral abundance on multiple wells with various visual 

characteristics.  

4 Conclusions 

We have developed a complete framework dedicated to 

the exploitation of the latest advances in Artificial 

Intelligence for the purpose of modernising core analysis 

by taking full advantage of the volume of high-quality, 

high-resolution data produced with the CoreDNA multi-

sensor core testing platform. A collection of proprietary 

software modules have been developed and interlinked in 

a compact and seamless architecture to enable the fast and 

objective-driven analysis of large datasets from industrial 

projects for the extractive industry.  

This development represents a new step towards a more 

sustainable approach to core analysis that maximizes the 

value of core samples while minimizing the workload of 

analysts. 

Real-world examples ranging from hydrocarbon reservoir 

characterization and optimization to quantitative resource 

mapping for base mineral deposit management 

demonstrate the practical applications and tangible 

benefits of CoreDNA in achieving sustainable core 

analysis. By combining advanced technology, 

comprehensive data acquisition, and AI-driven analysis, 

CoreDNA realizes the vision of sustainable core analysis, 

enabling more efficient and informed decision-making in 

various industries. 

References 
 

[1]  C. Germay, T. Lhomme and P. Bisset, “Combining 

high-resolution core data with unsupervised 

machine learning schemes for the identification of 

rock types and the prediction of reservoir quality.,” 

in The 34th International Symposium of the Society 

of Core Analysts, 2021.  

[2]  C. Germay, T. Lhomme and L. Perneder, 

“Combining high-resolution core data and machine 

learning schemes to develop sustainable core 

analysis practices,” in The 35th International 

Symposium of the Society of Core Analysts, Austin, 

2022.  

[3]  F.-F. Li, J. Johnson and S. Yeung, Convolutional 

Neural Networks for Visual Recognition, Stanford 

University, 2017.  

[4]  N. Rogge, S. Singh and A. Dirik, “Universal Image 

Segmentation with Mask2Former and OneFormer,” 

2023. [Online]. Available: 

https://huggingface.co/blog/mask2former. 

[5]  C. Birnie and V. Chandra, “Using deep learning for 

automatic detection and segmentation of carbonate 

microtextures,” in SEG/AAPG International 

Meeting for Applied Geoscience & Energy,, 

Houston, 2022.  

[6]  K. He, G. Gkioxari, P. Dollar and R. Girshick, 

“Mask R-CNN,” in IEEE International Conference 

on Computer Vision (ICCV), Venice, Italy, 2017.  

[7]  C. K. Wentworth, “A Scale of Grade and Class 

Terms for Clastic Sediments,” The Journal of 

Geology, 1922.  

[8]  M. Tan and Q. V. Le, “EfficientNet: Rethinking 

Model Scaling for Conventional Neural Networks,” 

in International Conference on Machine Learning, 

Long Beach, 2019.  

[9]  C. Shorten and T. Khoshgoftaar, “A survey on 

Image Data Augmentation for Deep Learning,” 

Journal of Big Data, vol. 6, no. 60, 2019.  

Gray-scale transform of 
the original UHR photo 

with red Garnet patches 

Original UHR 
photo

QEMSCAN 
ground-truth

Garnet 
fraction mask



The 36th International Symposium of the Society of Core Analysts 

 
 


