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Abstract. Rock mineralogy is the foundation of formation evaluation and X-ray diffraction (XRD) is considered 

the gold standard for rock mineralogical analysis. The main objective of this study is to address challenges in 

analyzing iron rich rocks using the commonly used XRD method, by systematically study sample preparations, 

measurement procedures, raw data processing, and data interpretation and quantification. An XRD test can be 

described in three steps: sample preparation and testing, mineral identification, and mineral quantification. Rock 

samples used in this study are from US subsurface Chelsea sandstone (CSST), consisting of shales, shaly sands, and 

sideritic sandstone. To prepare for a XRD test, core plugs were pulverized using the traditional pestle and mortar, 

planetary ball mill machine, and Mortar Grinder RM 200. The sample powders were analyzed with the commonly 

used Rigaku Ultima IV and PANalytical Empyrean diffractometer systems. X-ray tubes with copper Cu anode 

materials were utilized as the radiation source for the two systems. Jade Software was used to identify mineral 

phases using ICDD PDF4+ library. The mineral phase quantification was performed using Rietveld refinement 

method in Jade software and utilizing three different libraries: ICDD PDF4+, MDI, and AMCSD, and different data 

simulation models: Current Background, Refinable Polynomial and Variable Spline. Results show that high 

background noise affects measurement due to secondary copper radiation associated with the content of sideritic in 

the sample as they fluoresce and create polychromatic radiation. The more siderite (FeCO3) presence in the sample 

the higher the background level which distorts other mineral phases present in the sample. The diffractogram from 

the shaly sandstone showed multiple mineral phases which are repressed in the mixed samples diffractogram of 

50% of shaly and sideritic sandstone. Also, our investigation showed the influence of both mineral library and fitting 

model section on the accuracy of minerals quantification. Results show Cu radiation diffractograms can be a source 

of measurement uncertainty that need to be accounted for by careful selection of mineral library and fitting model. 

This observation is used to enhance the quality of XRD analysis of iron rich rocks using copper radiation. 

1 Introduction  

Laboratory X-ray diffraction (XRD) analysis is an important 

test for characterization of geologic formations. It is a 

common tool that provides a fast identification of minerals 

and mineral quantification. The information provided by an 

XRD test is critical for formation evaluation [1], which has a 

significant impact in oil and gas exploration and development 

[2-6]. Equally important is the knowledge of the mineral 

composition within precipitates from corrosion and scales 

that affect tools and well performance [7,8]. 

1.1 Theoretical Background 

XRD is based on constructive interference of monochromatic 

X-rays and a crystalline sample of specially prepared powder 

material. These X-rays are generated by a cathode ray tube, 

filtered to produce monochromatic radiation, collimated to 

concentrate, and directed toward the sample. The interaction 

of the incident rays with the sample produces constructive 

interference (and a diffracted ray) when conditions satisfy 

Bragg’s law in Eq. 1 below:  

  

𝑛𝜆 = 2𝑑 sin 𝜃 (1) 

Where, 

 = incident X-ray wavelength 

𝑛 = an integer (i.e. 1, 2, 3, etc.) 

𝑑 = distance between lattice planes 

 = angle between the incident X-ray and the lattice plane 

 

The Bragg’s law relates the wavelength of electromagnetic 

radiation to the diffraction angle and the lattice spacing in a 

crystalline sample, Fig. 1. These diffracted X-rays are then 

detected, processed, and counted. By scanning the sample 

through a range of 2 angles, all possible diffraction 

directions of the lattice should be attained due to the random 

orientation of the powdered material. Conversion of the 

diffraction peaks to d-spacings allows identification of the 

mineral because each mineral has a set of unique d-spacings. 

Typically, this is achieved by comparison of d-spacings with 

standard reference patterns [9,10]. 

  

In conducting an XRD test, there may be three common 

challenges, which are mostly analyst dependent, including 

sample preparation, identify the right minerals and quantify 

identified minerals. Additional challenges may be associated 

with the instrumentation available to perform the test. 
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Fig. 1 Showing XRD bases, hkl is the lattice plane. 

In this paper, we aim to present a detailed study into the 

possibility of reducing XRD data uncertainty by: 

1. Investigating how sample preparation affects XRD 

analysis and establishing the best procedure. 

2. Studying and establishing a consistent protocol in 

mineral identification.  

3. Determining the best mineral quantification method. 

2 Methodology  

In this study, the outcrop Indiana Limestone (ILST), 

Fontainebleau sandstone (FBST) and Chelsea (CSST) 

sandstone samples from United States of America were used.   

Both ILST and FBST are clay-free rocks, while CSST is 

mixture of shale, shaly and sideritic sandstone. Also, a 

multimineral mixed sample (MIX1) from middle east outcrop 

is included. 

2.1 Sample Preparation and Data Acquisition 

To study effect of sample preparation, we evaluated impact 

of grinding machine, grinding time, and data acquisition 

following the below steps. 

1. Sampling: The outcrop samples were acquired as core 

plugs and XRD samples were selected from end trims of 

core plugs (Fig. 2).  

2. Cleaning: Samples were cleaned using Soxhlet 

extraction using methanol, to remove any dusty 

precipitates.  

3. Crushing: Mortar and pestle were used to break sample 

into pieces (Fig. 3). A tensile test machine was used for 

crushing tougher samples such as those of FBST rocks. 

4. Grinding: The crushed sample was grinded for five 

minutes into powder, with a planetary ball mill machine 

and the Mortar Grinder RM 200. 

5. Regrinding: To reduce the lithological grainy effect and 

to ensure that average grain size at about 10 µm, about 2 

g was collected for regrinding. 

6. Data acquisition: About 1.5 g of the re-grinded 

pulverized sample was loaded into Rigaku Ultima IV 

machine, and 1 g was loaded into the Empyrean, 

Panalytical machine for the XRD test, with the below 

conventional data acquisition parameters (Table 1). It is 

noted that iron-rich, if known, samples may require more 

dwell time to increase diffractogram quality. 

 

 

Fig. 2 Illustration of rock sample end trims. 

 

Fig. 3 Illustration of crushed sample using mortar and pestle. 

 

Table 1 Instruments parameters and settings for data collection 

Parameter Rigaku Panalytical 

2 - Start (deg) 4.6 4 

2 - End (deg) 60 70 

Step Size (deg) 0.02 0.01 

Data Point 2771 5027 

Time/cycle (min) 60 20 

No of Cycle 1 2 

Total Time (min) 60 40 

Sample Loading - Stages 10 45 

Sample Loading - Technique Front Back 

2.2 Mineral Phase Identification 

The Jade Software was used to identify mineral phases using 

ICDD PDF4+ library, using line match points between 

measured data and ICDD PDF4+ database. Other libraries are 

investigated in the phase quantification section.   

2.3 Mineral Phase Quantification 

To quantify minerals weight percentage, we utilized three 

different libraries and quantification/simulation models in 

Jade software. A summary of commonly used phase 

quantification methods is shown in Fig. 4 [11, 12]. In this 

study, we considered the Rietveld refinement method. For the 

simulation models used in Jade software, there are three 

background fitting models to be studied: Current 

Background, Refinable Polynomial and Variable Spline.  

 

Regarding the libraries used, three main sources were 

evaluated in this study: 

• ICDD PDF4+: International Center for Diffraction Data. 

• MDI: Material Data Incorporated. 
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• AMCSD: American Mineralogist Crystal Structure 

Database. 

 

The essential simulation parameters are defined by Eq. 2: 

𝐼ℎ𝑘𝑙 = 𝑘 × 𝐿𝑝 × 𝑇 × 𝐴 × 𝐺 × 𝑚 × 𝐹ℎ𝑘𝑙
2  (2) 

 

Where, 

𝐼ℎ𝑘𝑙= the integrated intensity of a reflection with Miller 

indices (hkl). 

𝑘= a scaling constant related to the intensity of X-ray beam. 

𝐿𝑝= the Lorentz & X-ray polarization factor which is 

dependent on the Diffraction Geometry. 

𝑇= the overall temperature factor of the structure. 

𝐴= the absorption correction for flat and thin specimen. 

𝐺= the preferred orientation correction. 

𝑚= the reflection multiplicity. 

𝐹ℎ𝑘𝑙= the structure factor derived from the packing (i.e. 

Fourier transform) of all atoms in the unit cell. 

 

 

Fig. 4 A summary of common XRD quantification methods [11]. 

3 Results and Discussion  

3.1 Effect of Powder Sample Preparation 

Rock samples of FBST and ILST were selected to investigate 

impact of sample preparation on XRD analysis.  

• FBST was difficult to crush with traditional hand method 

and was placed under tensile test machines. The 

planetary ball mill machine, (Fig. 5), has about 36 balls 

for grinding sample. Pulverized sample was recovered 

from FBST with some particles remained after 15 

minutes of grinding.  

• As for the ILST sample, whereas it was difficult to get 

pulverized sample after 10 minutes of grinding, the 

grinded powders became sticky and glued to the grinding 

bowl (Fig. 5). 

 

Fig. 5 Sample grinding with a mill machine; (Top, Bottom Left) 

ILST and (Top, Bottom Right) FBST. 

Surprisingly, XRD results show that grinding FBST sample 

from 5 to 15 minutes impacts the results, i.e., there is a 

contamination from grinding balls into the sample as 

observed from XRD diffractogram, which demonstrates 

increasing anomaly signals as grinding time increases (Fig. 

6). Such contamination may affect the reading with a rare 

element Qusongite (WC, tungsten carbide). 

 

 

Fig. 6 Effect of rock sample grinding time on XRD diffractogram 

– FBST (Fontainebleau sandstone). 

 

Manual grinding (pestle and mortar) has been the traditional 

way of preparing powdered sample. However, for most rock 

samples it is difficult reaching grain size of 10 µm by such a 

manual method. The results of FBST samples prepared by 

manual and machine grinding clearly indicate the machine 

contamination (red rectangles in Fig. 7).  
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Fig. 7 XRD diffractogram for samples prepared by manual (red) 

and machine (dark) grinding- FBST samples. Red boxes indicate 

contamination from grinding machine. 

 

On the other hand, for the ILST sample, no machine grinding 

contamination was observed (Fig. 8), indicating that XRD 

sample preparation is rock type driven. Different sample 

preparation methods may be used for rocks with different 

lithologies, cementations, and rock mechanical properties. 

 

Fig. 8 Effect of grinding time on XRD diffractogram- ILST 

(Indiana Limestone). 

 

 

 

3.2 Effect of Machine and Data Acquisition Parameter 

3.2.1 Effect of XRD Machine 

Different equipment may be used for XRD tests by different 

laboratories. To evaluate potential impact of using different 

machines on XRD data acquisition, the above (Figs. 6-8) 

diffractograms presented unfiltered K peak at roughly 

2=around 25 deg ranging from 23 to 27 deg which may not 

be reflecting minerals in the sample. 

 

The characteristic X-rays as shown in Fig. 9 as two sharp 

peaks occurring when vacancies are produced in the n=1 or 

K-shell of the atom.  

• The X-rays produced by transitions from level n=2 

to n=1 are called K X-rays.  

• The X-rays produced in the transition from n=3 to 

n=1 is called K x-rays [13], which is considered a 

spectral contamination in the diffraction patterns. 

 

The unfiltered K peak is related to XRD instrument 

malfunction. For example, the Rigaku machine is equipped 

with a filter to suppress the K peak, but occasionally, the 

filtering may not work properly. Consequently, 

inexperienced XRD data interpreter may mistake this K peak 

a mineral phase, thereby introduce false positive mineral in 

the XRD result.  

 

Fig. 9 Schematic emission spectrum of X-rays [13]. 

 

The results from two XRD machines were compared in Fig. 

10. Diffractogram of CSST shaly sample from Panalytical 

machine (green) shows better result when compared to 

Rigaku machine (dark), as the former provides clear peaks 

and lower counts offset, probably due to the lower step-size 

(Table 1) associated to the Panalytical machine (0.01 deg) 

than that of the Rigaku machine (0.02 deg), which minimizes 

the impact of sample’s graininess.   

 

Fig. 10 XRD diffractogram of CSST shaly sample prepared by 

machine grinding. Data acquired from Rigaku (dark) and 

Panalytical (green) machine can be different. 

3.2.2 Effect of Data Acquisition 

Changing data acquisition parameter settings such as 

scanning speed may also affect the measurement raw data. As 

shown in Fig. 11, data intensity count drastically increased 

when scan speed (defined as the time spend at an analysis 

point) is doubled from 1.2 to 2.4 second. Note that the start 

angle is the angle at which the machine starts the analysis and 

stops at the end angle (in this case, 4.6° to 60°). Sample 

weight is the step size in degree at which the machine takes a 

measurement.  
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Fig. 11 Examples of XRD diffractogram with varying scanning 

speed- FBST sample. 

3.3 Effect of Sample Lithology 

Three Chelsea sandstone CSST samples were prepared to 

investigate impacts of sample grain size and lithology on the 

XRD tests. As indicated in Fig 12, the high background in the 

sideritic sandstone (red diffractogram) affected the 

measurement (green diffractogram) due to the secondary 

copper radiation associated with the iron containing 

materials. The dark diffractogram from the shaly (50% of 

shaly and sideritic) sandstone showed multiple mineral 

phases which are repressed in the green diffractogram. 

 

In XRD analysis, the Cu Ka radiation is the most widely used, 

but samples that are rich in Fe, Cr, and Mn will fluoresce 

under the incident Cu Ka beam and create polychromatic 

radiation [14, 15], leading to abnormal shaped and elevated 

backgrounds as observed in Fig. 12. 

 

 

Fig. 12 XRD diffractograms of CSST samples prepared by 

automated machine grinding, shaly unit (dark), sideritic unit (red) 

and 50% their mixture (green).  Data acquisition with a Rigaku 

machine. 

3.4 Mineral Phase Identification 

The general method of identifying mineral phases in XRD 

test is by using a mineral database such as ICDD PDF4+ and 

a specialized software with searching and matching 

capabilities, such as by line match points between measured 

data and ICDD PDF4+ database.  With thousands of minerals 

in the database, the major challenge in the success of mineral 

matching is the quality of the measured XRD data. In 

addition, to use such search/match software efficiently and 

constrain the matching process, some prior knowledge of 

basic sample mineralogy is a requirement so that an expert 

operator can select the range of expected patterns in the 

database. 

 

Another challenge is mineral phase overlapping; a very 

common issue especially with clay minerals. Illite and 

muscovite for example belong to the same mica group, thus 

are difficult to separate in mineral phase identification. To 

demonstrate this, a systematic line match approach was used 

on CSST sample to assess the match of both minerals. As 

shown in Figs. 13 and 14, it is observed that the illite primary 

peak 100% (refers to 100% intensity count) matched well 

with the raw data thus may be considered it is present in the 

sample. The next secondary peak (at 86%) cannot be 

identified from the background noise (Fig. 13), indicating 

absence of illite mineral in the sample. Whereas in the 

muscovite phase, all peaks matched well with the raw data 

(Fig. 14). 

 

 

Fig. 13 XRD diffractograms of CSST shaly unit sample with illite 

phase from database for phase identification. Red circles show key 

consideration line for data matching. 

 

 

Fig. 14 XRD diffractograms of CSST shaly unit sample with 

muscovite 2M phase from database for phase identification. Red 

circles show key consideration line for data matching. 
 

Although mineral phase identification depends on computing 

power and the quality of the information available in the 

library, an experienced powder diffraction specialist on the 

other hand will also be required to better differentiate signals 

from noises.  

 

As a general guideline, the following steps are recommended 

for proper mineral phase identification: 

1. Sample background information: It is important to 

understand the source of the sample to minimize error 

during searching/matching between the sample and those 

in the database. 

2. It is obvious that a robust mineral searching/matching 

software and a rich database with vast minerals are a 
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must to process the raw data and matching with minerals 

in the database. 

3. Mineral phase association: to ensure matching is unique, 

mineral phase association is another important 

consideration, since many metamorphic, igneous, and 

sedimentary minerals have similar crystal structure that 

may confuse the analyst. 

4. And lastly, an intuitive peak matching technique to 

separate overlaps.  

3.5 Mineral Phase Quantification 

3.5.1 Effect of Simulation Models 

To assess effect of simulation model on mineral phase 

quantification, the sample of Indiana Limestone (ILST) and 

ICDD PDF4+ are used as an example. One aspect of the 

assessment is to calculate the goodness of fit (GoF); defined 

as the average difference between the measured data and the 

simulated one, and the smaller the GoF value, the better fit.  

 

For ILST, we expect to observe almost 100% calcite mineral. 

The Variable Spline simulation model fitting indicates 98.3% 

calcite and a trace of 1.7% quartz with GoF=11.67 (Fig. 15). 

With the same experimental data, if the Refinable Polynomial 

(RPoly) simulation model is used, GoF is improved from 

11.67 down to 7.12, but with the cost of introducing more 

weight to quartz 9.2% (or 90.8% calcite); uncommon for 

Indiana limestone outcrop. With further investigation, it was 

observed that additional trace signals introduced in the 

simulated XRD data (Fig. 16), marked in green, affected the 

calculation of mineral weights. The results of Current  

 

Fig. 15 XRD diffractogram with Variable Spline simulation model 

for phase quantification, raw data (Black) vs simulated data (Pink)- 

ILST sample 

 

Fig. 16 XRD diffractogram with RPoly simulation model for phase 

quantification, raw data (Black) vs simulated data (Pink)- ILST 

sample. 

 

Background (BG) simulation model is consistent with 

Variable Spline as to be illustrated in the following sections. 

 

To investigate this issue further, measurement of a 

multimineral mixed (MIX1) sample is conducted and 

different simulation models were assessed (Figs. 17 and 18). 

It is observed both models provided good match except for 

mineral Albite where RPoly overweighs Variable Spline 

method by 1.4 wt% (Fig. 19). It is also noticed that the GoF 

values for both simulations are quite similar; 6.23% for RPly 

and 6.08% for Variable Spline, indicating that sample 

complexity in terms of minerals may sometimes present more 

consistent results than pure and single mineral samples as in 

the case of ILST. 

  

 

Fig. 17 XRD diffractogram with Variable Spline simulation model 

for phase quantification, raw data (Black) vs simulated data (Pink)- 

mixed sample (MIX1). 

 

Fig. 18 XRD diffractogram with RPoly simulation model for phase 

quantification, raw data (Black) vs simulated data (Pink)- mixed 

sample (MIX1). 

 

Fig. 19 Minerals analysis produced from two different simulation 

models applied on the same XRD data (Figs. 17 and 18) of the mixed 

sample (MIX1). 
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3.5.2 Effect of Sample Heterogeneity and Minerals  

To study the impacts of minerals and sample heterogeneity to 

mineral quantification, we evaluated the Fe-rich sample 

CSST. Since the sample is heterogenous in minerals 

distribution (Fig. 20), three samples were prepared and 

measured (ref to Fig. 12). Here, we evaluated the effect of 

simulation models on each sample and utilizing AMCSD 

library first. Starting with the Wacke sandstone (WS) which 

is extracted from low Fe side of CSST, where it is expected 

to see low Sideritic content, and the modeled results agree as 

expected (Fig 21). However, for clay minerals on same WS 

sample, quite large discrepancy between the simulation 

models was observed with variation as large as 10wt% for 

chlorite. For kaolinite, the Current Background (BG) and 

Variable-Spline models match each other and deviate from 

RPoly model by about 5wt% (Figure 21). 

 

 

Fig. 20 Different views of the CSST sample showing spatial 

variation in minerology with dark brown areas representing Fe-rich 

content (Siderite). 

 

Fig. 21 Minerals analysis as produced from three different 

simulation models applied on the same Wacke sandstone (WS) XRD 

data shown in Figure 12. 

3.5.3 Effect of Database Library of Minerals  

To test the sensitivity of XRD results with respect to database 

libraries of standard minerals, Fig. 22 shows the results of 

using three libraries (PDF4+, MDI, and AMCSD) with three 

simulation models (Rpolynomial, Variable Spin, and Current 

BG curve). From Fig. 22, it is observed that both PDF4+ and 

MDI libraries provide consistent results as compared with 

AMCSD library, though the later performed the best as 

measured by GoF for quality of matching of measured data 

with that in the libraries (Table 2), suggesting that one should 

be careful in using GoF value as a quality control. In addition, 

as an example of to quantify the impact of mineral libraries, 

mineral grain density is calculated (Table 2), and it shows that 

AMCSD library provides lower mineral grain density 

compared to PDF4+ and MDI libraries.  

 

Qualitatively, it is obvious that the sample standards of 

chlorite and muscovite in AMCSD are drastically different 

from that in the other two libraries, and those may have 

affected the value of derived quartz content, as summarized 

quantitively in Table 3, since both phase identification and 

quantification are affecting each other. 

 

 

Fig. 22 Minerals analysis from three different simulation models 

with three different libraries for the Wacke sandstone (WS) sample 

(Fig. 12). 

Table 2 Summary of effects of simulation models and minerals 

libraries on XRD data processing performance (GoF) and XRD 

data as exampled by grain density (g in g/cc)- WS sample 

 

RPoly 
Variable 

Spline 

Current BG 

Curve 

 GoF g GoF g GoF g 

MDI 7.94 2.7154 8.36 2.7176 7.81 2.7207 

PDF4+ 6.29 2.7209 6.65 2.7305 6.47 2.7282 

AMCSD 5.67 2.7088 5.64 2.7029 5.78 2.6981 

 
Table 3 Effect of libraries on mineral averaged from three models 

(RPoly, Variable Spline, and Current BG curve) 

 PDF4+ MDI AMCSD 
Albite (wt%) 9 8 11 

Chlorite (wt%) 9 8 27 

Kaolinite (wt%) 7 9 7 

Muscovite (wt%) 28 28 17 

Quartz (wt%) 46 47 35 

Siderite (wt%) 3 3 3 

 

As another example, a Fe-rich sample labeled as sideritic 

wacke sandstone (SWS) is taken to study effect of mineral 

library and simulation model on extracted XRD data (Fig. 

23). Visually, Rpolynomial model cannot handle the Fe-rich 

sample; struggling with all three mineral libraries. As to the 

effect of the mineral libraries, AMCSD again shows 

abnormal behavior for Chlorite and Muscovite. 

 

The simulation modeling performance indicator GoF and 

modeled mineral grain density are summarized in Table 4. 
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Without considering the Rpolynomial results, modeled XRD 

mineralogy by using the two models of Variable Spline and 

Current BG curve are summarized in Table 5 to illustrate the 

impact of mineral libraries. Like for the WS sample, using the 

AMCSD library over-estimate Chlorite and under-estimate 

Muscovite compared to PDF4+ and MDI libraries. 

 

 

Fig. 23 Minerals Analysis as produced from three different 

simulation models and three different libraries applied on the same 

Sideritic Wacke sandstone (SWS) XRD data shown in Fig. 12. 

Table 4 Summary of effects of simulation models and minerals 

libraries on XRD data processing performance (GoF) and XRD 

data as exampled by grain density (g in g/cc)- SWS sample 

 

RPoly 
Variable 

Spline 

Current BG 

Curve 

 GoF g GoF g GoF g 

MDI 4.89 3.3616 3.03 3.3461 3.89 3.2814 

PDF4+ 4.94 3.4299 2.81 3.3797 2.7 3.3866 

AMCSD 3.65 3.1507 2.23 3.3533 1.88 3.2638 

 

Table 5 Effect of libraries on mineral averaged from the two 

models (Variable Spline and Current BG curve) 

 PDF4+ MDI AMCSD 
Albite (wt%) 5 5 6 

Chlorite (wt%) 2 2 9 

Kaolinite (wt%) 0 1 4 

Muscovite (wt%) 11 15 0 

Quartz (wt%) 17 18 20 

Siderite (wt%) 65 60 62 

4. Summary and Recommendations 

Based on this evaluation study of XRD mineralogy 

measurements, the following are summarized; 

• Depending on sample minerology and the grinding 

material, sample grinding machine may introduce 

contamination, thus noise to the raw data. 

• Equipment malfunction may also generate noise peaks, 

which may cause data misinterpretations. 

• Thus, careful distinction between noises and mineral 

phase peaks and phase associations are crucially 

important, and occupationally may be challenging. 

 

It is therefore recommended  

 

For sample preparation 

• Careful quality control of sample preparation for 

consistence, repeatability, and data quality.  

 

For mineral phase identification 

• Acquire information about the geological background of 

the sample to be tested. 

• Pay special attention to the knowledge of Fe minerals in 

case of using Cu radiation source. 

• Ensure the library of minerals standards is robust. 

• Careful select the mineral searching and matching 

simulation model for mineral identification. 

 

Mineral phase quantification 

• Mineral libraries need to be tested for sensitivity, 

especially for samples contains clays. 

• Sensitivity of mineral search and matching simulation 

models need to be tested extensively to ensure its 

capability in quantifying common and rare minerals with 

accuracy, precision, and consistency. 

Nomenclature 

Abbreviations 

AMCSD= American Mineralogist Crystal Structure Database 

FBST= Fontainebleau Sandstone 

CSST= Chelsea Sandstone 

ICDD= The International Centre for Diffraction Data 

ILST= Indiana Limestone 

MDI= Materials Data, Inc  

PDF4+= Powder Diffraction File 4+ 

RPoly= Refined Polynomial 

SWS= Sideritic Wacke Sandstone 

WS= Wacke Sandstone 

XRD= X-Ray Diffraction 

GoF= Goodness of Fit 

Symbols 

 = incident X-ray wavelength. 

𝑛 = an integer (i.e. 1, 2, 3, etc.). 

𝑑 = distance between lattice planes. 

 = angle between the incident X-ray and the lattice plane. 

𝐼ℎ𝑘𝑙= the integrated intensity of a reflection with Miller 

indices (hkl). 

𝑘= a scaling constant related to the intensity of X-ray beam. 

𝐿𝑝= the Lorentz & X-ray polarization factor which is 

dependent on the Diffraction Geometry. 

𝑇= the overall temperature factor of the structure. 

𝐴= the absorption correction for flat and thin specimen. 

𝐺= the preferred orientation correction. 

𝑚= the reflection multiplicity. 

𝐹ℎ𝑘𝑙= the structure factor derived from the packing (i.e. 

Fourier transform) of all atoms in the unit cell. 

K = X-rays produced by transitions from the n=2 to n=1 

levels.  

K = The X-rays produced in the transition from n=3 to n=1 

levels. 
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