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Abstract. This study aims to assess the effectiveness of several decision tree machine learning techniques 
for identifying formation lithology. A total of 20966 log data points from four wells were used to create the 
study's data. Lithology is determined using seven log parameters. The seven log parameters are the density 
log, neutron log, sonic log, gamma ray log, deep lateral log, shallow lateral log, and resistivity log. Different 
decision tree-based algorithms for classification approaches were applied. Several ML models, namely, the 
random forest, random decision tree algorithm, C4.5 decision tree, reduced-error pruning decision tree 
algorithm, logistic model trees, and Hoeffding tree, were assessed using well logging data for formation 
lithology prediction. The obtained results shows that the random forest model, out of the proposed decision 
tree models, performed best at lithology identification, with precession, recall, and F-score values of 0.913, 
0.914, and 0.913, respectively. Random trees came next. with average precision, recall, and F1-score of 
0.837, 0.84, and 0.837, respectively, the J48 model came in third place. The Hoeffding Tree classification 
model, however, showed the worst performance. We conclude that boosting strategies enhance the 
performance of tree-based models. Evaluation of prediction capability of models is also carried out using 
different datasets.

1 Introduction 

Lithology can be established using well-log data to explore 
and produce petroleum. The lithology model of a reservoir 
can be established form other methods too, such as 
sedimentological classification on core data. Due to the 
intricacy of lithology, the distributions of logging data from 
distinct lithologies overlap, expanding the number of possible 
identifications. Thus, it is essential to use methods that 
provide an accurate means of forecasting lithology. 
Researchers have recently become more interested in 
applying machine learning approaches to forecast different 
types of lithology [27-32]. These approaches to lithology 
identification based on machine learning make an effort to 
train a multi-class classifier model based on a large amount 
of labelled well-logging data with logging curves, such as 
gamma ray (GR) resistivity logs, sonic logs, neutron logs, and 
density logs. 
 Various machine learning approaches have been 
proposed for the lithology classification problem. In 
lithological identification using logging data points, an 
artificial neural network first used to classify lithology [3,16]. 
Support Vector Machine (SVM) was utilized [1] to classify 
the lithology with logging data points and have accurately 
identified the lithology facies of heterogeneous sandstone 
reservoirs. Different types of multi-classification SVM were 
applied to identify volcanic lithology with well log data [6]. 
Random Forest was utilized to predict lithological mapping 

based on geophysical and geochemical data [9]. In the field 
of spatial modelling and classification based on well-log data, 
researchers are exploring various approaches to model rock 
lithology. This includes the development of novel hybrid 
inferential systems like ANN-HMM models, as well as the 
application of established techniques such as recurrent neural 
networks [2, 15]. 
 Researchers proposed a groundbreaking method for real-
time prediction of lithology during drilling operations. This 
approach leverages an artificial neural network (ANN) to 
integrate data from nearby wells with live drilling 
measurements from the South Pars gas field [13]. Using data 
from the Daniudui and Hangjinqi gas fields, five common 
machine learning techniques—Naïve Bayes, SVM, RF, 
Artificial Neural Network, and Gradient Tree Boosting—
were assessed for detection of formation lithology [20].  
 Conventional single classification algorithms such as 
decision trees, SVM, and Bayes developed to determine the 
lithology of the Longqian region of China using well logs [8]. 
In order to predict the geological facies using well log data in 
the Anadarko Basin, Kansas, supervised learning algorithms, 
unsupervised learning algorithms, and a neural network 
machine learning algorithm were presented [12]. Generative 
adversarial networks were presented to recreate thin section 
images and identify carbonate lithology [14]. An Extreme 
Gradient Boosting and Bayesian Optimization classifier was 
proposed for identifying the lithology of the Daniudui and 
Hangjinqi gas fields [18]. The application of machine 
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learning algorithms for real-time lithology determination 
during drilling operations was investigated by [17]. Three 
prominent algorithms are employed: neural networks (NNs), 
random forests (RFs), and extreme gradient boosting trees 
(XGBoosts). Additionally, a one-versus-one support vector 
machine (OVO SVM) approach is utilized for comparison. A 
coarse-to-fine architecture that incorporates outlier detection, 
multi-class classification, and a tree-based classifier 
suggested to identify the lithology using two actuals well 
logging data sets [19]. Chawshin et al. employed core CT 
scans in conjunction with convolutional neural networks 
(CNNs) for high-resolution lithology classification. Their 
study demonstrated that CNNs can accurately predict rock 
classes with high resolution, showcasing the effectiveness of 
this approach [32]. A hybrid framework consisting of 
artificial neural networks and hidden Markov models (ANN-
HMM) was suggested for the classification of the lithological 
sequence [11]. They thoroughly evaluated the effectiveness 
of the suggested classifier using a combination of extreme 
gradient boosting (XGBoost) and Bayesian optimization 
(BO) [18]. Coal pay zones were predicted using a variety of 
machine learning algorithms (LR, SVM, ANN, RF, and 
XGBoost and data manipulation methods (NROS and 
SMOTE) [21]. Bi-directional gated recurrent units and a 
conditional random field layer (Bi-GRU-CRF) are the models 
used in the lithological sequence classification technique that 
was proposed by [10]. A hybrid framework consisting of 
artificial neural networks and hidden Markov models (ANN-
HMM) was suggested for the classification of the lithological 
sequence Using the neural networks and hidden Markov 
models (ANN-HMM) hybrid framework [7]. The 
performance of the gradient boosting decision tree (GBDT) 
model, which was validated in comparison with the ANN, 
SVM, AdaBoost, and RF classifiers, was demonstrated by 
[22]. A Gray Wolf Optimization Algorithm (GWO-SVM)-
based automatic identification system for lithology logging 
has been presented in [11]. The current study undertakes a 
comprehensive examination of the application of machine 
learning methods for lithology classification, with a specific 
emphasis on evaluating the performance of various tree-based 
models. This investigation involves a detailed comparison of 
different tree-based models, a crucial aspect of many machine 
learning studies. By integrating these techniques and 
approaches, the current work contributes to the ongoing 
research in machine learning and geology, enhancing the 
accuracy and efficiency of lithology classification models. 

2 Material 

2.1 Well log data the text 

A total of 20966 log data points from four wells were 
collected from the Camal oil field to perform the evaluation, 
including seven logging parameters (density log (RHOB), 
neutron log (NPHI), sonic log (DT), gamma ray log (GR), 
deep latero log (LLD), shallow latero log (LLS), and 
resistivity log (RES) with corresponding depths. The 
classification will be based on a dataset comprised of well log 
data from four wells within the Camal oil field. These well 
logs have been meticulously annotated with lithology 
classifications based on direct observations of core samples 

and drilling cuttings. The range of the seven feature 
parameters are listed in Table 1. The evaluation was also 
conducted based on the three datasets based on used input 
parameters. 

Table 1. Summary of Parameters Used for Lithology Classifica-
tion. 

Parameter Max Min Stand.Dev Mean 
RES 1952.27 0.23 273.34 112.99 
LLD 2064.76 0.23 63.72 29.74 
LLS 2064.76 0.22 100.03 33.60 

Depth 6100 520 1555 3421 
GR 139.37 7.87 21.36 43.69 

RHOB 2.95 1.94 0.18 2.28 
NPHI 0.45 0.01 0.10 0.27 

DT 141.76 38.71 17.87 91.54 

2.2 Lithology classification  

The lithology type and log curves parameters are shown in 
Figure 1. The well log in the Figure 1 appears to show a well 
that has penetrated a sequence of sandstone, limestone, 
dolomite, and shale formations. 

 

Fig. 1. The log curves and type of lithology of well 41 Camal 
Field. 

The research aims to classify the lithology of subsurface 
formations, specifically identifying rock types such as shale, 
sand, sandstone, limestone, or dolomite. Figure 2 illustrates 
the interrelationships between various well log parameters. 

Analysis of diverse parameter pairings reveals a distinct 
pattern of correlations. These correlations include robust 
relationships, such as the consistent association between LLD 
and LLS, and observable trends, such as the inverse 
relationship between GR and RHOB, which may be 
indicative of lithological influences. Overall, the graph 
suggests the presence of significant relationships between 
different well parameters, potentially offering valuable 
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insights into the geological composition of the logged 
formation. 

 

 

 

Fig. 2. Correlation of normalized log parameters.

3 Machine Learning Models 

Different decision tree-based algorithms for classification 
approaches were applied. Six typical machine learning 
models, namely the Random Forest (RF). Random decision 
tree (RT), C4.5 decision tree (J48), reduced-error pruning 
decision trees (REPT), logistic model trees (LMT), and 
Hoeffding Tree (HT). Figure 3 presents the proposed 
lithology classification methods for this investigation. 

3.1 Decision Tree 

Three nodes make up a decision tree, which is a classification 
method: the leaf node, the branch (edge or link), and the root 
node. The test conditions for various attributes are 
represented by the root, all possible test outcomes are 
represented by the branch, and the labels of the classes to 
which the leaf nodes belong are present. The beginning of the 
tree, sometimes referred to as the top of the tree, is home to 
the root node. A decision tree is a hierarchical decision 
support model that uses a tree-like model of decisions and 
their potential repercussions, such as utility, resource costs, 
and chance event outcomes. It is one method of presenting an 
algorithm with just conditional control statements. In 
operations research, decision analysis in particular, decision 
trees are frequently utilized.  

3.2 Random Forest 

Known also as random decision forests, random forests are 
an ensemble learning technique that builds a large number of 
decision trees during the training phase for tasks like 
regression and classification. The class that the majority of 
the trees choose is the random forest’s output for 
classification problems. The mean or average prediction 
made by each individual tree is returned for regression tasks 
[23]. The tendency of decision trees to overfit their training 
set is compensated for by random decision forests. Although 
they are less accurate than gradient-boosted trees, random 
forests still perform better than choice trees in most cases. 
Performance, however, might be impacted by data properties. 

3.3 Reduced-Error Pruning Decision Tree 

The Reduced-Error Pruning tree algorithm is a decision tree 
learning method with reduced-error pruning designed for 
efficient construction of classification or regression models. 
It builds the tree structure by employing information gain or 
variance for attribute selection at each node. Following the 
construction phase, REPT refines the tree using a technique 
called Reduced-Error Pruning (REP). This pruning step 
enhances the model's performance by removing subtrees that 
contribute to overfitting on the training data. 
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Fig. 3. Workflow for evaluation machine learning model. 

3.4 Logistic Model Tree  

Combining logistic regression and decision tree learning, 
the logistic model tree is a classification model that comes 
with a corresponding supervised training algorithm [24]. 
The concept of a logistic model tree is derived from the 
previous concept of a model tree, which is a decision tree 
with linear regression models at the leaves that generates 
a piecewise linear regression model instead of the 
piecewise constant model that would be produced by 
regular decision trees with constants at the leaves [24]. 

3.5 Hoeffding Tree  

A Hoeffding tree, also known as Very Fast Decision Tree 
(VFDT), is a type of decision tree learning algorithm used 
for stream data classification. It's specifically designed to 
handle massive data streams, where data arrives 
continuously over time. Un-like traditional decision tree 
algorithms that require all the data to be available at once, 

Hoeffding trees can learn and update the model 
incrementally as new data points arrive. 

3.6 C4.5 Classifier 

The C4.5 algorithm, developed by Ross Quinlan, is a 
decision tree algorithm widely used for classification 
tasks. It is an ex-tension of the id3 algorithm and is often 
referred to as a statistical classifier. The C4.5 algorithm, 
an extension of J.R. Quinlan's earlier ID3 (Iterative 
Dichotomiser 3) model [4], builds decision trees through 
a recursive process. This entails progressively splitting 
the training data into subsets based on attributes that 
maximize information gain. In essence, C4.5 refines upon 
ID3 by addressing some of its inherent limitations [4]. 

4 Data Preprocessing  

A dataset of 20,966 well log data points, encompassing 
Seven features (density log (RHOB), neutron log (NPHI), 
sonic log (DT), gamma ray log (GR), deep latero log 
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(LLD), shallow latero log (LLS)), and resistivity log 
(RES), was utilized for lithology classification. 

4.1 Outlier Removal 

This study employs the interquartile range (IQR) 
unsupervised learning technique, a robust outlier 
detection method, to identify and remove data points that 
may deviate significantly from the central tendency. This 
approach is implemented in conjunction with a filter-
based classification algorithm. To assess the influence of 
outliers on the analysis, the model's performance was 
evaluated with and without outlier removal. Our analysis 
of the current results suggests that outliers exert a minimal 
influence on the model's accuracy. Consequently, the 
inclusion of this process may not be essential for 
achieving optimal performance. 

4.2 Manage imbalanced dataset 

To address imbalanced data and prevent overfitting or 
underperformance, we applied the Synthetic Minority 
Over-Sampling Technique (SMOTE). By increasing the 
proportion of minority instances in the dataset, this 
technique-maintained balance and enhanced algorithm 
performance. We employed the SMOTE function [5] 
specifically to tackle class imbalance issues related to 
different lithology types, enhancing lithology prediction 
model performance. The application of the SMOTE 
method improved the model’s performance. For the 
random forest model, for instance, oversampling raised 
accuracy from 88.2% to 92.1%. 

4.3 Normalization 

Since logging indicators have varying dimensions, we 
performed data normalization after data collection, 
mining, and quality control. This step ensures consistency 
and allows us to combine dimensionless data to create 
new analysis indicators. All of the dataset’s numerical 
values were standardized to fall between 0 and 1 before 
the machine learning model was trained. 

5 Building Predictive Models 

Tree-based models were constructed, namely RF, RT, 
J48, REPT, LMT, and HT. The dataset was meticulously 
divided into two mutually exclusive subsets : a training 
set and a testing set. The training set, typically comprising 
80% of the data, serves as the foundation for model 
training. The learning algorithms utilize the training data 
to identify patterns and relationships within the features 
that predict the target variable. During the training phase, 
the chosen tree-based algorithms were exposed to the 
training set. They iteratively segmented the data based on 
specific features (independent variables) to create a tree-
like structure. This structure essentially represents a series 
of decision rules that map the features to the target 
variable (dependent variable). Once trained, the models 
were evaluated using the unseen testing set (20% of the 
data). The testing set plays a crucial role in assessing the 

model's generalizability and ability to predict accurately 
on data it has not encountered during training. The 
classification models were also constructed using a ten-
fold cross-validation technique. 

5.1 Hyperparameters 

Hyperparameters are parameters that control the learning 
process in machine learning models. Unlike other 
parameters, such as node weights, which are learned 
during training, hyperparameters are set beforehand [26]. 
They can be categorized as model hyperparameters, 
which influence model selection, or algorithm 
hyperparameters, which affect the learning process's 
speed and quality. Different machine learning algorithms 
require specific hyperparameters, and tuning them is 
crucial for adapting models to specific datasets [25].  
Decision tree models leverage a series of hyperparameters 
to govern their complexity and, consequently, their 
performance. The primary hyperparameters influencing 
this complexity include: maximum depth, minimum 
samples per split, minimum samples per leaf, maximum 
features. Tuning these hyperparameters is crucial for 
striking a balance between model complexity and 
generalization performance. Techniques such as grid 
search or random search can be employed to efficiently 
explore the hyperparameter space and identify the optimal 
configuration for a given dataset. 

5.2 Tuning Hyperparameter  

To ensure optimal performance for lithology 
identification, we employed hyperparameter tuning for 
our machine learning models. A ten-fold cross-validation 
(CV) strategy was utilized to identify the most effective 
hyperparameter configuration for the tree model. Ten-fold 
CV is a well-established technique due to its ability to 
balance robust evaluation with computational efficiency. 
In this approach, the dataset is meticulously partitioned 
into ten equal-sized folds. The model is iteratively trained 
on nine folds and rigorously assessed on the remaining 
fold. This process is meticulously repeated ten times, 
guaranteeing that each fold is employed for validation 
once. The selection of ten folds represents a practical 
compromise: employing fewer folds increases the risk of 
overfitting, whereas a larger number becomes 
computationally expensive, approaching the 
computationally intensive leave-one-out CV method. By 
leveraging ten-fold CV, the model is exposed to a diverse 
range of data during training and testing, leading to a more 
reliable assessment of its ability to generalize to unseen 
data and significantly mitigating the risk of overfitting to 
the training data. 

5.3 Gradient boosting approach  

Boosting is a formidable ensemble learning technique in 
the realm of machine learning. It excels at elevating model 
performance by strategically combining multiple "weak 
learners" into a single, highly accurate "strong predictor." 
The core principle behind boosting lies in the sequential 
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training of these weak models. Each subsequent model 
meticulously focuses on the in-stances that were 
misclassified by the previous models. This iterative 
process involves adjusting the weights of the training 
examples, effectively forcing the following weak learners 
to concentrate on the challenging samples. By 
progressively refining the focus on these difficult 
instances, boosting algorithms gradually enhance the 
overall accuracy of the model. This process of 
aggregating the predictions from multiple weak models 
into a single, robust model has been demonstrably 
effective in significantly reducing both bias and variance. 
This makes boosting a highly potent approach for tackling 
complex machine learning challenges. 

5.4 Attribute Selection 

The correlation between the parameters may affect the 
ability of the model to forecast. Therefore, the analysis of 
input data is an important pre-processing technique 
beneficial for quality control, and through data mining, we 
can select more influen-tial parameters for lithology 
detection, reduce the dimension of the input parameter 
data, reduce overfitting, and improve accuracy. In this 
study, the importance of the features was evaluated for the 
prediction models. According to attribute rank, the major 
features contributing to lithology prediction were 
determined. This study employs several feature selection 
algorithms, including InfoGain, Relief, and OneR. To 
illustrate the feature selection process, we showcase the 
application of the Relief algorithm in detail. The results of 
this application are presented in Figure 4. 

 
Fig.4. Importance rate of each feature for Relief algorithm. 

Figure 4 presents a visual ranking of input variables 
based on their influence on lithology prediction using well 
log data. Depth emerges as the most significant feature, 
serving as a fundamental contextual element. Depth data 
impacts various aspects of analysis, including 
interpretation of well log responses, identification of 
formation boundaries, tracking of facies variations, and 
understanding of diagenetic effects. The inclusion of 
depth information demonstrably enhances the accuracy 
and efficiency of lithology classification within machine 
learning models. Table 2 presents datasets 1-8, which 
served as the foundation for a comprehensive evaluation 
of the models' prediction capabilities. This evaluation 
encompassed a wide variety of log parameter values to 

ensure the robustness of the models across different 
scenarios. 

Table 2. Datasets of different functional forms. 

Datasets Log parameters 
1 Depth, RHOB, GR, LLD 
2 Depth, RHOB, GR, LLD, RES 
3 Depth, LLD, ML 
4 Depth, DT, LLD, LLS, RES 
5 Depth, NBHI, RHOB, GR 
6 Depth, NBHI, RHOB, GR, DT 
7 Depth, RHOB, GR, LLS 
8 Depth, RHOB, GR, LLS, RES 

5.5 Model performance with different parameter sets  

Figure 5 presents an analysis of how well logging features 
influence the performance of various modeling algorithms 
across different parameter sets. The evaluation metric em-
ployed is accuracy. 

 
Fig.5. Performance of model with different parameter sets. 

As shown from Figure 5 The LMT model exhibits 
consistent performance with accuracies ranging from 
83.63% to 87.00%. This stability makes it a dependable 
option, although its accuracy falls within a moderate to 
high range compared to other models. 

The HT model demonstrates higher variability in 
accuracy across the parameter sets, achieving a minimum 
of 50.31% and a maximum of 57.73%. This inconsistency 
suggests the need for further optimization to enhance its 
stability.  The J48 model performs well, consistently 
maintaining accuracy levels above 84% across all sets. 
This consistent performance establishes its reliability for 
this dataset.   The REPT model displays relatively stable 
performance with accuracies ranging from 81.99% to 
84.55%. While demonstrating stability, its accuracy falls 
slightly below other models. The RF model stands out by 
consistently achieving the highest accuracy across all 
parameter sets, ranging from 90.36% to 91.76%. This 
exceptional performance makes it the most accurate and 
reliable model for this specific dataset.  The RT model 
demonstrates a high level of accuracy, with values 
ranging from 86.72% to 89.60%. While exhibiting strong 
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performance, its accuracy remains slightly lower 
compared to the RF model. 

The analysis reveals that the RF  model surpasses all 
other models in terms of accuracy across all parameter 
sets. This exceptional performance establishes it as the 
most reliable choice for this dataset. J48 and LMT models 
also demonstrate strong and consistent performance, 
making them dependable alternatives. The HT model 
requires further optimization for improved consistency. 
These findings provide valuable insights for selecting the 
most suitable model based on the specific requirements of 
the dataset. 

5.6 Model Performance and Parameter Sensitivity in 
Lithology Prediction 

Figure 6 illustrates the relationship between the number 
of logging parameters utilized and the accuracy achieved 
by various lithology prediction models.  

 

Fig.6. Influence of logging parameters on lithology prediction. 
As shown from Figure 6 as the number of logging 

parameters increases, the accuracy of most models 
improves, with some exceptions.  The RF model 
consistently outperforms the other models, achieving the 
highest accuracy across all parameter counts. With just 
one parameter, RF achieves an accuracy of 83.60%, 
which is significantly higher than the other models. As 
more parameters are added, the RF accuracy further 
increases, reaching 88.87% with eight parameters.  The 
LMT, REP, and J48 models exhibit similar trends, with 
accuracy steadily rising as more parameters are included. 
LMT and J48 achieve comparable results, with LMT 
slightly outperforming J48 in most cases. The HT model 
demonstrates the lowest and most stable accuracy across 
all parameter counts, ranging from 55.54% to 57.50%. 
This suggests that HT is less sensitive to the number of 
logging parameters compared to the other models.  The RT 
model shows a significant improvement as more 
parameters are added, reaching 81.57% with eight 
parameters. This indicates that RT benefits greatly from 
the inclusion of more logging parameters. 

In conclusion, the RF model consistently outperforms 
the other models in lithology prediction, and its accuracy 
improves as more logging parameters are included. The 
LMT, REPT, and J48 models also show promising results, 
with accuracy increasing as more parameters are added. 
The HT model demonstrates the lowest and most stable 

accuracy, while the RT model exhibits a significant 
improvement in accuracy with the addition of more 
parameters. 

6 Results and discussion 

6.1 Evaluation of Machine Learning Algorithms 

In this study, various evaluation metrics were used to as-
sess the performance of classification models. These met-
rics included classification accuracy (AC), precision (Pr), 
recall (R), F-measure (F1), ROC area and the PRC area in 
order to more thoroughly assess the effectiveness of the 
learning model and the impact of lithology identification. 
Every classification model was assessed using ten-fold 
cross-validation. In Table 3, metrics scores for various 
models are presented.  

Table 3. Average of evaluation metrics for different models- 
cross validation and training. 

Model Data Pr R F1 ROC 

RT  
CV 0.895 0.896 0.895 0.927 
TR 0.901 0.902 0.901 0.935 

RF  
CV 0.919 0.92 0.919 0.988 
TR 0.913 0.914 0.913 0.985 

REPT  
CV 0.83 0.833 0.831 0.943 
TR 0.798 0.798 0.798 0.924 

LMT  
CV 0.835 0.836 0.835 0.927 
TR 0.833 0.833 0.833 0.928 

J48  
CV 0.848 0.85 0.848 0.897 
TR 0.837 0.84 0.837 0.891 

HT  
CV 0.452 0.552 0.427 0.614 
TR 0.525 0.538 0.516 0.737 

Evaluation revealed that the Random Tree (RT) 
algorithm achieved strong performance on both datasets. 
Across all metrics (Precision, Recall, F1, and ROC AUC), 
RT scored above 0.89 for cross-validation and above 0.90 
for training. While the Random Forest (RF) model also 
performed well, it fell slightly behind RT. RF secured F1 
scores exceeding 0.91 and ROC AUC exceeding 0.98 on 
both datasets, with Precision and Recall mirroring this 
high performance. 

Among the well-performing models, REPT exhibited 
the lowest scores. Its F1 scores hovered around 0.83, ROC 
AUC scores around 0.94, and both Precision and Recall 
remained near 0.83. The LMT demonstrated comparable 
performance to REPT, although achieving slightly better 
results on average. LMT's F1 score was approximately 
0.83, ROC AUC around 0.93, and Precision and Recall 
scores both close to 0.83. 

The J48 algorithm displayed lower performance 
compared to the previous three models. Its F1 scores 
averaged around 0.84, ROC AUC scores around 0.89, and 
both Precision and Recall scores settled at approximately 
0.84. Finally, the Hoeffding Tree  model exhibited the 
weakest performance overall. HT's F1 scores were around 
0.43, ROC AUC scores around 0.61, and both Precision 
and Recall scores remained close to 0.5. The table 
suggests that the RT and RF models are the best 
performing models overall. They achieve the highest 
scores on all four metrics, and their performance is 
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consistent across both datasets. This suggests that they are 
not overfitting the training data. The remaining models 
(REPT, LMT, J48, and HT) all have lower performance. 
Overall, the table shows that RT and RF are the best 
performing models on this task. 

Investigation of performance of tree models to identify 
different types of lithology is presented in Figure 7. 

 

 

 

 

 

 

Fig. 7. Performance of tree models in identifying lithology 
classes: a) HT; b) J48; c) REPT; d) LMT; e) RF; f) RT 

Analysis of the models' performance reveals that the 
RF model consistently achieves the highest precision, 
recall, and F-measure scores for both dolomite and 
limestone identification (Figure 7). This indicates that RF 

is the most accurate and reliable model for these tasks. For 
dolomite identification specifically, the RF model (Figure 
7-e) outperforms all others with a precision of 0. 976, 
recall of 0. 993, and F-measure of 0. 985. While the REPT 
model (Figure 7-c ) also exhibits strong performance with 
a very high recall (0. 986) and F-measure (0. 980), its 
precision (0. 973) falls slightly behind RF. The LMT 
model (Figure 7-d), on the other hand, demonstrates the 
lowest performance for dolomite identification, with all 
three metrics (precision: 0. 816, recall: 0. 813, F-measure: 
0. 815) significantly lower than the other models. Similar 
to dolomite identification, the RF model reigns supreme 
for limestone with a precision of 0. 927, recall of 0. 940, 
and F-measure of 0. 933. Both the REPT and RT models 
display promising performance for limestone. REPT 
achieves a slightly higher precision (0. 872), while RT 
(figure 7-f) boasts a higher recall (0. 912) and F-measure 
(0. 913). Conversely, the HT model struggles significantly 
with lime-stone identification, exhibiting the lowest 
precision (0. 476), recall (0. 602), and F-measure (0.532) 
among all models. The RF model emerges as the clear 
leader for identifying both dolomite and limestone, 
consistently achieving the highest performance metrics. 
While the REP and RT models demonstrate strong 
capabilities, they fall short of RF's overall accuracy.HT 
model performs figure 7-a) the weakest, particularly for 
limestone identification, and the LMT exhibits the lowest 
performance for dolomite. 

6.2 Confusion matrix  

The confusion matrix was utilized to compare the 
performance of different models in classifying lithology 
classes. The confusion matrix presents the percentage of 
correctly classified instances for each lithology class. It 
highlighted instances where certain lithology classes were 
incorrectly identified as others.  The confusion matrix of 
the lithologic classes, derived with an optimal technique, 
is shown in Table 4. 
Table 4. Confusion matrix for different optimized classifiers 
using cross validation.  a- j48, b- LMT, c- RT, d- RF, e- REPT 

A
ct

ua
l c

la
ss

 
 

Sh 22.36 3.33 0.34 0.62 0.02 
S 2.28 49.37 0.52 0.02 0.01 
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LS 0.36 0.01 0.12 10.89 0.10 
DM 0.04 0.03 0.04 0.11 1.13 
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Sh 21.74 3.82 0.36 0.76 0.00 
S 2.88 48.68 0.62 0.01 0.01 

SS 0.64 1.27 6.12 0.19 0.05 
LS 0.52 0.03 0.15 10.73 0.07 
DM 0.04 0.02 0.06 0.14 1.09 

 Sh S SS LS DM 
  Predicted class (b) 
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Sh 17.76 4.77 0.94 0.81 0.07 
S 4.50 41.57 1.46 0.10 0.07 

SS 0.98 1.57 4.71 0.21 0.08 
LS 0.77 0.14 0.24 9.17 0.17 
DM 0.07 0.06 0.06 0.08 9.64 
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Sh 21.4 4.25 0.25 0.80 0.00 
S 1.95 49.93 0.31 0.00 0.01 

SS 0.82 1.76 5.45 0.21 0.02 
LS 0.25 0.07 0.09 11.00 0.09 
DM 0.07 0.04 0.03 0.10 1.11 

 Sh S SS LS DM 
  Predicted class (d) 

A
ct

ua
l c

la
ss

 
 

Sh 19.35 3.96 0.31 0.73 0.00 
S 2.69 44.47 0.50 0.01 0.02 

SS 0.74 1.34 5.28 0.15 0.05 
LS 0.38 0.05 0.12 9.85 0.10 
DM 0.02 0.03 0.01 0.03 9.80 

 Sh S SS LS DM 
  Predicted class (e) 

6.3 Performance analysis of the Boosting algorithm  

Boosting techniques, specifically AdaBoost meta-learners 
combined with classification tree models, were employed 
to enhance model performance. 

As shown in the Figure 8, the boosting method yielded 
improved performance metrics compared to all other 
algorithms. 

 

 

 

 

Fig. 8. Evaluation of individual and boosted model 
performance on: a) Precision) Recall) F-Measure; d) Matthews 
Correlation Coefficient. 

The application of boosting significantly enhanced the 
performance of all machine learning models evaluated in 
this study. The most substantial improvement was 
observed in the Matthews Correlation Coefficient (MCC) 
metric. Boosting the REPT model yielded the largest 
increase in MCC (0.278), followed by the LMT model 
(0.128) and the RT model (0.12). 

Furthermore, boosting led to modest improvements in 
precision (0.01 to 0.03) for all models except the LMT 
model, which experienced a slight decrease (0.01). 
Similarly, recall and F1-measure exhibited modest 
increases (0.01 to 0.03) for all models except the REPT 
model, where recall decreased slightly (0.005). Overall, 
boosting demonstrably improved the performance of all 
machine learning models on this task. The average 
improvement across all models was most evident in the 
MCC metric, with an increase of 0.176. It is crucial to 
acknowledge that the magnitude of improvement due to 
boosting can vary depending on the specific dataset and 
machine learning models employed. It is concluded that, 
ensemble methods such as boosting offer a powerful 
approach to enhancing the performance of machine 
learning models. 

In figure 9, we evaluate the performance of individual 
and boosted models on various metrics, including 
precision, recall, F-measure, and the Matthews 
Correlation Coefficient. 

 

 

 

Fig. 9. Performance comparison of individual and boosted 
models. a) classification accuracy; b) classification error; c) 
RMSE; d) MAE. 

Our findings reveal a consistent improvement in 
performance when employing boosted models compared 
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to their individual counterparts. This enhancement is 
evident across metrics that quantify both correctly 
classified instances and the magnitude of errors. For 
instance, the boosted RT model achieves an impressive 
89.25% accuracy in classifying instances, surpassing the 
81.57% achieved by the individual RT mod-el. This 
translates to a noteworthy improvement of 7.68%. 
Similarly, the boosted RT model exhibits a lower mean 
absolute error (MAE) of 0.0438 compared to the 
individual RT model's MAE of 0.0737, rep-resenting a 
reduction of 41.3%. 

Furthermore, the kappa statistic, a measure of 
agreement between predicted and actual classes, 
demonstrates a positive impact from boosting. The 
boosted RT model boasts a kappa statistic of 0.8288, 
which is demonstrably higher than the 0.7093 achieved by 
the individual RT model. This translates to a significant 
improvement of 0.1195. The observed improvements in 
the kappa statistic ranged from 0.008 for J48 to 0.055 for 
LMT, highlighting the broad applicability of boosting 
across different model types. 

The relative robustness and resistance to overfitting 
exhibited by boosted models are further corroborated by 
the relative absolute error and root relative squared error 
(RRSE) metrics. The boosted RT model demonstrates a 
superior performance with an RRSE of 54.3481, which is 
considerably lower than the 76.1253 observed for the 
individual RT model. This substantial reduction of 28.4% 
underscores the effectiveness of boosting in mitigating 
overfitting tendencies. 

In conclusion, these results provide compelling 
evidence that boosting offers a powerful strategy for 
enhancing the performance of individual models. Boosted 
models consistently achieved superior accuracy, lower 
error rates, and improved agreement with actual 
classifications, demonstrating their effectiveness in this 
domain. The prediction capabilities of the models were 
evaluated using different datasets. Figure. 10 shows the 
prediction accuracy of different algorithms based on 
various datasets. 

 

Fig. 10. Prediction performance of different models using 
various datasets. 

The analysis reveals that the models exhibited 
comparable accuracy levels for set-3 and set-1. In 
particular, the J48 model demonstrated superior 
performance across both datasets, followed by the LMT 
model, while the HT model showed the lowest 
performance. The highest accuracy was achieved with set-
3 across all models. Consistently, J48, LMT, REPT, and 

RF yielded similar results across various datasets. In 
contrast, the HT model consistently displayed the lowest 
accuracy across all three datasets. 

6.4 Assessing the Generalizability of Tree-Based 
Models 

In order to evaluate the model's ability to generalize to 
unseen data and assess its susceptibility to overfitting, the 
study employed three distinct datasets: training, cross-
validation, and testing. The dataset was divided into three 
subsets for model development and evaluation. A total of 
60% (12580 data points) of the data points were allocated 
for training the model. This allows the model to learn the 
underlying relationships within the data. An additional 
20% (4193 data points) were designated for testing the 
model's performance on unseen data. This independent set 
helps assess the model's ability to generalize to new 
information. The remaining 20% (4193 data points) were 
used for cross-validation, a technique that iteratively splits 
the data for training and evaluation to ensure the 
robustness of the model's performance. The Figure 11 
illustrates the performance comparaison of the Random 
Forest and J48 decision tree models across these three 
datasets. Figure 11 clearly illustrates that the Random 
Forest (RF) model achieves a perfect fit on the training 
data, with an accuracy of 100%.  

 

This is expected, given that the model is trained on 
this data and optimized to minimize the error. However, 
the cross-validation accuracy drops significantly to 
86.14%, indicating that the model's performance does not 
generalize well to unseen data. The testing accuracy is 
marginally higher at 86.65%, indicating a slight improve-
ment in the model's performance on unseen data. The RF 
model's performance is comprehensively evaluated across 
three datasets: training, cross-validation, and testing. 
While the model excels on the training data, it generalizes 
poorly to unseen data. The cross-validation and testing re-
sults collectively suggest that the model may be overfit-
ting the training data and not generalizing well to new 
data. To enhance the model's performance, techniques 
such as regularization, feature selection, or ensemble 
methods could be employed to mitigate overfitting and 
improve generalization. 

The J48 model exhibits a significant discrepancy be-
tween its performance on the training data (94 %) and 
both the cross-validation and testing datasets (79 %). This 
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stark difference suggests that the model may be overfit-
ting the training data. Overfitting occurs when a model 
becomes overly attuned to the specific patterns and idio-
syncrasies within the training data. While this leads to ex-
ceptional performance on the training set itself, the model 
fails to capture the underlying generalizable trends. Con-
sequently, its ability to accurately classify new, unseen 
data suffers. In this case, the J48 model has meticulously 
learned the intricacies of the training data, resulting in 
high training accuracy. However, this success comes at 
the cost of generalizability. The model struggles to adapt 
to the variations present in the cross-validation and testing 
datasets, leading to a significant drop in accuracy. The J48 
model's performance highlights the importance of consid-
ering generalizability when selecting a model.  

6 Conclusions 

This study investigated the effectiveness of machine 
learning models for lithology classification, employing a 
combination of data preprocessing, feature selection, hy-
perparameter tuning, and class imbalance mitigation 
techniques. Three well-logging datasets were utilized, 
and model evaluation was conducted rigorously through 
training, cross-validation, and further experimentation. 

The study identified the crucial role of data prepro-
cessing in improving classification accuracy. Feature se-
lection algorithms like InfoGain, Relief, and OneR 
played a vital role in selecting informative parameters 
for lithology detection. This not only reduced overfitting 
but also enhanced prediction accuracy. 

Hyperparameter tuning using a ten-fold cross-vali-
dation approach yielded optimal configurations, signifi-
cantly improving the models' predictive capabilities. 
This is particularly evident in the case of the Random 
Forest model, where accuracy rose from 88.2% to 92.1% 
after applying SMOTE (Synthetic Minority Over-
sampling Technique) for class imbalance correction. 
This finding highlights the potential of combining 
SMOTE with machine learning algorithms for perfor-
mance optimization. 

Furthermore, the AdaBoost meta-learner, when 
combined with classification tree models, emerged as a 
highly effective approach. This boosting technique 
achieved superior performance metrics compared to indi-
vidual models, reaching a remarkable accuracy of 
89.25% in classifying lithological instances. This signifi-
cantly surpassed the 81.57% accuracy achieved by the 
individual decision tree model (RT). 

Overall, the study revealed that the Random Forest 
model outperformed other methods for lithology identifi-
cation. This is further solidified by its precision (0.913), 
recall (0.914), and F-score (0.913) values. These findings 
demonstrate the efficacy of machine learning, particularly 
Random Forest models, for accurate lithology classifica-
tion when combined with appropriate data manipulation 
and optimization techniques. 
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