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Abstract. This study introduces an integrated method for incorporating flow properties from special core 
analysis (SCAL) experiments into rock type definitions for comprehensive reservoir characterization. The 
method involves generating rock types based on pore geometry-structure (PGS) similarity using porosity 
and permeability data. Flow properties from SCAL simulations are parameterized to analyze endpoint 
saturations and Corey curve shapes for each SCAL experiment. These parameters are stored in a SCAL 
database and analyzed against initial water saturation, porosity, and permeability. A case study from the 
Norwegian Continental Shelf demonstrates this approach, resulting in the establishment of 11 rock types 
based on PGS rock type curves, later generalized into 6 groups. Each rock type is equipped with 
representative saturation functions, including base-case, optimistic, and pessimistic bounds. Aggregated 
SCAL experiments develop representative saturation functions consistent with wettability and rock 
properties for full-field application. This method enables the parameterization, utilization of trend models, 
and identification of analogs from the database, resulting in well-defined saturation functions. The resulting 
relative permeability and rock types are suitable for full-field reservoir simulations, uncertainty analyses, 
and field performance assessments.

1 Introduction  
Rock typing plays a crucial role in reservoir 
characterization, particularly in enhancing the evaluation 
of complex reservoir rock properties such as permeability 
prediction, distribution of static water saturation based on 
saturation height models, and characterization of dynamic 
flow behavior based on relative permeability. Various 
rock typing methods have been developed and widely 
implemented in numerous case studies, encompassing 
sandstone [1], carbonate [2], and other intricate reservoir 
rocks like naturally fractured basement [3] and 
unconventional organic-rich shale [4]. 

Currently, the oil and gas industry extensively 
employs a multitude of rock typing methodologies, 
drawing from geological, engineering, rock physics, and 
geostatistical approaches across different scales. These 
methods range from simple empirical approaches [5-8], 
utilizing permeability, porosity, and irreducible water 
saturation data, to more complex hydraulic flow unit 
methods [9, 10, 11]. Some methodologies also incorporate 
capillary pressure data and the J-function [12, 13, 14], and 
radius r35 measurements [15, 16]. Geological 
descriptions based on petrographic data, including rock 
fabric, depositional environment, texture, and 
depositional facies, are also commonly considered [17, 
18, 19]. Additionally, geostatistical techniques such as 

clustering [20], self-organizing maps [21], and fuzzy logic 
[22] are frequently utilized. 

In terms of relative permeability trend modeling, 
Ebeltoft et al. [23] introduced a method utilizing LET 
relative permeability parameters developed by Lomeland 
et al. [24]. This approach aims to ensure wettability-
consistent flow properties, capture uncertainty in relative 
permeability for full-field applications and generate 
synthetic relative permeability data from analog special 
core analysis (SCAL) databases. 

This paper proposes a versatile workflow integrating 
reservoir rock typing based on pore geometry-structure 
(PGS) rock typing methods and newly developed Corey 
flow parameters-based trend modeling. This integrated 
approach aims to enhance reserves assessment during 
reservoir simulation and field development panning of a 
recent oil and gas discovery on the Norwegian 
Continental Shelf (NCS).  

2 Study Workflow 
Based on Figure 1, we commenced the study workflow 

by thoroughly quality checking the core data (RCA and 
SCAL) along with other pertinent information to ensure 
the accuracy and appropriateness of all data utilized in this 
study. Subsequently, we applied the PGS method for rock 
typing, incorporating RCA and SCAL data, and 
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seamlessly integrated them into Corey trend modeling to 
establish rock physics functions for each rock type, 
facilitating both static and dynamic reservoir modeling. 
Following this, we estimated the SCAL uncertainty range 
for each rock type and integrated it into the 3D dynamic 
model. 

Once all input data were assimilated into the reservoir 
models, we conducted production forecasts using 
sensitivity and uncertainty workflows to evaluate the 
better uncertainty of the reserve evaluation of this Field X 
discovery.  

 

Fig. 1. Study workflow of this study. 

3 Data Used 

The data used in this study were derived from an oil and 
gas discovery case on the Norwegian Continental Shelf 
(NCS) with a focus on core analyses and 3D dynamic 
modeling.  

We began by conducting a quality check of the 
Routine Core Analysis (RCA) data and then analyzed the 
interpreted SCAL results from the Sendra Cloud Core 
Flood Simulator. One example of the relative 
permeability correction through coreflood simulation is 
presented in Figure A-1 in the appendix page. Out of 
1,477 core samples from the RCA data, we utilized 1,242 
samples, incorporating eight samples in a clean state and 
13 in a restored state from the SCAL analyses, which 
included capillary pressure and relative permeability. 
Some data were excluded from the evaluation due to 
reasons such as non-representative data, excessively low 
porosity and permeability, unreliable measurements, 
amorphous samples, and experimental errors. 

4 Pore Geometry-Structure Rock Typing 

This investigation employs the concept of pore geometry-
structure rock typing. Rock samples are classified 
following the rock type curve proposed by Wibowo and 
Permadi [25], which relies on the similarity of the Kozeny 

constant [26]. This constant is derived from the product of 
the pore shape factor (Fs) and tortuosity (τ). The specific 
internal surface area (Sb) serves as a parametric variable 
for each rock group. This method of rock grouping 
facilitates the examination of key factors systematically 
influencing the capillary pressure [27, 28, 29] and relative 
permeability groups [30] especially irreducible water 
saturation. The rearranged Kozeny equation in PGS rock 
typing can be expressed in two forms: 
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Here, k represents permeability and ϕ denotes porosity. 
The term (k/ϕ)0.5 characterizes pore geometry, often 
referred to as the "mean hydraulic radius", while (k/ϕ3) is 
termed the "pore structure", encompassing all aspects of 
the internal structure of pore spaces. The additional 
parameters τ, FS, and Sb  represent tortuosity, pore shape 
factor, and specific internal surface area, respectively. 
Equation 1 can be reformulated as a power-law equation 
for rock typing: 
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 Plotting (k/ϕ)0.5 against (k/ϕ3) on a logarithmic scale 
results in a straight line with a constant a=1 and a 
maximum exponent slope b=0.5 for perfectly rounded 
pore shapes and smooth capillary tubes. For natural 
porous rocks, the value of b must be less than 0.5. The 
lower the b value, the more complex the pore system of 
the rock. The constant a serves as a correction factor for 
volumetric fluid flow efficiency in irregular pore systems 
[25, 27]. 

 As illustrated in Figure 2(a), eleven rock types (RT-4 
to RT-15) were identified using the PGS type curve, 
where the rock samples align. However, for 
simplification, we categorized the rock types into six 
groups and assigned them new names as follows: 

• Group 1: Samples falling on the RT-4 line. 

• Group 2: Samples falling on the RT-5 line. 

• Group 3: Samples falling on the RT-6 line. 

• Group 4: Samples falling on the RT-7 line. 

• Group 5: Samples falling on the RT-8 line. 

• Group 6: Combination samples falling between 
RT-9 and RT-15 lines. 

 If we translate this PGS plot into porosity vs. 
permeability, the grouping results can be seen in Figure 
2(b). The border in each rock type was determined based 
on the study of Wibowo [27]. 
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Fig. 2. (a) Rock typing results based on PGS rock type curves; (b) porosity-permeability cross plot with the PGS rock typing results. 
(c) permeability-initial water saturation cross plot grouped by PGS rock typing results. 

 

 Moreover, the initial water saturation (Swi) from 
Dean-Stark (DS) analysis exhibits a good correlation 
against absolute permeability with distinguishable group 
in each rock type based on the PGS method.  

 Subsequently, the resulting rock types were spatially 
distributed within the existing 3D static model. The study 
utilized static and dynamic 3D models comprising 
approximately 3.8 million grid cells, delineating eight 

reservoir regions. Each grid cell has a lateral resolution of 
50m x 50m and a vertical resolution of 1m. The 
distribution of rock types within these models was 
determined based on existing 3D petrophysical properties 
(Figure 3), including porosity, permeability, net-to-gross 
(NTG) ratio, and static water saturation. The vertical 
distribution of rock types in well sections and their lateral 
distribution in 3D space can be observed in Figures 3 and 
4, respectively. 

 

Fig. 3. Porosity, Permeability, and PGS rock type distributions in 3D model. 
 

y = 0.0022x-6.006

R² = 0.538

0.001

0.01

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rm

ea
bi

lit
y 

(m
D)

Swi (frac.)

0.1

1

10

100

1000

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

(k
/ɸ

)0
.5

(k/ɸ3)

RT-1 RT-2 RT-3 RT-4 RT-5

RT-6

RT-7

RT-8

RT-9

RT-10

RT-11

RT-12

RT-13

RT-14

RT-15

RT-16

RT-17

RT-18

RT-19

RT-20

PGS Rock Type 
RT-1 RT-2 RT-3 RT-4 RT-5

RT-6

RT-7

RT-8

RT-9

RT-10

RT-11

RT-12

RT-13

RT-14

RT-15

RT-16

RT-17

RT-18

RT-19

RT-20

RT-1 RT-2 RT-3 RT-4 RT-5

RT-6

RT-7

RT-8

RT-9

RT-10

RT-11

RT-12

RT-13

RT-14

RT-15

RT-16

RT-17

RT-18

RT-19

RT-20

RT-1 RT-2 RT-3 RT-4 RT-5

RT-6

RT-7

RT-8

RT-9

RT-10

RT-11

RT-12

RT-13

RT-14

RT-15

RT-16

RT-17

RT-18

RT-19

RT-20

(a)

(c)

PGS Rock Type

PGS Rock Type

0.001

0.01

0.1

1

10

100

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Pe
rm

ea
bi

lit
y 

(m
D)

Porosity (frac.)

(b)
PGS Rock Type

Porosity Permeability PGS Rock Typing

Well 1S

Well 2S

Well 1A
Well 1S

Well 2S

Well 1A
Well 1S

Well 2S

Well 1A



The 37th International Symposium of the Society of Core Analysts 

 

Fig. 4. Porosity, Permeability, and PGS rock type distributions 
in well section. 

5 Corey Trend Modelling 

SCAL trend modeling is an automated and 
comprehensive workflow designed to derive 
representative saturation functions suitable for full-field 
applications [23, 31]. This process involves 
parameterizing flow properties to analyze endpoint 
saturations and curve shapes for each SCAL experiment 
individually. The resulting parameters are stored in a 
SCAL database along with plug data, experimental 
conditions, and geo-references such as well name, plug 
depth, and fluid viscosities at reservoir conditions. 
Multiple parameterized SCAL experiments are then 
combined to generate representative saturation functions 
for full-field applications, ensuring consistency with 
wettability and rock properties. The development of 
SCAL modeling is grounded in the underlying theory of 
wettability, reservoir physics, and the observed behavior 
of a substantial dataset from the Norwegian Continental 
Shelf. 

Corey trend modeling is a novel development in this 
study, adopting the concept upon previous work by 
Ebeltoft et al. [23]. The Corey relative permeability is 
formulated as follows: 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟0 (1− 𝑆𝑆𝑤𝑤∗ )𝑛𝑛𝑟𝑟           (4) 

𝑘𝑘𝑟𝑟𝑤𝑤 = 𝑘𝑘𝑟𝑟𝑤𝑤0 (𝑆𝑆𝑤𝑤∗ )𝑛𝑛𝑤𝑤            (5) 

𝑆𝑆𝑤𝑤∗ = 𝑆𝑆𝑤𝑤−𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤
1−𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤−𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤

             (6) 

𝑘𝑘𝑟𝑟𝑟𝑟0  is the end point relative permeability to oil at 
irreducible water saturation (Swir) and 𝑘𝑘𝑟𝑟𝑤𝑤0 is the end point 
relative permeability to water at residual oil saturation 
(Sorw). Meanwhile no and nw are the curve shape of Corey 
exponent for oil and water, respectively.  

In Corey correlation, each flow parameter is linked 
to individual trend models, determined as functions of Swi. 
These models, grounded in physics and wettability 
principles, are calibrated using a SCAL database. 
Designed to replicate the typical scatter observed in 
experimental data, these trend models yield relative 
permeability curves while adhering to wettability and 
physical characteristics governing multi-phase flow in 
porous media. Each model is meticulously calibrated to 
match the field-specific SCAL data, with a focus on 
water-oil imbibition. 

The formulation of the trend modeling is a 
simplification from the previous study by Ebeltoft et al. 
[23], maintaining identical trend behavior of initial water 
saturation against residual oil saturation, end-point 
relative permeability to water, and Corey exponents of oil 
and water. Modified from Lomeland et al. [31], we have 
derived the correlation between Swi and Sorw [31] as 
follows: 

𝑆𝑆𝑟𝑟𝑟𝑟𝑤𝑤 = 𝐶𝐶𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤 + �𝐴𝐴𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤 − 𝐶𝐶𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤 + 𝐵𝐵𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤 × 𝑆𝑆𝑤𝑤𝑤𝑤
𝑀𝑀𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤� × (1 − 𝑆𝑆𝑤𝑤𝑤𝑤)𝑂𝑂𝑆𝑆𝑜𝑜𝑤𝑤𝑤𝑤               (7) 

The typical trend for this relationship is shown in 
Figure 5(a) and coincides with the wettability study by 
Spiteri et al. [32]. The trend is consistent with increasing 
Sorw by increasing Swi until a maximum is reached where 
Sorw decreases with increasing Swi. 

Fig. 5. Typical trend models for (a) Sorw vs. Swi by use of 
Equation 7; (b) end-point relative permeability to water as a 
function of Swi by use of Equation 8; (c) Corey exponent of 

oil, no vs. Swi; (d) Corey exponent of water, nw vs. Swi. 
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Relative permeability and wettability are known to 
be correlative [33]. Enhanced water-wettability typically 
leads to lower endpoint relative permeability to water [34] 
and a broader suppression of relative permeability to 
water across the entire mobile saturation range. This 
relationship between Swi and wettability forms the 
foundation for the trend model connecting endpoint water 
relative permeability to Swi, as developed by Lomeland et 
al [23, 31] and represented by Equation 8. However, in 
this context, the model is further refined with the inclusion 
of maximum parameter AKrw and minimum parameter 
CKrw to enhance its general applicability. 

𝐾𝐾𝑟𝑟𝑤𝑤 = 𝐶𝐶𝐾𝐾𝑤𝑤𝑤𝑤 + ��𝐴𝐴𝐾𝐾𝑤𝑤𝑤𝑤 − 𝐶𝐶𝐾𝐾𝑤𝑤𝑤𝑤� × (1 − 𝑆𝑆𝑟𝑟𝑟𝑟𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤)𝑂𝑂𝑘𝑘𝑤𝑤𝑤𝑤�          (8) 

The typical trend model illustrating the relationship 
between end-point relative permeability to water 
(krw(Sorw)) and Swi is depicted in Figure 5(b). This model 
aligns with the understanding that an increase in Swi 
correlates with heightened water-wettability, resulting in 
decreased relative permeability to water. The trend model 
for krw(Sorw) is intricately linked to the trend model for Sorw 
versus Swi presented in Figure 5(a). A low Swi corresponds 
to a low Sorw, thereby yielding a high krw(Sorw). 
Conversely, while a high Swi also corresponds to a low 
Sorw, it also signifies significantly water-wet conditions, 
leading to a lower krw(Sorw). 

The shapes of the relative permeability curves are 
delineated by Corey parameters for oil and water. It's 
crucial that the trend models for these parameters 
accurately reflect the changes in wetting behavior as Swi 
varies. Figure 5(c) illustrates typical trend models for 
Corey shape parameters for oil. As Swi increases, the 
system becomes more water-wet, leading to higher oil 
relative permeability, consistent with the trend models 
displayed. Similarly, trend models for Corey parameters 
for water are depicted in Figure 5(d). These models align 
with the notion that increasing Swi induces a more water-
wet system, resulting in lower relative permeability and a 
more depressed shape of the water curve. Conversely, a 
shift towards more oil-wet behavior corresponds to higher 
water relative permeability. 

6 Field-Specific Trend Models  

Wettability and relative permeability are influenced not 
only by Swi but also by the chemical interactions among 
crude oil, brine, and rock (COBR) [34-40], as well as by 
geological characteristics such as mineralogy, clay 
content, and pore size distribution. Therefore, it is crucial 
to refine the trend model to integrate insights from special 
core analysis measurements specific to the field under 
study. This process involves interpreting relevant SCAL 
experiments and parameterizing all relative permeabilities 
according to the Corey formulation. These parameters, 
along with plug data and geo-references (well name, 
depth, formation name, etc.), are stored in a SCAL 

database, enabling the calibration of individual trend 
models to the field-specific properties. 

The calibrated trend models, depicted in Figure 6, 
incorporate orange points representing plug 
measurements from oil discovery X. Three models are 
introduced, including a base model bounded by high and 
low models, effectively capturing the scatter present in the 
SCAL data and providing a field-specific trend model for 
Sorw versus Swi, along with a range of uncertainty. 
Calibration, conducted via visual inspection guided by the 
described trend models and field-specific SCAL data, 
offers several advantages, including easy identification of 
outliers, straightforward evaluation of data scatter, and 
rapid calibration of trend models to encompass base-case 
trends along with high and low bounds for uncertainty. 

Fig. 6. Relative permeability data (upper figure) and trend 
modelling of a specific oil discovery from the NCS from 

Formations of Ra, UI and LI. Black lines in trend modelling 
exhibit the expected model, bounded by high and low trends in 
green and red to capture uncertainty. (a) Sorw vs. Swi; (b) end-

point relative permeability to water as function of Swi; (c) 
Corey exponent of oil, no vs. Swi; (d) Corey exponent of water, 

nw vs. Swi. 

Once all Corey parameters are calibrated, full-field 
relative permeability curves are generated using field-
specific trend models incorporating defined PGS rock 
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types. A summary of parameterized relative permeability 
and averaged Swi in each rock type, along with its 
uncertainty span, is presented in Table 1. 

Table 1. Parameterized SCAL Summary for each PGS rock type 

 

Throughout this paper, Swi refers to saturation 
established at high capillary pressure using a porous plate 
or centrifuge around 12.6 bar, including Swi measured 
from Dean-Stark, closely resembling irreducible water 
saturation (Swir). Consequently, emphasis is placed on the 
reservoir region above the capillary transition zone, where 
production wells initiate oil production without water 
content. Swir varies with absolute permeability across the 
reservoir, defining the lowest water saturation and 
anchoring the relative permeability curves. 

 
Fig. 7. Relative permeability curves generated from Corey 
trend modelling with uncertainty span in each rock group. 

Figure 7 (upper) illustrates the resulting relative 
permeability curves for PGS rock group 1 with Swi = 0.2, 

encompassing base, optimistic, and pessimistic scenarios. 
Figure 7 (lower) shows the resulting base case relative 
permeabilities for all six rock groups, with Swi for each 
rock group presented in Table 1. It is important to note 
that both the shape and endpoints of the relative 
permeability curves change as Swi increases in each rock 
group. To compare the estimated relative permeability 
results from Corey trend modeling and PGS rock typing 
against the original experiment data, Figure A-2 in the 
appendix presents this comparison. 

7 Reservoir Simulation Study 
The study's investigation into relative permeability 
uncertainty significantly impacts the assessment of 
recoverable reserves in 3D reservoir simulation. In term 
of recoverable volume estimation, we represent the 
calculation based on the oil recovery factor (RF) 
calculation. The oil recovery factor is a crucial parameter 
in petroleum engineering, representing the fraction of the 
total oil in place (OOIP) that can be economically 
recovered from a reservoir. The recovery factor is 
calculated using the following formula: 

𝑅𝑅𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤𝐶𝐶𝐶𝐶 𝑂𝑂𝑤𝑤𝐶𝐶 𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑤𝑤𝑟𝑟𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃

× 100%,            (9) 

where, Cumulative Oil Production is the total amount of 
oil produced from the reservoir up to a given time. 
 

Due to the confidentiality of the data, we cannot 
present the exact volume of the production forecast of this 
simulation study. However, considering the equation 9 for 
calculating the RF with all possible relative permeability 
data from the case study, the estimated recovery factor 
exhibits an uncertainty range from 29% to 45%, as 
depicted in Figure 8 alongside typical oil production, 
reservoir pressure, and water injection profiles. 
 

Through the implementation of the newly developed 
Corey trend modeling approach, incorporating the defined 
uncertainty span illustrated in Figure 7, we can narrow the 
uncertainty span of the oil recovery factor to a range of 
34% - 41%, as shown in Figure 9. This represents a 
significant reduction from the initial uncertainty span of 
16%, down to 7%. Consequently, this refinement 
enhances the value of SCAL uncertainty studies, 
particularly in 3D dynamic reservoir simulation, 
facilitating improved decision-making regarding the 
evaluation of recoverable reserves for specific assets in 
exploration or early development phases. 
 

Furthermore, this method is expected to enhance the 
quality of full static and dynamic modeling workflows, 
particularly in advancing history matching and production 
forecasting in developing fields, both in the short and long 
term. Ultimately, this workflow fosters a deeper 
understanding of consistent physical models and 
wettability concepts. 
 

1 2 3 4 5 6
Swi 0.2 0.23 0.28 0.36 0.45 0.63

Krw@Sorw 0.76 0.72 0.66 0.57 0.48 0.24
no 5.58 5.32 4.91 4.28 3.61 2.44
nw 4.43 4.51 4.65 4.95 5.37 6.50

Sorw 0.23 0.23 0.22 0.21 0.19 0.13

Swi 0.2 0.23 0.28 0.36 0.45 0.63
Krw@Sorw_low 0.54 0.51 0.46 0.39 0.33 0.22

no_low 3.91 3.73 3.44 2.99 2.53 1.71
nw_high 5.32 5.41 5.59 5.94 6.45 7.80

Sorw_high 0.17 0.17 0.16 0.15 0.13 0.08

Swi 0.20 0.23 0.28 0.36 0.45 0.63
Krw@Sorw_high 1.00 0.97 0.90 0.78 0.67 0.48

no_high 7.25 6.92 6.38 5.56 4.69 3.17
nw_low 3.55 3.61 3.72 3.96 4.30 5.20

Sorw_low 0.09 0.09 0.09 0.08 0.07 0.04

PGS Rock Type

Opt.

Pess.

Base

Parameters

Pessimistic

Optimistic

Base

Every Kr in each rock type with uncertainty range

Definition of Kr uncertainty range 



The 37th International Symposium of the Society of Core Analysts 

 
Fig. 8. Production forecast profile in Field X showcasing relative permeability sensitivity and uncertainty data. 

 
 

 
Fig. 9. Production forecast profile in oil discovery X displaying the uncertainty span derived from the new Corey trend modelling 

method. 

Optimistic Case
Base Case
Pessimistic Case
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8 Conclusions 
The conclusions of this paper can be summarized as 
follows: 
• This paper merged the methodology of PGS rock 

typing (Wibowo et al, 2013) and parameter based 
SCAL  (Ebeltoft et al , 2014). 

• Integrating the PGS rock typing and newly developed 
Corey trend modelling provide a versatile workflow 
to evaluate the relative permeability uncertainty for 
full-field applications. 

• Parameterizing Corey flow properties streamlines the 
utilization of extensive SCAL datasets for defining 
static and dynamic saturation functions for reservoir 
modeling, enhancing the efficiency and capture better 
uncertainty of reservoir characterization for full-field 
applications. 

• By incorporating PGS rock typing, wettability 
concept, and the physics of flow in porous media, 
trend models are developed to accurately represent 
end points and shape parameters of relative 
permeability, ensuring consistency with fluid flow 
behavior in reservoir/ porous medium. 

• Acknowledging the inherent scatter in SCAL data, 
the Corey developed trend models provide guidance 
for constructing smooth curves suitable for full-field 
simulation, enhancing the reliability of reservoir 
models. 

• The generation of SCAL models/saturation functions 
with base, optimistic, and pessimistic bounds allows 
for thorough evaluation and uncertainty analysis of 
recoverable reserves, providing valuable insights for 
specific fields and aiding decision-making processes. 

 

Acknowledgement 

The authors would like to acknowledge Vår Energi ASA 
for granting permission to publish the data and the full 
paper. 

References 
1. A.M.A. El-Sayed, Sayed, N.A.E., Ali, H.A. et al. 

Rock typing based on hydraulic and electric flow 
units for reservoir characterization of Nubia 
Sandstone, southwest Sinai, Egypt. Journal of 
Petrol Explor Prod Technol 11, 3225–3237 
(2021). 

2. R. Mohebian, Riahi, M.A. & Kadkhodaie, A. 
Characterization of hydraulic flow units from 
seismic attributes and well data based on a new 
fuzzy procedure using ANFIS and FCM 
algorithms, example from an Iranian carbonate 
reservoir. Journal of Carbonates Evaporites 34, 
349–358 (2019). 

3. M.N. Ali Akbar, Naturally Fractured Basement 
Reservoir Characterization in a Mature Field. In 
SPE Annual Technical Conference and 
Exhibition, Dubai, UAE.  DOI: 10.2118/206027-
MS , (2021).  

4. M.N. Ali Akbar and J.T. Musu, An Extensive 
Petrophysical Evaluation for Determining Sweet 
Spot Intervals in the Ultra-Tight Organic-Rich 
Shale: A Case Study of the North Sumatra Basin, 
in SPWLA 2nd Asia Pacific Technical 
Symposium, Bogor, Java, Indonesia, (2018). 

5. G.E. Archie, Introduction to Petrophysics of 
Reservoir Rocks, Bulletin of the American 
Association of Petroleum Geologists, vol. 34, no. 
5, 943 – 961. (1950). 

6. G.E. Archie, Classification of Carbonate 
Reservoir Rocks and Petrophysical 
Consideration, Bulletin of the American 
Association of Petroleum Geologists, vol. 36, no. 
2, 278 – 298. (1952).   

7. S. Kolodzie, Analysis of pore throat size and use 
of the Waxman-Smits equation to determine 
OOIP in Spindle field, Colorado. SPE-9382-MS. 
In SPE Annual Technical Conference and 
Exhibition, Dallas, Texas (1980). 

8. E.D. Pittman, Relationship of Porosity and 
Permeability to Various Parameters Derived 
from Mercury Injection – Capillary Pressure 
Curves for Sandstone, Bulletin Of The American 
Association Of Petroleum Geologists, vol. 76, 
no. 2, 191 – 198 (1992). 

9. J.O. Amaefule, Altunbay, M., Tiab, D., Kersey, 
D.G., Keelan, D.K. Enhanced reservoir 
description using core and log data to identify 
hydraulic flow units and predict permeability in 
uncored intervals/wells. In SPE Annual 
Technical Conference and Exhibition, Houston, 
Texas (1993). 

10. P.W.M. Corbett, and Potter, D.K., Petrotyping: 
A Basemap and Atlas for Navigating Through 
Permeability and Porosity Data for Reservoir 
Comparison and Permeability Prediction, In 
International Symposium of the Society of Core 
Analysts, Abu Dhabi, UAE, (2004).  

11. Abbaszadeh, M., Fujii, H., Fujimoto, F. (1996). 
Permeability prediction by hydraulic flow units -
theory and applications. SPE Form. Eval. 11, 
263–271. 

12. Leverett, M.C. (1940). Capillary Behavior in 
Porous Solids, Petroleum Technology, 1223, 
152– 169. El-Khatib, (1995). 

13. El-Khatib, N. Development of a Modified 
Capillary Pressure J-Function, Paper SPE 29890 
presented at the SPE Middle East Oil Show held 
in Bahrain, March 11-14, (1995). 

14. Xu, C., Torres-Verdín, C., (2013). Pore system 
characterization and petrophysical rock 



The 37th International Symposium of the Society of Core Analysts 

classification using a bimodal Gaussian density 
function. Math. Geosci.Kolodzie, (1980).  

15. A.J. Martin, Stephen T. Solomon, Dan J. 
Hartmann; Characterization of Petrophysical 
Flow Units in Carbonate Reservoirs. AAPG 
Bulletin 81 (5): 734–759, (1997). 

16. Gunter, G.W., Finneran, J.M., Hartman, D.J. dan 
Miller, J.D. Early Determination of Reservoir 
Flow Units Using an Integrated Petrophysical 
Method, Paper SPE 38679 presented at SPE 
Annual Technical Conference and Exhibition 
held in San Antonio, Texas, October 5 – 8, 
(1997). 

17. Jenings Jr., and Lucia, J.F., Predicting 
Permeability From Well Logs in Carbonates 
With a Link to Geology for Interwell 
Permeability Mapping, SPE Formation 
Evaluation and Engineering, (2003). 

18. Dunham, R.J., Classification Of Carbonate 
Rocks According To Depositional Texture, 
Memoir of the American Association of 
Petroleum Geologists, 1, 108 – 121, (1962). 

19. Skalinski, M., Zeh, S.G., dan Moss, B., Defining 
and Predicting Rock Types in Carbonates – 
Preliminary Results from an Integrated 
Approach Using Core and Log Data in Tengiz 
Field, SPWLA 46th Annual Logging 
Symposium, June 26 – 29, (2005). 

20. Akbar, M., Szabo, N.P. and Dobróka, M., An 
Automated and Robust Solution of K-Means 
Cluster Analysis Based on Most Frequent Value 
Approach. In 82nd EAGE Annual Conference & 
Exhibition (Vol. 2021, No. 1, pp. 1-5). European 
Association of Geoscientists & Engineers. 
(2021). 

21. Akbar, Muhammad Nur Ali & Nemes, István & 
Bihari, Zsolt & Soltész, Helga & Bárány, Ágnes 
& Tóth, László & Borka, Szabolcs & Ferincz, 
György. Naturally Fractured Carbonate 
Reservoir Characterization: A Case Study of A 
Mature High-Pour Point Oil Field In Hungary. 
(2022). 

22. Hakiki F., and Wibowo, A.T.. Formulation of 
Rock Type Prediction in Cored Well Using 
Fuzzy Substractive Clustering Algorithm, 
Proceeding Indonesian Petroleum Association 
38th Annual Convention and Exhibition, IPA14-
SE-118. (2014). 

23. E. Ebeltoft, F. Lomeland, A. Brautaset, Å. 
Haugen, Parameter Based SCAL – Analysing 
Relative Permeability for Full Field Application. 
In International Symposium of the Society of 
Core Analysts, Avignon, France, (2014). 

24. F. Lomeland, E. Ebeltoft, W. H. Thomas, A New 
Versatile Relative Permeability Correlation. In 
International Symposium of the Society of Core 
Analysts, Toronto, Canada, (2005). 

25. Wibowo, A. S., Permadi, P., A type curve for 
carbonates rock typing. Presented at the 

International Petroleum Technology 
Conference, Beijing, 26-28 March. IPTC-16663-
MS. https://doi.org/10.2523/IPTC-16663-MS, 
(2013).  

26. Kozeny, J., Über Kapillare Leitung des Wassers 
im Boden. Sitzungsber. Akad.Wiss. Wien 
136:271–306, (1927). 

27. Wibowo, A. S., Carbonate Characterization 
Based on Pore Geometry And Structure, PhD 
Dissertation, Bandung Institute of Technology, 
(2014). 

28. M. Junita & Permadi, Pudji & Widarsono, 
Bambang., Connecting Microscopic Geological 
Features to Pore Geometry and Pore Structure: 
Case Study - Sandstone Reservoir of Balikpapan 
Formation, Kutai Basin. Journal of Modern 
Applied Science. 12(1):51, (2017). 

29. Palabiran, M., Sesilia, N., & Akbar, M. N. A., An 
Analysis of Rock Typing Methods in Carbonate 
Rocks For Better Carbonate Reservoir 
Characterization: A Case Study of Minahaki 
Carbonate Formation, Banggai Sula Basin, 
Central Sulawesi, (2016). 

30. M.N.A. Akbar, and R. Myhr., Dynamic 
Reservoir Rock Typing for Supercritical CO2-
Brine System in Sandstone. In SPE Norway 
Subsurface Conference, Bergen, Norway, 
(2024). 

31. Lomeland, F., et al., A Versatile Representation 
of Upscaled Relative Permeability for Field 
Applications, SPE154487, SPE Europec/EAGE 
Annual Conference, 4-7 June, Copenhagen, 
Denmark, (2012). 

32. Spiteri, E.J., et al., A New Model of Trapping 
and Relative Permeability Hysteresis for All 
Wettability Characteristics. SPE Journal, Vol. 13 
03 p.277-288, (2008). 

33. Craig Jr., F.F., The Reservoir Engineering 
Aspects of Waterflooding. SPE Monograph 
Series. Vol. 3. Society of Petroleum Engineers. 
(1993). 

34. Anderson, W.G., Wettability Literature Survey 
Part 5: The Effects of Wettability on Relative 
Permeability. Journal of Petroleum Technology, 
39(11): p. 1453-1468, (1987). 

35. Buckley, J.S., K. Takamura, and N.R. Morrow, 
Influence of Electrical Surface Charges on the 
Wetting Properties of Crude Oils. 1989. SPERE, 
Vol.4 03, p. 332-340, (1989). 

36. Buckley, J.S., C. Bousseau, and Y. Liu, Wetting 
Alteration by Brine and Crude Oil: From Contact 
Angles to Cores,. SPEJ Vol.1 03 p.341-350, 
(1996). 

37. Yu, L. and J.S. Buckley, Evolution of Wetting 
Alteration by Adsorption From Crude Oil. SPE 
Formation Evaluation, Vol.12 01, p. 5-12 
(1997). 



The 37th International Symposium of the Society of Core Analysts 

38. Buckley, J.S. and Y. Liu, Some mechanisms of 
crude oil/brine/solid interactions. Journal of 
Petroleum Science and Engineering, 20(3–4): p. 
155-160. (1998). 

39. Buckley, J.S., Y. Liu, and S. Monsterleet, 
Mechanisms of Wetting Alteration by Crude 
Oils. SPEJ, Vol. 3 01 p.54-61, (1998). 

40. Loahardjo, N., et al., Oil Recovery by Sequential 
Waterflooding: the Effects of Aging at Residual 
Oil and Initial Water Saturation, SPE154202, in 
SPE Improved Oil Recovery Symposium. 
Society of Petroleum Engineers: Tulsa, 
Oklahoma, USA. (2012).

 

Appendix 

 
Fig. A-1. Production forecast profile in oil discovery X displaying the uncertainty span derived from the new Corey trend modelling 

method. 
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Fig. A-2. Comparison for relative permeability curves between the experimental relative permeability curves (left) and relative 

permeability curves generated using Corey trend modelling with PGS rock typing (right). 
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