
SCA2024-1084

* Corresponding author: saeid.khasi@ucalgary.ca

Physically based neural networks for solving transport problems in
porous media

Saeid Khasi* and Apostolos Kantzas

Department of Chemical and Petroleum Engineering, University of Calgary, AB, Canada
PERM Inc., Calgary, AB, Canada

Abstract. Recent advances in deep learning have provided high performance frameworks to solve
convolution and recursive operations. Based on available resources, this study proposes a neural network-
based model for the solution of differential equations that govern the transport in porous media. Such a
model replaces the finite difference method and the convergence procedure with pre-specified convolution
and recurrent layers in a neural network. The kernels of the convolution neural networks (CNNs) are derived
from the implicit discretized form of the governing equations. Such kernels have a window size of 2 and 3
for two- and three-dimensional simulations, respectively. When solving diffusion equation for a 500×500
grid space, the simulation runtime is about 47 % shorter than that of implicit finite difference methods.
Considering that the computational complexity of CNNs does not increase quickly and they can be
implemented seamlessly on parallel architecture, the proposed approach is promising for simulating large
scale problems in porous media. Also, it can provide a generic platform for solving multiphysics problems
and deals with irregular arbitrary shaped boundaries effectively which make it a good choice for pore-scale
simulations too.

1 Introduction
Modeling transport processes in porous media is crucial
for many practical applications including enhancing oil
recovery, geothermal energy harvesting, remediation of
groundwater, and geological carbon dioxide sequestration
[1]. Describing these phenomena usually involves solving
partial differential equations. When analytical solutions to
the latter equations exist, they often possess inherent
precision. However, their utility is limited to special
conditions such as simple geometry and boundary
conditions [2].

To address the issues with analytical solutions, there
are various numerical methods for different types of
complex problems such as shooting, finite difference,
finite element, finite volume and spline-based methods.
Implementing these numerical methods for problems in
porous media often requires large space and time
complexities. The latter issue exists for both macroscopic
and microscopic modeling of porous media due to the
large number of computing units in either case. Such
complexities are caused by large sizes of geometries and
irregular boundary conditions in the field and pore scales,
respectively. Due to importance of simulations in porous
media, efficient computational methods have been
investigated for decades [3]. Recent high performance
computing methods based on graphical user processors
(GPUs) may help to overcome issues with time
consuming simulations.

High performance computing solutions are based on
the fact that the resultant matrix from a discretized
problem is typically very sparse, meaning it contains a
significant number of zeros that can be exploited
algorithmically. Using parallel computing techniques to
accelerate sparse linear algebra is likely the most popular
method to deal with such large-scale scientific computing.
However, designing parallel algorithms for sparse
matrices that are both efficient and easy to implement is
not trivial. Complex algorithms may require significant
effort to optimize and may not always yield the desired
performance improvements [4]. To avoid the latter issue,
we propose a new method to achieve such parallelism in
modern computer architectures using a simple and
generalized method based on neural network encoding.
Neural networks can be used to encode and solve both
ordinary and partial differential equations. In the latter
method, computational complexity does not increase
quickly when the number of computing points is increased
while in the other standard numerical methods
computational complexity increases rapidly as we
increase the number of points in the interval. Not only the
method can be implemented on parallel architectures, but
also, it provides a solution with very good generalization
properties which make it suitable for porous media where
handling the irregular boundaries is challenging [2].

Here, we propose a method to use special types of
neural network units to utilize the generalization and
speed up properties for solving problems in porous media.
Such a method replaces the finite difference discretization

The 37th International Symposium of the Society of Core Analysts

scheme and the convergence procedure with pre-specified
convolution and recurrent layers in a neural network. The
kernels of the convolution neural networks (CNNs) are
derived from the implicit discretized form of the
governing equations. Also, the recurrent units are
specified using acceptable tolerances in common
numerical methods. In the latter case, a long short-term
memory (LSTM) network is suggested to retain most
important information of previous convergence
behaviors. Results of solving transport equation using
traditional finite difference and new method are compared
across different scales. Using recent advances in
designing optimized parallel architectures for deep
learning, the proposed method offers an opportunity to
tackle difficult multiphysics differential equation
problems arising in porous media in real time. It should
be noted that the proposed method in this study is not
based on the domain knowledge gained from physics to
serve as a guideline for designing a deep learning model
as done in previous studies [5]. Instead, it directly encodes
physics to utilize available parallelled computational
resources developed for deep learning. The proposed
model in this study can be converted into a surrogate
model by freezing the optimization variables. The latter
models are important in many-query applications where
computational cost causes a major limitation in utilizing
simulation results [6].

The structure of this paper is as follows: In Section
2, methodology is presented by deriving CNN kernels
relevant to pore and continuum scales transport equations
in porous media. Section 3 describes simulation results
obtained by different methods and examine the efficiency,
correctness and scalability of the proposed method.
Finally, conclusions are listed in Section 4.

2 Methodology

The finite-difference method (FDM) is a powerful
technique to solve complex problems. FDM is based on
approximating the derivatives by finite difference terms.
Using these approximations, ordinary differential
equations (ODE) or partial differential equations (PDE),
which may be nonlinear, are converted into a system of
linear equations that can be solved by matrix algebra
techniques. Calculating the finite differences can also be
seen as a linear operation and therefore be implemented
by multiplication with a convolution kernel.

Without loss of generality, the diffusion equation is
used in this section to demonstrate such an operation
replacement. But as will be discussed in Section 3, results
can be extended. First, the diffusion equation is
discretized in both space and time and then CNNs are
defined for solving a similar problem.

2.1 Finite difference
The diffusion equation commonly formulated as:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷∇2𝑐𝑐 (1)

The latter equation models the spread of particle density,
𝑐𝑐, in a medium over time, where 𝐷𝐷 denotes the diffusion

coefficient. This equation is important in different fields
such as physics, chemistry, and environmental science; by
providing a theoretical basis for phenomena such as heat
flow, mass transfer, and pollutant dispersion.
Numerical solutions to the diffusion equation are often
based on the finite difference method, which discretizes
the continuum of space and time into finite increments
(grids). Such discretization is described in the following
sub-sections. This discretization transforms the partial
differential equation into a system of algebraic equations
that can be solved using standard computational
techniques.

2.1.1 Spatial discretization

In the discretization, the spatial domain is represented as
grids, and the continuous derivatives in the diffusion
equation are approximated by differences between
neighboring grid points.
For a two-dimensional space with a uniform grid spacing
𝑑𝑑𝑑𝑑 in the x-direction and 𝑑𝑑𝑑𝑑 in the y-direction, the second
derivatives in the Laplacian (∇2) can be discretized using
central difference formulas:

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

=
𝜕𝜕𝑖𝑖+1,𝑗𝑗−2𝜕𝜕𝑖𝑖,𝑗𝑗+𝜕𝜕𝑖𝑖−1,𝑗𝑗

𝑑𝑑𝑥𝑥2
 (2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

=
𝜕𝜕𝑖𝑖,𝑗𝑗+1−2𝜕𝜕𝑖𝑖,𝑗𝑗+𝜕𝜕𝑖𝑖,𝑗𝑗−1

𝑑𝑑𝑦𝑦2
 (3)

2.1.2 Time discretization

The time derivative can be discretized using methods like
the explicit, implicit, or Crank-Nicolson schemes. The
implicit approach, as implemented in this study, computes
the concentration at the next time step by solving a linear
equation system. This scheme is noted for its stability,
allowing larger time steps without dependency on spatial
discretization.
Accordingly, the explicit (Eq. 4) and implicit (Eq. 5)
schemes based on finite difference for a two-dimensional
problem with a pulse at center (see Figure 1) can be
derived as follows:
𝜕𝜕𝑖𝑖.𝑗𝑗
𝑛𝑛+1−𝜕𝜕𝑖𝑖.𝑗𝑗

𝑛𝑛

∆𝜕𝜕
= 𝐷𝐷 �

𝜕𝜕𝑖𝑖+1,𝑗𝑗
𝑛𝑛 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛 +𝜕𝜕𝑖𝑖−1,𝑗𝑗
𝑛𝑛

∆𝑥𝑥2
+

𝜕𝜕𝑖𝑖,𝑗𝑗+1
𝑛𝑛 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛 +𝜕𝜕𝑖𝑖,𝑗𝑗−1
𝑛𝑛

∆𝑦𝑦2
� (4)

𝜕𝜕𝑖𝑖.𝑗𝑗
𝑛𝑛+1−𝜕𝜕𝑖𝑖.𝑗𝑗

𝑛𝑛

∆𝜕𝜕
= 𝐷𝐷 �

𝜕𝜕𝑖𝑖+1,𝑗𝑗
𝑛𝑛+1 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛+1+𝜕𝜕𝑖𝑖−1,𝑗𝑗
𝑛𝑛+1

∆𝑥𝑥2
+

𝜕𝜕𝑖𝑖,𝑗𝑗+1
𝑛𝑛+1 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛+1+𝜕𝜕𝑖𝑖,𝑗𝑗−1
𝑛𝑛+1

∆𝑦𝑦2
� (5)

Zero initial value and the Dirichlet boundary conditions
are also set for simplicity as can be seen in Figure 1 where
model geometry is shown.

Fig. 1. Model geometry alongside governing equation and side
conditions for solving the diffusion equation.

The 37th International Symposium of the Society of Core Analysts

2.2 Neural network
Leveraging CNNs to simulate the diffusion equation may
introduce a powerful computational paradigm that utilizes
deep learning techniques and highly optimized platforms
that are being developed in this area. Unlike traditional
methods that require manual discretization of derivatives,
CNNs can either learn or encode to solve the equation by
minimizing a defined loss function related to the diffusion
dynamics.

2.2.1 Convolutional kernel for Laplacian

The first and important step of applying CNNs in this
context is the convolutional kernel designed to mimic the
Laplacian operator. For a two-dimensional diffusion
process, assuming that Δ𝑑𝑑 = Δ𝑑𝑑, this can be represented
by the following expression [7]:

𝐾𝐾 = �
0 𝛾𝛾 0
𝛾𝛾 −4𝛾𝛾 𝛾𝛾
0 𝛾𝛾 0

� (6)

where 𝛾𝛾 = 𝐷𝐷Δ𝑡𝑡/Δ𝑑𝑑2. This kernel (also known as five-
point stencil), when convolved with the concentration
matrix, approximates the Laplacian's effect as follows:

 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 − 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 = 𝐾𝐾 ∙ �
𝑐𝑐𝑖𝑖−1,𝑗𝑗−1
𝑛𝑛 𝑐𝑐𝑖𝑖−1,𝑗𝑗

𝑛𝑛 𝑐𝑐𝑖𝑖−1,𝑗𝑗+1
𝑛𝑛

𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛

𝑐𝑐𝑖𝑖+1,𝑗𝑗−1
𝑛𝑛 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛 𝑐𝑐𝑖𝑖+1,𝑗𝑗+1
𝑛𝑛

� =

𝛾𝛾(𝑐𝑐𝑖𝑖−1,𝑗𝑗
𝑛𝑛 + 𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛 − 4𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛 + 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛) (7)
The latter equation can be written in an implicit form and
be encoded by the same kernel:

𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 − 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 = 𝐾𝐾 ∙ �
𝑐𝑐𝑖𝑖−1,𝑗𝑗−1
𝑛𝑛+1 𝑐𝑐𝑖𝑖−1,𝑗𝑗

𝑛𝑛+1 𝑐𝑐𝑖𝑖−1,𝑗𝑗+1
𝑛𝑛+1

𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛+1 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛+1

𝑐𝑐𝑖𝑖+1,𝑗𝑗−1
𝑛𝑛+1 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛+1 𝑐𝑐𝑖𝑖+1,𝑗𝑗+1
𝑛𝑛+1

� (8)

Eq. (7) and (8) are used to update the concentration values
according to the diffusion equation. In the CNN
architecture, the implicit form in Eq. (8) is handled by
either an optimization loop or introducing recurrent neural
networks as it will be discussed in the following
subsections. While the derived kernel in Eq. (6) is
applicable to two-dimensional systems, a three-
dimensional kernel can also be defined for three-
dimensional simulations. The 3D Laplacian kernel is
typically represented as a 3×3×3 tensor (also known as
seven-point stencil). In either case, the input layer (with a
shape of 𝑁𝑁𝑥𝑥×𝑁𝑁𝑦𝑦×𝑁𝑁𝑧𝑧 where 𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, and 𝑁𝑁𝑧𝑧 are system
sizes in 3D) is feed into a hidden later via the defined
convolution kernel. Then, a loss is calculated and
optimized to generate new inputs. Finally, to enforce non-
negativity of the calculated concentrations, a rectified
linear unit (ReLu) is used as an activation function.

2.2.2 Training and input optimization

Training of the physically informed neural networks
(PINN) are usually based on calculating unknown weights
of CNN kernels using gradient decent through feeding the
simulation results from numerical modeling [8]. In the
latter cases, a surrogate model will replace the numerical
solver which is just an approximation of the solution

function with limitations already imposed by the data
from the numerical solution.

Here, the models’ variables are defined on the input
later of the CNN to predict the next time steps of the
solution while the kernel weights are encoded by the
derived matrix in Equation (4). In deep learning literature,
such an approach is used for optimizing the input images
by performing gradient ascent on image. Mainly, input
optimization is used to generate new examples for data
augmentation purposes. General case of the input
optimization is selecting an arbitrary layer of the network
as trainable variables which is the main idea behind the
gradient based visualization such as saliency maps [9].
The latter maps provide another useful application for the
proposed method in this study as it will be discussed in
Section 3.

Here, the input layer of the CNN is trained through
an iterative process where it learns to predict the evolution
of the concentration field by continuously minimizing a
loss function. For the loss calculation, the difference
between the generated concentration by gradient ascent
and the predicted concentration (using the diffusion
equation) is calculated, then it is squared and summed to
obtain the loss value. This function can also be defined to
quantify and imposes the mass and energy balances on top
of the discrepancy between the network's predictions and
the desired outcomes. It should be noted that any terms
(including convection and reaction terms) can be added to
the computational graph of the neural network to obtain
the predicted value and the outcomes in the optimization
loop. A detailed description of the computational graph as
well as steps taken to generate new outputs is provided in
the appendix.

The boundary conditions are directly encoded
during optimization by forcing the associated pixel to
values corresponding to boundary conditions. This is done
by padding some values to the edges of the matrix known
as edge handling in computer vison. Some common
techniques to deal with different boundary conditions are
clip filter/black (sets the boundary values to zero or a
specific "black" value), wrap around (boundary values are
taken from the opposite edge), copy edge (values at the
boundary are copied from the nearest interior values) and
reflect across edge (boundary values are mirrored across
the edge). Here, the Dirichlet boundary condition is used
for simplicity and therefore the pixel values are set to an
initial value of zero on boundaries (clip filter method).

Overall, this approach does away with the need for
solving large systems of equations one by one, offering
potential efficiencies and enhanced flexibility in handling
complex boundary conditions or irregular domains. By
integrating deep learning with traditional PDE modeling,
this approach not only streamlines computations but also
opens new avenues for analyzing and solving complex
dynamic systems especially those involved with image
type data such as digital rock lab analyses.

2.2.3 LSTM units for convergence

The latter approach based on CNN architecture, requires
an optimization loop over each pixel of the input geometry

The 37th International Symposium of the Society of Core Analysts

at each time step. Therefore, to predict the evolution of
spatial data (like concentration profiles in the diffusion
equation) over time, the choice of hyperparameters such
as learning rate would be crucial for each time steps. Also,
the convergence criteria in the numerical methods will be
replaced by callback parameters for stopping algorithms
in the learning process. The result of this work is based on
the latter approach since we are only examining the
feasibility of replacing numerical methods by deep
learning architectures for solving problems in porous
media.

To further utilize available deep learning
architecture, one could construct a hybrid model that
combines the spatial processing capabilities of CNNs with
the temporal sequence handling of recurrent neural
networks such as LSTM (short for long short-term
memory) units. In such a hybrid model, CNN layers will
first process the spatial information at each time step to
capture spatial dependencies and morphological features.
The outputs of these CNN layers will then be fed into
LSTM units, which will process the temporal evolution of
these features. This sequential processing mimics the
propagation of diffusion over time, capturing both the
spatial and temporal dynamics inherent in the diffusion
equation.

Alternative to hybrid models, one could employ
custom LSTM layers such as ConvLSTM where the
convolution operation (including a Laplacian-like kernel)
is integrated directly within the LSTM architecture.
ConvLSTMs combine spatial convolution and LSTM’s
temporal processing in a single layer, making them ideal
for spatio-temporal data [10].

An important consideration in the proposed hybrid
model as well as custom LSTM layers (ConvLSTM)
would be the need for encoding and modifying the
optimized functions in the RNN units. If the operations
are not as efficiently optimized as conventional matrix
operations in deep learning frameworks, hybrid models
could even lead to increased computational demands.
All of the mentioned approaches are dealing with
calculating the concentration profiles. One could also use
this network as a surrogate model. In the latter case, the
optimization parameters in the computational graph can
be frozen to predict (instead of calculating) the
concentration profiles in future time steps. Again,
ConvLSTM architecture should work the best for such an
application due to sequential behavior of the
concentration profiles over different time steps.

3 Results and Discussion

In this section, simulation results of the diffusion problem
are presented using FDM and CNN methods. The input
parameters are dimensionless for simplicity.

For FDM, the grid dimensions (𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦) are
varied between 10 to 500, with a diffusion coefficient of
𝐷𝐷 = 1. The time step for the simulation is ∆𝑡𝑡 = 0.1, and
the spatial step sizes are ∆𝑑𝑑 = 1 and ∆𝑑𝑑 = 1. These
parameters determine the resolution and time scale of the
simulation. The initial concentration array, 𝑐𝑐, is set to a
concentration of 100 at the center of the grid and 0

everywhere else. The simulations are also run for 𝑁𝑁𝜕𝜕 = 10
time steps.

For the CNN based method, the Adam optimizer
with a learning rate of 0.01 is employed for the
optimization. Again, the simulations are run for 10-time
steps, with a tolerance of 0.001 on the loss function
variations and a maximum of 500 iterations in the inner
optimization loop.

Figures 2-4 show the simulation results of
concentration profiles for explicit FDM, implicit FDM
and implicit CNN based models, respectively. As can be
seen in the latter figures, the simulation results of both
implicit methods are similar, and the maximum
concentrations are higher than that of obtained by the
explicit method.

The reason for this difference in the concentration
profiles can be found by checking the mass conservation
in the simulations results as shown in Figure 5. As
illustrated in the latter figure, the explicit scheme is less
mass conservative (with an error of 0.7 % over 10 time-
steps) as compared to the implicit schemes (0.26 % for
FDM and 0.28 % CNN based method).

Fig. 2. Concentration profiles obtained by solving the diffusion
problem using explicit scheme of finite difference on a 10×10
gird size.

 Regardless of the error manganite in Figure 5,
behavior of error in mass conservation between CNN
based and FDM suggests a different computation
algorithm in the latter two cases.

One of the reasons to use neural network-based
formulations is possible speed up for large scale or high-
resolution problems at it can be implemented on parallel
computational architectures such as graphical processing
units (GPUs). Unlike the central processing units (CPUs)
where one operation at a time is handled, GPU can process
thousands of threads simultaneously. Therefore, it is
expected to observe significant speed up as number of
grids (pixels) are increased when such a parallel
architecture is used for the computations. To examine this
hypothesis, experiments can be run at different grid sizes
and the simulation runtimes be compared. For example,
Figure 6 shows simulation results of the concentration
profile when the size of the system is increased to a 20×20
pixel-size. It also shows the loss values obtained after 200
epoch in each time step of calculations. The latter loss

The 37th International Symposium of the Society of Core Analysts

curves will be discussed in more detail in the following
when convection terms are introduced.

Fig. 3. Concentration profiles obtained by solving the diffusion
problem using implicit scheme of finite difference on a 10×10
grid size.

Fig. 4. Concentration profiles obtained by solving the diffusion
problem using implicit scheme of CNN based model on a
10×10-pixel size.

Similar to the results in Figure 6, we run simulations
using three different approaches on a Tesla T4 GPUs in
Google Colab computer machine. The simulation
runtimes are reported in Table 1 for system sizes of
10×10, 20×20, 50×50, 100×100, 200×200 and 500×500.
Each reported value is an average of 5 different runs to
minimize random errors caused by available online
computational power at a given time.

Fig. 5. Summation of total mass over all grids (pixels) in the
simulations’ models.

Fig. 6. (a) Concentration profiles obtained by solving the
diffusion problem using implicit scheme of CNN based model
on a 20×20-pixel size. (b) loss values obtained after 200 epoch
in each time step of calculations.

 Table 1 shows that as the grid sizes expand to
200×200, the runtime of the CNN-based model stabilizes
due to the parallel processing capabilities of the GPU.
Although the implicit FDM initially outperforms in terms
of runtime for smaller system sizes, its advantage over the
CNN-based model lessens when the system size reaches
500×500.

 The key observation in Table 1 is that the
computational complexity does not increase significantly
in neural network methods when the number of pixels is
increased. This contrasts sharply with standard numerical
methods, where computational complexity escalates
rapidly as more grids are added. This difference is critical
in scenarios where high-resolution data are needed,
making neural network methods particularly
advantageous for handling large-scale problems
efficiently.

 In Table 1, a trivial observation would be that the
explicit method outperforms both implicit approaches
since the equations are not solved simultaneously in an
explicit scheme, and the computing process only includes
basic operations and assignments.

The 37th International Symposium of the Society of Core Analysts

Table 1. Simulation runtime (in seconds) by adopting different
approaches for solving the diffusion problem at different sizes.

Size CNN
Implicit

FDM
Implicit

FDM
Explicit

10×10 12 0.06 0.002

20×20 18 0.4 0.002

50×50 30 3.2 0.003

100×100 65 8 0.007

200×200 70 28 0.008

500×500 71 133 0.03

Another aspect of neural network-based methods is
the property of generalization. As can be seen in
derivation of the CNN kernels, they can be written for
different governing equations. Coupling and extending
different equations can be readily encoded by modifying
the loss function and connecting the output layers of
different neural networks which make the proposed
method suitable for developing generic multiphysics
modeling. For example, adding other transport terms to
the solved diffusion equation in previous section only
require modifying the loss function.

Figures 7-8 shows simulation results of
concentration profiles obtained by solving the diffusion
problem with convective term and velocity of 1 in 𝑑𝑑 and
𝑑𝑑, respectively. As can be seen in the latter figures,
diffusion propagations are affected by horizontal and
vertical velocity directions through convolution operation
on the input images.

Fig. 7. Concentration profiles obtained by solving the diffusion
problem with convective term and velocity of u=1 in x-
direction using implicit scheme of CNN based model on a
50×50-pixel size.

Fig. 8. Concentration profiles obtained by solving the diffusion
problem with convective term and velocity of v=1 in y-
direction using implicit scheme of CNN based model on a
50×50-pixel size.

For introducing the convection terms in Figures 7
and 8, only two additional kernels are needed to compute
the first derivatives in the 𝑑𝑑 and 𝑑𝑑 directions. To do so, the
kernel in Eq. (6) remains unchanged from the diffusion-
only model and is used to compute the second spatial
derivatives of the concentration field. Two one-
dimensional gradient kernels can also be defined as
follows:
𝐺𝐺𝑥𝑥 = 𝛾𝛾Δ𝑑𝑑/𝐷𝐷[−1 0 1] (9)
𝐺𝐺𝑦𝑦 = 𝛾𝛾Δ𝑑𝑑/𝐷𝐷[−1 0 1]𝑇𝑇 (10)
The latter kernels in Eqs. (9) and (10) are used to
approximate the first derivative with respect to 𝑑𝑑 and 𝑑𝑑,
respectively, in the convection term of the transport
equation. In other words, we replace the prediction of each
neural network layer in Eq. (11) by the one presented in
Eq. (12)
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑙𝑙𝑙𝑙𝑦𝑦𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑛𝑛 + 𝐾𝐾 × 𝑐𝑐𝑛𝑛+1 (11)
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑙𝑙𝑙𝑙𝑦𝑦𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑛𝑛 + 𝐾𝐾 × 𝑐𝑐𝑛𝑛+1 − 𝑢𝑢 × 𝐺𝐺𝑥𝑥 × 𝑐𝑐𝑛𝑛+1 −
𝑣𝑣 × 𝐺𝐺𝑦𝑦 × 𝑐𝑐𝑛𝑛+1 (12)
Similar to other numerical methods, convergence issues
should arise when the ratio of the convection to the
diffusion (also known as Peclet number) is increased.
Figure 9 shows the concentration profiles after 20-time
steps when velocity in y-direction is increased from 1
(Figure 9(a)) to 3 (Figure 9(b)).

Fig. 9. Concentration profiles obtained by solving the diffusion
problem with convective term and velocity of (a) v=1 and (b)
v=3 in y-direction using implicit scheme of CNN based model
on a 50×50-pixel size.

Figure 9 shows how increasing the convective term
can change the concentration profiles. To show the
impacts of a higher Peclet number on numerical

The 37th International Symposium of the Society of Core Analysts

convergence, the corresponding overall loss values at the
end of 200 epochs are plotted against the time steps Figure
10. The latter figure shows that a higher ratio of the
convective term to the diffusion term generated a higher
value of the loss. A higher loss indicates a higher
convergence error. Therefore, the proposed method will
need higher computational cost at higher Peclet number
similar to previous numerical methods.

Fig. 10. Loss values at the end of 200 epochs during
optimization of the concentration profiles using implicit scheme
of CNN based model on a 50×50-pixel size.

In addition to developing a simulator for large scale

or high-resolution problem, the suggested approach in this
study can be used to interpret the results of pre-train
model by finding their kernels and try to retrieve the
underlying equations [11]. One example would be history
matching in reservoir engineering where to use data-
driven approaches for characterizations. The idea of such
an application would be similar to saliency maps
generated for visualizing the training process of neural
networks.

Conclusions

In this work, the problem of solving the diffusion equation
using an implicit finite difference scheme was mapped to
the task of optimization a neural network. Simulation
experiments were run to examine the accuracy,
performance and scalability of the proposed approach.

The mass conservation analysis showed that the
accuracy of the proposed method is comparable to that of
achieved in the implicit finite differences approach. After
a large enough gird size (500×500 in the simulations
results in this study), neural network-based models could
outperform conventional implicit finite differences
method in terms of simulation runtime. In fact, after a gird
size of 200×200, runtime of simulation by new approach
seems to level off.

The simulation results were obtained based on the
simplest form of the diffusion equations in a two-
dimensional system with a simple boundary condition.
But the proposed encoded neural networks can be
extended into more complex equations to incorporate
other terms in transport equations such as convection and
reaction expressions. The model can also be upscaled to
three-dimensional systems with irregular boundaries by
merely changing the applied kernel and subsequent
modifying the loss function.

As a future work, neural network with recurrent
layers can be used to further utilize the computational
efficiency of available frameworks for deep learning. The
underlying concept for the latter task was provided in this
work. Finally, to provide a comparison between the
proposed method with traditional parallel computing
techniques, future studies should focus on evaluating
speedups and numerical performance measures such as
compression efficiency. The numerical performance of a
problem with parallel computing depends on number of
processors and types of machines (whether it is a
multicore/manycore shared memory machines or
distributed memory machines like clusters and
supercomputers).

Financial support from the Energi Simulation Centre for
Geothermal Systems Research, The Energy Harvesitng
Processes Program (ConocoPhillips, Ashaw Energy, Kalina
Distributed Power, Telsec, Remedy Services, The Alberta
Geological Survey and The Geological Survey of Canada) and
the Fundamentals of Unconventional Resources program
(NSERC, Alberta Innovates, Chevron, CNRL, ConocoPhillips
and Enerplus) is gratefully acknowledged.

References

1. J. Bear, Y. Bachmat, Introduction to modeling of
transport phenomena in porous media 4, 263-285
(2012).

2. N. Yadav, A. Yadav, and M. Kumar, An
introduction to neural network methods for
differential equations 1, 1-11 (2015).

3. M. Sahimi, D. Stauffer, Chem. Eng. Sci. 46, 9
(1991).

4. G. Xiao, C. Yin, T. Zhou, X. Li, Y. Chen, K. Li,
ACM Comput. Surv. 56, 1 (2023).

5. E. De Bézenac, A. Pajot, P. Gallinari, J. Stat.
Mech: Theory Exp. 2019, 12 (2019).

6. N. R. Franco, S. Fresca, F. Tombari, A. Manzoni,
Chaos 33, 12 (2023).

7. J. A. Actor, D. T. Fuentes, and B. Rivière,
Proceedings of SPIE--the International Society of
Optical Engineering 11313, 17 (2020).

8. C. G. Fraces, A. Papaioannou, H. Tchelepi, arXiv
prepr. arXiv 2001, 05172 (2020).

9. K. Simonyan, A. Vedaldi, A. Zisserman, arXiv
prepr. arXiv 1312, 6034 (2013).

10. X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K.
Wong, W. Woo, Advances Neural Information
Processing Systems 28, 802-810 (2015).

11. P. Guo, K. Huang, and Z. Xu, arXiv prepr. arXiv
2103, 08313 (2021).

Appendix

The textual representation of the computational graph for
the basic developed neural network is shown in Figure
A.1. In the latter figure, the computations steps include
initialization, outer and inner loop calculations and loss
and mass evaluations. In the initialization, initial
concentration is reshaped into tensor. For each time step
in the outer loop, a copy of the tensor is stored. In the inner

The 37th International Symposium of the Society of Core Analysts

loop, the optimization is performed (using Adam
optimizer) until the loss is below the tolerance value or
the maximum number of iterations is reached. For the loss
calculation, the difference between newly generated
profile and the predicted concentration (using the
diffusion equation) is calculated, then it is squared and
summed to obtain the loss value. The gradients of the loss
with respect to the tensor variable are used to generate
new concentration profiles. To enforce non-negativity on
the tensor variables, the ReLu activation function is
applied after applying the Laplacian kernel. Finally, the
current loss and mass deviations are appended to the
losses and masses lists.

Fig. A1. Computational graph for the neural network used in

place of finite difference scheme.

