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Abstract. Recent advances in deep learning have provided high performance frameworks to solve 
convolution and recursive operations. Based on available resources, this study proposes a neural network-
based model for the solution of differential equations that govern the transport in porous media. Such a 
model replaces the finite difference method and the convergence procedure with pre-specified convolution 
and recurrent layers in a neural network. The kernels of the convolution neural networks (CNNs) are derived 
from the implicit discretized form of the governing equations. Such kernels have a window size of 2 and 3 
for two- and three-dimensional simulations, respectively. When solving diffusion equation for a 500×500 
grid space, the simulation runtime is about 47 % shorter than that of implicit finite difference methods. 
Considering that the computational complexity of CNNs does not increase quickly and they can be 
implemented seamlessly on parallel architecture, the proposed approach is promising for simulating large 
scale problems in porous media. Also, it can provide a generic platform for solving multiphysics problems 
and deals with irregular arbitrary shaped boundaries effectively which make it a good choice for pore-scale 
simulations too. 

1 Introduction  
Modeling transport processes in porous media is crucial 
for many practical applications including enhancing oil 
recovery, geothermal energy harvesting, remediation of 
groundwater, and geological carbon dioxide sequestration 
[1]. Describing these phenomena usually involves solving 
partial differential equations. When analytical solutions to 
the latter equations exist, they often possess inherent 
precision. However, their utility is limited to special 
conditions such as simple geometry and boundary 
conditions [2].  

To address the issues with analytical solutions, there 
are various numerical methods for different types of 
complex problems such as shooting, finite difference, 
finite element, finite volume and spline-based methods. 
Implementing these numerical methods for problems in 
porous media often requires large space and time 
complexities. The latter issue exists for both macroscopic 
and microscopic modeling of porous media due to the 
large number of computing units in either case. Such 
complexities are caused by large sizes of geometries and 
irregular boundary conditions in the field and pore scales, 
respectively. Due to importance of simulations in porous 
media, efficient computational methods have been 
investigated for decades [3]. Recent high performance 
computing methods based on graphical user processors 
(GPUs) may help to overcome issues with time 
consuming simulations.  

High performance computing solutions are based on 
the fact that the resultant matrix from a discretized 
problem is typically very sparse, meaning it contains a 
significant number of zeros that can be exploited 
algorithmically. Using parallel computing techniques to 
accelerate sparse linear algebra is likely the most popular 
method to deal with such large-scale scientific computing. 
However, designing parallel algorithms for sparse 
matrices that are both efficient and easy to implement is 
not trivial. Complex algorithms may require significant 
effort to optimize and may not always yield the desired 
performance improvements [4]. To avoid the latter issue, 
we propose a new method to achieve such parallelism in 
modern computer architectures using a simple and 
generalized method based on neural network encoding.  
Neural networks can be used to encode and solve both 
ordinary and partial differential equations. In the latter 
method, computational complexity does not increase 
quickly when the number of computing points is increased 
while in the other standard numerical methods 
computational complexity increases rapidly as we 
increase the number of points in the interval. Not only the 
method can be implemented on parallel architectures, but 
also, it provides a solution with very good generalization 
properties which make it suitable for porous media where 
handling the irregular boundaries is challenging [2].  

Here, we propose a method to use special types of 
neural network units to utilize the generalization and 
speed up properties for solving problems in porous media. 
Such a method replaces the finite difference discretization 
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scheme and the convergence procedure with pre-specified 
convolution and recurrent layers in a neural network. The 
kernels of the convolution neural networks (CNNs) are 
derived from the implicit discretized form of the 
governing equations. Also, the recurrent units are 
specified using acceptable tolerances in common 
numerical methods. In the latter case, a long short-term 
memory (LSTM) network is suggested to retain most 
important information of previous convergence 
behaviors. Results of solving transport equation using 
traditional finite difference and new method are compared 
across different scales. Using recent advances in 
designing optimized parallel architectures for deep 
learning, the proposed method offers an opportunity to 
tackle difficult multiphysics differential equation 
problems arising in porous media in real time. It should 
be noted that the proposed method in this study is not 
based on the domain knowledge gained from physics to 
serve as a guideline for designing a deep learning model 
as done in previous studies [5]. Instead, it directly encodes 
physics to utilize available parallelled computational 
resources developed for deep learning. The proposed 
model in this study can be converted into a surrogate 
model by freezing the optimization variables. The latter 
models are important in many-query applications where 
computational cost causes a major limitation in utilizing 
simulation results [6].  

The structure of this paper is as follows: In Section 
2, methodology is presented by deriving CNN kernels 
relevant to pore and continuum scales transport equations 
in porous media. Section 3 describes simulation results 
obtained by different methods and examine the efficiency, 
correctness and scalability of the proposed method. 
Finally, conclusions are listed in Section 4. 

2 Methodology  

The finite-difference method (FDM) is a powerful 
technique to solve complex problems. FDM is based on 
approximating the derivatives by finite difference terms. 
Using these approximations, ordinary differential 
equations (ODE) or partial differential equations (PDE), 
which may be nonlinear, are converted into a system of 
linear equations that can be solved by matrix algebra 
techniques. Calculating the finite differences can also be 
seen as a linear operation and therefore be implemented 
by multiplication with a convolution kernel.  

Without loss of generality, the diffusion equation is 
used in this section to demonstrate such an operation 
replacement. But as will be discussed in Section 3, results 
can be extended. First, the diffusion equation is 
discretized in both space and time and then CNNs are 
defined for solving a similar problem.  

2.1 Finite difference 
The diffusion equation commonly formulated as: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷∇2𝑐𝑐                                                                     (1) 
  
The latter equation models the spread of particle density, 
𝑐𝑐, in a medium over time, where 𝐷𝐷 denotes the diffusion 

coefficient. This equation is important in different fields 
such as physics, chemistry, and environmental science; by 
providing a theoretical basis for phenomena such as heat 
flow, mass transfer, and pollutant dispersion.    
Numerical solutions to the diffusion equation are often 
based on the finite difference method, which discretizes 
the continuum of space and time into finite increments 
(grids). Such discretization is described in the following 
sub-sections. This discretization transforms the partial 
differential equation into a system of algebraic equations 
that can be solved using standard computational 
techniques.  

2.1.1 Spatial discretization 

In the discretization, the spatial domain is represented as 
grids, and the continuous derivatives in the diffusion 
equation are approximated by differences between 
neighboring grid points.  
For a two-dimensional space with a uniform grid spacing 
𝑑𝑑𝑑𝑑 in the x-direction and 𝑑𝑑𝑑𝑑 in the y-direction, the second 
derivatives in the Laplacian (∇2) can be discretized using 
central difference formulas: 
 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

=
𝜕𝜕𝑖𝑖+1,𝑗𝑗−2𝜕𝜕𝑖𝑖,𝑗𝑗+𝜕𝜕𝑖𝑖−1,𝑗𝑗

𝑑𝑑𝑥𝑥2
                                                    (2) 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

=
𝜕𝜕𝑖𝑖,𝑗𝑗+1−2𝜕𝜕𝑖𝑖,𝑗𝑗+𝜕𝜕𝑖𝑖,𝑗𝑗−1

𝑑𝑑𝑦𝑦2
                                                    (3) 

2.1.2 Time discretization 

The time derivative can be discretized using methods like 
the explicit, implicit, or Crank-Nicolson schemes. The 
implicit approach, as implemented in this study, computes 
the concentration at the next time step by solving a linear 
equation system. This scheme is noted for its stability, 
allowing larger time steps without dependency on spatial 
discretization. 
Accordingly, the explicit (Eq. 4) and implicit (Eq. 5) 
schemes based on finite difference for a two-dimensional 
problem with a pulse at center (see Figure 1) can be 
derived as follows: 
𝜕𝜕𝑖𝑖.𝑗𝑗
𝑛𝑛+1−𝜕𝜕𝑖𝑖.𝑗𝑗

𝑛𝑛

∆𝜕𝜕
= 𝐷𝐷 �

𝜕𝜕𝑖𝑖+1,𝑗𝑗
𝑛𝑛 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛 +𝜕𝜕𝑖𝑖−1,𝑗𝑗
𝑛𝑛

∆𝑥𝑥2
+

𝜕𝜕𝑖𝑖,𝑗𝑗+1
𝑛𝑛 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛 +𝜕𝜕𝑖𝑖,𝑗𝑗−1
𝑛𝑛

∆𝑦𝑦2
�           (4) 

𝜕𝜕𝑖𝑖.𝑗𝑗
𝑛𝑛+1−𝜕𝜕𝑖𝑖.𝑗𝑗

𝑛𝑛

∆𝜕𝜕
= 𝐷𝐷 �

𝜕𝜕𝑖𝑖+1,𝑗𝑗
𝑛𝑛+1 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛+1+𝜕𝜕𝑖𝑖−1,𝑗𝑗
𝑛𝑛+1

∆𝑥𝑥2
+

𝜕𝜕𝑖𝑖,𝑗𝑗+1
𝑛𝑛+1 −2𝜕𝜕𝑖𝑖,𝑗𝑗

𝑛𝑛+1+𝜕𝜕𝑖𝑖,𝑗𝑗−1
𝑛𝑛+1

∆𝑦𝑦2
�    (5) 

Zero initial value and the Dirichlet boundary conditions 
are also set for simplicity as can be seen in Figure 1 where 
model geometry is shown.  

 
Fig. 1. Model geometry alongside governing equation and side 
conditions for solving the diffusion equation. 
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2.2 Neural network 
Leveraging CNNs to simulate the diffusion equation may 
introduce a powerful computational paradigm that utilizes 
deep learning techniques and highly optimized platforms 
that are being developed in this area. Unlike traditional 
methods that require manual discretization of derivatives, 
CNNs can either learn or encode to solve the equation by 
minimizing a defined loss function related to the diffusion 
dynamics. 

2.2.1 Convolutional kernel for Laplacian  

The first and important step of applying CNNs in this 
context is the convolutional kernel designed to mimic the 
Laplacian operator. For a two-dimensional diffusion 
process, assuming that Δ𝑑𝑑 = Δ𝑑𝑑, this can be represented 
by the following expression [7]: 

𝐾𝐾 = �
0 𝛾𝛾 0
𝛾𝛾 −4𝛾𝛾 𝛾𝛾
0 𝛾𝛾 0

�                                                                     (6)               

where 𝛾𝛾 = 𝐷𝐷Δ𝑡𝑡/Δ𝑑𝑑2. This kernel (also known as five-
point stencil), when convolved with the concentration 
matrix, approximates the Laplacian's effect as follows: 

 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 − 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 = 𝐾𝐾 ∙ �
𝑐𝑐𝑖𝑖−1,𝑗𝑗−1
𝑛𝑛 𝑐𝑐𝑖𝑖−1,𝑗𝑗

𝑛𝑛 𝑐𝑐𝑖𝑖−1,𝑗𝑗+1
𝑛𝑛

𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛

𝑐𝑐𝑖𝑖+1,𝑗𝑗−1
𝑛𝑛 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛 𝑐𝑐𝑖𝑖+1,𝑗𝑗+1
𝑛𝑛

� =

𝛾𝛾(𝑐𝑐𝑖𝑖−1,𝑗𝑗
𝑛𝑛 + 𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛 − 4𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛 + 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛 )                           (7) 
The latter equation can be written in an implicit form and 
be encoded by the same kernel: 

𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 − 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛 = 𝐾𝐾 ∙ �
𝑐𝑐𝑖𝑖−1,𝑗𝑗−1
𝑛𝑛+1 𝑐𝑐𝑖𝑖−1,𝑗𝑗

𝑛𝑛+1 𝑐𝑐𝑖𝑖−1,𝑗𝑗+1
𝑛𝑛+1

𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑛𝑛+1 𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛+1 𝑐𝑐𝑖𝑖,𝑗𝑗+1𝑛𝑛+1

𝑐𝑐𝑖𝑖+1,𝑗𝑗−1
𝑛𝑛+1 𝑐𝑐𝑖𝑖+1,𝑗𝑗

𝑛𝑛+1 𝑐𝑐𝑖𝑖+1,𝑗𝑗+1
𝑛𝑛+1

�                  (8) 

Eq. (7) and (8) are used to update the concentration values 
according to the diffusion equation. In the CNN 
architecture, the implicit form in Eq. (8) is handled by 
either an optimization loop or introducing recurrent neural 
networks as it will be discussed in the following 
subsections. While the derived kernel in Eq. (6) is 
applicable to two-dimensional systems, a three-
dimensional kernel can also be defined for three-
dimensional simulations. The 3D Laplacian kernel is 
typically represented as a 3×3×3 tensor (also known as 
seven-point stencil). In either case, the input layer (with a 
shape of 𝑁𝑁𝑥𝑥×𝑁𝑁𝑦𝑦×𝑁𝑁𝑧𝑧 where 𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, and 𝑁𝑁𝑧𝑧 are system 
sizes in 3D) is feed into a hidden later via the defined 
convolution kernel. Then, a loss is calculated and 
optimized to generate new inputs.  Finally, to enforce non-
negativity of the calculated concentrations, a rectified 
linear unit (ReLu) is used as an activation function.  

2.2.2 Training and input optimization  

Training of the physically informed neural networks 
(PINN) are usually based on calculating unknown weights 
of CNN kernels using gradient decent through feeding the 
simulation results from numerical modeling [8]. In the 
latter cases, a surrogate model will replace the numerical 
solver which is just an approximation of the solution 

function with limitations already imposed by the data 
from the numerical solution. 

Here, the models’ variables are defined on the input 
later of the CNN to predict the next time steps of the 
solution while the kernel weights are encoded by the 
derived matrix in Equation (4). In deep learning literature, 
such an approach is used for optimizing the input images 
by performing gradient ascent on image. Mainly, input 
optimization is used to generate new examples for data 
augmentation purposes. General case of the input 
optimization is selecting an arbitrary layer of the network 
as trainable variables which is the main idea behind the 
gradient based visualization such as saliency maps [9]. 
The latter maps provide another useful application for the 
proposed method in this study as it will be discussed in 
Section 3.  

Here, the input layer of the CNN is trained through 
an iterative process where it learns to predict the evolution 
of the concentration field by continuously minimizing a 
loss function. For the loss calculation, the difference 
between the generated concentration by gradient ascent 
and the predicted concentration (using the diffusion 
equation) is calculated, then it is squared and summed to 
obtain the loss value. This function can also be defined to 
quantify and imposes the mass and energy balances on top 
of the discrepancy between the network's predictions and 
the desired outcomes. It should be noted that any terms 
(including convection and reaction terms) can be added to 
the computational graph of the neural network to obtain 
the predicted value and the outcomes in the optimization 
loop. A detailed description of the computational graph as 
well as steps taken to generate new outputs is provided in 
the appendix.  

The boundary conditions are directly encoded 
during optimization by forcing the associated pixel to 
values corresponding to boundary conditions. This is done 
by padding some values to the edges of the matrix known 
as edge handling in computer vison. Some common 
techniques to deal with different boundary conditions are 
clip filter/black (sets the boundary values to zero or a 
specific "black" value), wrap around (boundary values are 
taken from the opposite edge), copy edge (values at the 
boundary are copied from the nearest interior values) and 
reflect across edge (boundary values are mirrored across 
the edge). Here, the Dirichlet boundary condition is used 
for simplicity and therefore the pixel values are set to an 
initial value of zero on boundaries (clip filter method).  

Overall, this approach does away with the need for 
solving large systems of equations one by one, offering 
potential efficiencies and enhanced flexibility in handling 
complex boundary conditions or irregular domains. By 
integrating deep learning with traditional PDE modeling, 
this approach not only streamlines computations but also 
opens new avenues for analyzing and solving complex 
dynamic systems especially those involved with image 
type data such as digital rock lab analyses.  

2.2.3 LSTM units for convergence 

The latter approach based on CNN architecture, requires 
an optimization loop over each pixel of the input geometry 
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at each time step. Therefore, to predict the evolution of 
spatial data (like concentration profiles in the diffusion 
equation) over time, the choice of hyperparameters such 
as learning rate would be crucial for each time steps. Also, 
the convergence criteria in the numerical methods will be 
replaced by callback parameters for stopping algorithms 
in the learning process. The result of this work is based on 
the latter approach since we are only examining the 
feasibility of replacing numerical methods by deep 
learning architectures for solving problems in porous 
media.  

To further utilize available deep learning 
architecture, one could construct a hybrid model that 
combines the spatial processing capabilities of CNNs with 
the temporal sequence handling of recurrent neural 
networks such as LSTM (short for long short-term 
memory) units. In such a hybrid model, CNN layers will 
first process the spatial information at each time step to 
capture spatial dependencies and morphological features. 
The outputs of these CNN layers will then be fed into 
LSTM units, which will process the temporal evolution of 
these features. This sequential processing mimics the 
propagation of diffusion over time, capturing both the 
spatial and temporal dynamics inherent in the diffusion 
equation. 

Alternative to hybrid models, one could employ 
custom LSTM layers such as ConvLSTM where the 
convolution operation (including a Laplacian-like kernel) 
is integrated directly within the LSTM architecture. 
ConvLSTMs combine spatial convolution and LSTM’s 
temporal processing in a single layer, making them ideal 
for spatio-temporal data [10]. 

An important consideration in the proposed hybrid 
model as well as custom LSTM layers (ConvLSTM) 
would be the need for encoding and modifying the 
optimized functions in the RNN units. If the operations 
are not as efficiently optimized as conventional matrix 
operations in deep learning frameworks, hybrid models 
could even lead to increased computational demands.  
All of the mentioned approaches are dealing with 
calculating the concentration profiles.  One could also use 
this network as a surrogate model. In the latter case, the 
optimization parameters in the computational graph can 
be frozen to predict (instead of calculating) the 
concentration profiles in future time steps. Again, 
ConvLSTM architecture should work the best for such an 
application due to sequential behavior of the 
concentration profiles over different time steps.  

3 Results and Discussion 

In this section, simulation results of the diffusion problem 
are presented using FDM and CNN methods. The input 
parameters are dimensionless for simplicity.  

For FDM, the grid dimensions (𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦) are 
varied between 10 to 500, with a diffusion coefficient of 
𝐷𝐷 = 1. The time step for the simulation is ∆𝑡𝑡 = 0.1, and 
the spatial step sizes are ∆𝑑𝑑 = 1 and ∆𝑑𝑑 = 1. These 
parameters determine the resolution and time scale of the 
simulation. The initial concentration array, 𝑐𝑐, is set to a 
concentration of 100 at the center of the grid and 0 

everywhere else. The simulations are also run for 𝑁𝑁𝜕𝜕 = 10 
time steps.  

For the CNN based method, the Adam optimizer 
with a learning rate of 0.01 is employed for the 
optimization. Again, the simulations are run for 10-time 
steps, with a tolerance of 0.001 on the loss function 
variations and a maximum of 500 iterations in the inner 
optimization loop. 

Figures 2-4 show the simulation results of 
concentration profiles for explicit FDM, implicit FDM 
and implicit CNN based models, respectively. As can be 
seen in the latter figures, the simulation results of both 
implicit methods are similar, and the maximum 
concentrations are higher than that of obtained by the 
explicit method.  

The reason for this difference in the concentration 
profiles can be found by checking the mass conservation 
in the simulations results as shown in Figure 5. As 
illustrated in the latter figure, the explicit scheme is less 
mass conservative (with an error of 0.7 % over 10 time-
steps) as compared to the implicit schemes (0.26 % for 
FDM and 0.28 % CNN based method). 

 
Fig. 2. Concentration profiles obtained by solving the diffusion 
problem using explicit scheme of finite difference on a 10×10 
gird size.  

 Regardless of the error manganite in Figure 5, 
behavior of error in mass conservation between CNN 
based and FDM suggests a different computation 
algorithm in the latter two cases.  

One of the reasons to use neural network-based 
formulations is possible speed up for large scale or high-
resolution problems at it can be implemented on parallel 
computational architectures such as graphical processing 
units (GPUs). Unlike the central processing units (CPUs) 
where one operation at a time is handled, GPU can process 
thousands of threads simultaneously. Therefore, it is 
expected to observe significant speed up as number of 
grids (pixels) are increased when such a parallel 
architecture is used for the computations. To examine this 
hypothesis, experiments can be run at different grid sizes 
and the simulation runtimes be compared. For example, 
Figure 6 shows simulation results of the concentration 
profile when the size of the system is increased to a 20×20 
pixel-size. It also shows the loss values obtained after 200 
epoch in each time step of calculations. The latter loss 
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curves will be discussed in more detail in the following 
when convection terms are introduced.  

 
Fig. 3. Concentration profiles obtained by solving the diffusion 
problem using implicit scheme of finite difference on a 10×10 
grid size. 

 
Fig. 4. Concentration profiles obtained by solving the diffusion 
problem using implicit scheme of CNN based model on a 
10×10-pixel size. 
 

Similar to the results in Figure 6, we run simulations 
using three different approaches on a Tesla T4 GPUs in 
Google Colab computer machine. The simulation 
runtimes are reported in Table 1 for system sizes of 
10×10, 20×20, 50×50, 100×100, 200×200 and 500×500. 
Each reported value is an average of 5 different runs to 
minimize random errors caused by available online 
computational power at a given time.  

 
Fig. 5. Summation of total mass over all grids (pixels) in the 
simulations’ models.  

 
Fig. 6. (a) Concentration profiles obtained by solving the 
diffusion problem using implicit scheme of CNN based model 
on a 20×20-pixel size. (b) loss values obtained after 200 epoch 
in each time step of calculations.  

 Table 1 shows that as the grid sizes expand to 
200×200, the runtime of the CNN-based model stabilizes 
due to the parallel processing capabilities of the GPU. 
Although the implicit FDM initially outperforms in terms 
of runtime for smaller system sizes, its advantage over the 
CNN-based model lessens when the system size reaches 
500×500.  

 The key observation in Table 1 is that the 
computational complexity does not increase significantly 
in neural network methods when the number of pixels is 
increased. This contrasts sharply with standard numerical 
methods, where computational complexity escalates 
rapidly as more grids are added. This difference is critical 
in scenarios where high-resolution data are needed, 
making neural network methods particularly 
advantageous for handling large-scale problems 
efficiently. 

 In Table 1, a trivial observation would be that the 
explicit method outperforms both implicit approaches 
since the equations are not solved simultaneously in an 
explicit scheme, and the computing process only includes 
basic operations and assignments.  
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Table 1. Simulation runtime (in seconds) by adopting different 
approaches for solving the diffusion problem at different sizes. 

Size CNN 
Implicit 

FDM 
Implicit 

FDM 
Explicit 

10×10 12 0.06 0.002 

20×20 18 0.4 0.002 

50×50 30 3.2 0.003 

100×100 65 8 0.007 

200×200 70 28 0.008 

500×500 71 133 0.03 
 

Another aspect of neural network-based methods is 
the property of generalization. As can be seen in 
derivation of the CNN kernels, they can be written for 
different governing equations. Coupling and extending 
different equations can be readily encoded by modifying 
the loss function and connecting the output layers of 
different neural networks which make the proposed 
method suitable for developing generic multiphysics 
modeling. For example, adding other transport terms to 
the solved diffusion equation in previous section only 
require modifying the loss function.  

Figures 7-8 shows simulation results of 
concentration profiles obtained by solving the diffusion 
problem with convective term and velocity of 1 in 𝑑𝑑 and 
𝑑𝑑, respectively. As can be seen in the latter figures, 
diffusion propagations are affected by horizontal and 
vertical velocity directions through convolution operation 
on the input images.  

 
Fig. 7. Concentration profiles obtained by solving the diffusion 
problem with convective term and velocity of u=1 in x-
direction using implicit scheme of CNN based model on a 
50×50-pixel size. 

 
Fig. 8. Concentration profiles obtained by solving the diffusion 
problem with convective term and velocity of v=1 in y-
direction using implicit scheme of CNN based model on a 
50×50-pixel size. 
  

For introducing the convection terms in Figures 7 
and 8, only two additional kernels are needed to compute 
the first derivatives in the 𝑑𝑑 and 𝑑𝑑 directions. To do so, the 
kernel in Eq. (6) remains unchanged from the diffusion-
only model and is used to compute the second spatial 
derivatives of the concentration field. Two one-
dimensional gradient kernels can also be defined as 
follows: 
𝐺𝐺𝑥𝑥 = 𝛾𝛾Δ𝑑𝑑/𝐷𝐷[−1 0 1]                                               (9) 
𝐺𝐺𝑦𝑦 = 𝛾𝛾Δ𝑑𝑑/𝐷𝐷[−1 0 1]𝑇𝑇                                           (10) 
The latter kernels in Eqs. (9) and (10) are used to 
approximate the first derivative with respect to 𝑑𝑑 and 𝑑𝑑, 
respectively, in the convection term of the transport 
equation. In other words, we replace the prediction of each 
neural network layer in Eq. (11) by the one presented in 
Eq. (12) 
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑙𝑙𝑙𝑙𝑦𝑦𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑛𝑛 + 𝐾𝐾 × 𝑐𝑐𝑛𝑛+1                             (11) 
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑙𝑙𝑙𝑙𝑦𝑦𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑛𝑛 + 𝐾𝐾 × 𝑐𝑐𝑛𝑛+1 − 𝑢𝑢 × 𝐺𝐺𝑥𝑥 × 𝑐𝑐𝑛𝑛+1 −
𝑣𝑣 × 𝐺𝐺𝑦𝑦 × 𝑐𝑐𝑛𝑛+1                                                             (12) 
Similar to other numerical methods, convergence issues 
should arise when the ratio of the convection to the 
diffusion (also known as Peclet number) is increased. 
Figure 9 shows the concentration profiles after 20-time 
steps when velocity in y-direction is increased from 1 
(Figure 9(a)) to 3 (Figure 9(b)).  
 

 
Fig. 9. Concentration profiles obtained by solving the diffusion 
problem with convective term and velocity of (a) v=1 and (b) 
v=3 in y-direction using implicit scheme of CNN based model 
on a 50×50-pixel size. 

Figure 9 shows how increasing the convective term 
can change the concentration profiles. To show the 
impacts of a higher Peclet number on numerical 
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convergence, the corresponding overall loss values at the 
end of 200 epochs are plotted against the time steps Figure 
10. The latter figure shows that a higher ratio of the 
convective term to the diffusion term generated a higher 
value of the loss. A higher loss indicates a higher 
convergence error. Therefore, the proposed method will 
need higher computational cost at higher Peclet number 
similar to previous numerical methods.  
 

 
Fig. 10. Loss values at the end of 200 epochs during 
optimization of the concentration profiles using implicit scheme 
of CNN based model on a 50×50-pixel size. 

 
In addition to developing a simulator for large scale 

or high-resolution problem, the suggested approach in this 
study can be used to interpret the results of pre-train 
model by finding their kernels and try to retrieve the 
underlying equations [11]. One example would be history 
matching in reservoir engineering where to use data-
driven approaches for characterizations. The idea of such 
an application would be similar to saliency maps 
generated for visualizing the training process of neural 
networks.  

Conclusions 

In this work, the problem of solving the diffusion equation 
using an implicit finite difference scheme was mapped to 
the task of optimization a neural network. Simulation 
experiments were run to examine the accuracy, 
performance and scalability of the proposed approach.  

The mass conservation analysis showed that the 
accuracy of the proposed method is comparable to that of 
achieved in the implicit finite differences approach. After 
a large enough gird size (500×500 in the simulations 
results in this study), neural network-based models could 
outperform conventional implicit finite differences 
method in terms of simulation runtime. In fact, after a gird 
size of 200×200, runtime of simulation by new approach 
seems to level off.  

The simulation results were obtained based on the 
simplest form of the diffusion equations in a two-
dimensional system with a simple boundary condition. 
But the proposed encoded neural networks can be 
extended into more complex equations to incorporate 
other terms in transport equations such as convection and 
reaction expressions. The model can also be upscaled to 
three-dimensional systems with irregular boundaries by 
merely changing the applied kernel and subsequent 
modifying the loss function.  

As a future work, neural network with recurrent 
layers can be used to further utilize the computational 
efficiency of available frameworks for deep learning. The 
underlying concept for the latter task was provided in this 
work. Finally, to provide a comparison between the 
proposed method with traditional parallel computing 
techniques, future studies should focus on evaluating 
speedups and numerical performance measures such as 
compression efficiency. The numerical performance of a 
problem with parallel computing depends on number of 
processors and types of machines (whether it is a 
multicore/manycore shared memory machines or 
distributed memory machines like clusters and 
supercomputers).  
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Appendix 

The textual representation of the computational graph for 
the basic developed neural network is shown in Figure 
A.1. In the latter figure, the computations steps include 
initialization, outer and inner loop calculations and loss 
and mass evaluations. In the initialization, initial 
concentration is reshaped into tensor. For each time step 
in the outer loop, a copy of the tensor is stored. In the inner 



The 37th International Symposium of the Society of Core Analysts 

loop, the optimization is performed (using Adam 
optimizer) until the loss is below the tolerance value or 
the maximum number of iterations is reached. For the loss 
calculation, the difference between newly generated 
profile and the predicted concentration (using the 
diffusion equation) is calculated, then it is squared and 
summed to obtain the loss value. The gradients of the loss 
with respect to the tensor variable are used to generate 
new concentration profiles. To enforce non-negativity on 
the tensor variables, the ReLu activation function is 
applied after applying the Laplacian kernel. Finally, the 
current loss and mass deviations are appended to the 
losses and masses lists.  
 

 
Fig. A1. Computational graph for the neural network used in 

place of finite difference scheme.  

 


