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Abstract. This study aims to validate models developed for predicting true resistivity and water saturation in 
drainage capillary pressure and formation resistivity index (PcRI) measurements using porous plate methodology. 
The true resistivity model enables the calculation of the time required to reach equilibrium for these key parameters . 
To validate the petrophysical resistivity model, an extensive database was used, comprising over 12,500 data points 
collected from sandstone and carbonate rocks analysed under various fluid systems, including crude oil/water, 
laboratory oil/water, and gas/water. The true resistivity and water production models reliably estimated true 
resistivity and water saturation as a function of time for both rock types. Based on transient drainage PcRI data, the 
models can predict equilibrium true resistivity and water production, significantly reducing measurement time and 
accelerating PcRI measurements by up to 63% in some cases. This optimization improves analysis timing and 
facilitates data interpretation, making the models as an important tool for enhancing efficiency in laboratory PcRI 
analysis. These models also have practical applications in monitoring and controlling the quality of transient 
drainage PcRI data. Additionally, they support the interpretation and validation of results, ensuring a more reliable 
and robust petrophysical evaluation.

Introduction 
Capillary pressure and resistivity index (PcRI) are 
important variables in reservoir characterization obtained 
through porous plate experiments [1–3]. Using these 
parameters in reservoir simulation models will aid in 
predicting fluid flow and distribution in the reservoir 
[1,4]. It is widely recognized that the porous plate 
technique, also known as the equilibrium method, can be 
used simultaneously to determine both the capillary 
pressure and water saturation-resistivity index (Sw-RI) 
relationship according to the saturation history. In contrast 
to other methods, the porous plate method directly 
measures these relationships without requiring model-
based calculations. As a direct measurement, this is an 
advantage. However, the main disadvantage is the time 
investment required due to the low flux through the 
porous plate [1]. As a result, this limitation is particularly 
evident in rocks with low (1 mD < K < 10 mD) or very 
low permeability (K < 1 mD), where achieving 
equilibrium can take a considerable amount of time, even 
months or more to complete [3,5,6]. 

Due to the limitation of the traditional porous plate 
method, alternative methods may be considered. There 
are several alternative methods available, including 
Membrane Technique (MT), Continuous Injection (CI), 
Mercury Injection Capillary Pressure (MICP), Centrifuge, 
Digital Rock Physics (DRP), Pore Network Modelling 
(PNM), Artificial Neural Networks (ANNs), and even 
using Fractal Theory (FT) in capillary pressure prediction 
[5,7–13].  

In MT experiments, thin microporous membranes help 
reduce experimental duration by minimizing the influence 
of membrane permeability. However, these membranes 
struggle to withstand mechanical stress and to maintain 
their wettability throughout the experiment [1,14].  

CI determines the resistivity index as a function of 
water saturation. While it shares similarities with the 
porous plate technique, it differs in that it utilizes an 
ultralow constant injection rate rather than applying a 
stepwise constant differential pressure. As a result, 
capillary pressure curves cannot be directly obtained from 
this method [1].  

MICP allows access to very small pores, but it does 
not allow for further use of the sample, and the fluid used 
may not be representative of the reservoir conditions [9]. 
It only provides information about the pore throats 
structure which is indirectly related to the resistivity index 
(RI)[15]. 

As another alternative, centrifuge provides a faster 
method of establishing saturation [9,10]. On the other 
hand, it is also limited in its ability to achieve true 
equilibrium conditions, particularly when applied to low-
permeability samples and heterogeneous water saturation 
distributions resulting from the non-uniform distribution 
of capillary forces along the sample length [16]. Similarly 
to MICP, capillary pressure data is obtained by this 
method, rather than RI directly [17]. 

DRP, PNM, ANNs, and FT have developed various 
indirect methods for generating capillary pressure data 
[5,10–13,18–21], however, each approach has its own 
challenges and limitations. 
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Among the challenges faced by DRP are data 
acquisition limitations, high computational demands, 
model simplifications, wettability representations, 
upscaling requirements, validation issues, and 
heterogeneity complexities [22–25].  

Despite its significant potential, PNM is hindered by 
inaccuracies in pore network construction, difficulties in 
representing multiphase flow complexity, scaling issues 
and uncertainties in parameterization [26].  

Although ANNs have potential for estimating 
capillary pressure curves, they experience several 
challenges, including a lack of physical constraints, the 
need for large, high-quality datasets, model complexity, 
difficulties with generalization, and high computational 
costs [5,26,27].  

The use of FT for characterizing porous media and 
predicting capillary pressure is limited by difficulties in 
defining fractal dimensions, inherent model constraints, 
challenges in integrating wettability and fluid properties, 
high computational demands, complexities in upscaling 
and validation, and application-specific restrictions. 
[5,28,29] 

Some of the alternatives mentioned earlier, such as 
MT, MICP, and centrifuge, are direct methods for 
measuring capillary pressure. However, as discussed, 
these methods face constraints in capturing true 
equilibrium and replicating reservoir conditions. Even 
though significant progress has been made in developing 
alternatives to PcRI measurement, the porous plate 
method remains the most effective method for 
determining capillary pressure and resistivity  
simultaneously. It is possible to retain the advantages of 
direct PcRI measurement while at the same time 
addressing its primary limitation, namely its significant 
time-consuming nature, by developing an alternative 
approach. 

It was attempted to model the equilibrium process to 
accelerate the collection of porous-plate capillary pressure 
by not waiting for capillary equilibrium at each pressure 
step [1,30,31], which led to the invention of Short-Wait 
Porous Plate (SWPP) method [1]. This method is an 
advanced technique for simultaneously measuring 
capillary pressure and resistivity index. In contrast to the 
traditional equilibrium method, the SWPP eliminates the 
need for full saturation stabilization at every pressure step, 
which significantly reduces experimental time while 
maintaining accuracy. The SWPP method provides 
dynamic saturation and resistivity data by monitoring 
changes in resistivity during desaturation and predicting 
equilibrium saturations by using an exponential decay 
model. This approach is particularly effective in primary 
drainage scenarios, where piston-like fluid displacement 
ensures global water connectivity, minimizing errors 
caused by fluid trapping. The method has shown strong 
agreement with traditional equilibrium measurements and 
provides an approximate three-fold time saving over 
traditional equilibrium measurements, making it a 
valuable tool for the efficient characterization of 
reservoirs [1]. 

Despite its notable success, SWPP is subject to various 
constraints and difficulties that need to be thoroughly 
addressed for effective implementation. There is 

uncertainty regarding whether this method is applicable to 
other fluid and rock types, as most studies validating this 
method focus on oil/water systems and carbonate rocks. 
Additionally, the method does not specify the amount of 
data required for reliability, instead suggesting that the 
next step be increased only when the curve bends before 
proceeding.  
 
Development of the models 
 
Predicting equilibrium time and modelling the dynamic 
behaviour of resistivity and water production during PcRI 
tests is critical to optimize experimental workflows and 
ensuring high-quality data. This study utilizes a large 
dataset to evaluate a predictive approach for equilibrium 
time and transient resistivity behaviour in PcRI tests. By 
systematically analysing experimental PcRI data, this 
methodology enables accurate predictions of equilibrium 
time and dynamic system behaviour, improving the 
interpretation of PcRI test results. The findings 
demonstrate how predictive modelling can enhance 
laboratory workflows by reducing the duration of PcRI 
experiments while maintaining data quality. These results 
represent a  significant step toward improving the 
efficiency and reliability of PcRI testing for broader 
applications in reservoir characterization. Within the 
framework of Archie’s rock behaviour and its associated 
boundary conditions [32], we have developed analytical 
models to predict true resistivity and water production. 
These physics-based models are derived using analogies 
to electrical circuit behaviour, following a similar 
conceptual approach to those used for modelling the effect 
of clay on formation resistivity factor [33], as outlined 
below: 
 

 𝑅𝑅𝑡𝑡 =  𝑎𝑎1𝑒𝑒− 𝑏𝑏1𝑡𝑡 +  𝑐𝑐1       (1) 
 

 𝑉𝑉𝑠𝑠 =  𝑎𝑎2𝑒𝑒− 𝑏𝑏2𝑡𝑡 +  𝑐𝑐2       (2) 
 

Although independently developed, the final 
expressions have an exponential decay form that is 
visually similar to those reported by Dernaika et al. [1]. 
The variables 𝑡𝑡,  𝑅𝑅𝑡𝑡  and 𝑉𝑉𝑠𝑠 are the time measurement, true 
resistivity of the sample and the amount of water 
produced, respectively. The constants  𝑎𝑎1,  𝑎𝑎2,  𝑏𝑏1,  𝑏𝑏2,  𝑐𝑐1 
and  𝑐𝑐2 are all determined by fitting the model to the data 
using nonlinear least squares techniques. 
 
Results and Discussion 

At each capillary pressure step, true resistivity models are 
assumed to be independent of other capillary pressure 
steps. In this case, when transitioning to the next capillary 
pressure step, it is necessary to reset the true resistivity by 
setting the first registered resistivity to zero, which will 
serve as the base for that step. To calculate subsequent 
resistivity values, this base value must be subtracted from 
them. For the first example, Figure 1 shows a well-fitted 
resistivity model for the reset of true resistivity measured 
over 494 days at 275 mbar with an R2 of 0.998. The 
equilibrium time for the model fitted to the true resistivity 
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data is 368 days. At the equilibrium time the true 
resistivity is 87.92 Ωm.  

For the model to be effective, data on resistivity and 
the volume of fluids produced over time must be 
available. To verify the validity of the used models, macro 
programs were developed, and large data sets were fitted 
with the models. It was first examined how using different 
fluid systems such as crude oil/water, lab oil/water, and 
gas/water could affect the model’s accuracy to predict true 
resistivity transients. Figures 2–4 present model 
validation results for different fluid pairs: crude oil/water 
(Example 2), lab oil/water (Example 3), and gas/water 
(Example 4). Each figure illustrates the correlation 
between predicted true resistivity and measured data for 
the respective system. Based on the cross plots in Figures 
2-4, the model has been able to predict the true resistivity 
values for all three fluid systems with a good degree of 
accuracy. Based on the average relative error, the model 
demonstrates the highest accuracy for the gas/water 
system, with an average relative error of 5.6%, followed 
by the crude oil/water system (5.9%) and the laboratory 
oil/water system (8.5%). 
 

 
Fig. 1. Example 1, model fitting for true resistivity 
measurements over 494 days at 275 mbar, with an R² of 0.998. 
The dashed line indicates the model prediction. 
   

 
Fig. 2. Example 2, a comparison of the true resistivity calculated 
by the Rt model with the Rt data measured using the crude 
oil/water system was performed on plug samples containing 450 
data points. 
 

The second approach to validate the true resistivity 
model was to apply it to sandstone and carbonate samples 
and investigate their effects on the accuracy of the model 

in predicting true resistivity transients. For sandstone and 
carbonate samples, Figures 5 and 6 illustrate the 
correlation between true resistivity predictions and 
laboratory measured data.  As shown in 5 and 6, the model 
accurately predicts the true resistivity values for both rock 
systems. However, the model provided slightly better 
predictions for the sandstone samples, with an average 
relative error of 5%, compared to 6% for the carbonate 
samples. 

 

 
Fig. 3. Example 3, a comparison of the true resistivity calculated 
by the Rt model with the Rt data measured using the lab oil/water 
system was performed on plug samples containing 765 data 
points. 
 

 
Fig. 4. Example 4, a comparison of the true resistivity 
calculated by the Rt model with the Rt data measured using the 
gas/water system was performed on plug samples containing 
564 data points. 
 

While fitting the developed models to this large 
dataset, it was observed that the R-squared value for the 
first pressure step consistently remained below 0.999, 
indicating lower prediction accuracy at this step. Figure 7 
provides an example of this observation where water 
production and resistivity index (RI) data at the first 
pressure step are plotted along with their model 
predictions. This figure shows that the models were not 
able to predict well and deviated from the final values at 
day 60. This deviation in predicting true resistivity and 
water production at the first pressure step is likely due to 
the fact that, when oil flooding began, the oil had not yet 
reached the porous plate at the sample's outlet. 
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Fig. 5. Example 5, a comparison of the true resistivity calculated 
by the Rt model with the Rt data measured was performed on 
sandstone samples containing 9769 data points. 
 

 
Fig. 6. Example 6, a comparison of the true resistivity calculated 
by the Rt model with the Rt data measured was performed on 
carbonate samples containing 2731 data points. 
 

The R-squared is improved by removing some of the 
initial data and refitting the models. Removing more 
initial data points and refitting the models should be 
repeated until the highest R-squared has been achieved, 
indicating that the flooded oil has reached the end of the 
sample. An application of the developed models is to 
monitor the oil capillary dominated displacing mechanism 
and to identify when the oil reaches water-wet porous 
plate. Figure 8 illustrates that by removing the initial data 
in Figure 7 up to day 14, a  much better model fit was 
achieved in predicting the final values.  

Among the applications of the developed models, 
Figure 9 illustrates how the true resistivity model can be 
applied to correct anomalies in experimental data caused 
by equipment-related artifacts, rather than serving as a 
conventional model validation case. This example shows 
a PcRI measurement at 5,000 mbar capillary pressure, 
under net confining pressure (NCP), and at temperature. 
An unexpected equipment power failure on day 251 of the 
measurement resulted in the temperature dropping to an 
ambient level. When the technical issue was solved and 
the temperature was raised to reservoir conditions again, 
RI hysteresis effects were visible in the measured data, 
showing an increase of RI values after failure, and the 
trend of measurement changed as shown in Figure 9. 

By feeding the true resistivity model with data 
collected before the failure, the model was able to predict 

the equilibrium value accurately, aligning with the 
original RI trend of the experiment. 
 
  

 
Fig. 7. Example 7, illustrating water production and RI data at 
the first pressure step alongside their model predictions, 
highlighting the models' less accurate performance and 
deviation from the final measured analytical values. 
 
 

 
Fig. 8. Example 7, by excluding the initial data up to day 14 
(same as in Figure 7), the model fitting significantly improved, 
resulting in better predictions of the final measured analytical 
values. 
 

 
Fig. 9. Example 8, RI versus time for crude oil/water PcRI 
measurement at 5,000 mbar, NCP, and temperature. The true 
resistivity model (dashed line), based on pre-failure data, 
properly predicted the equilibrium value. 
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A significant detail to consider is that the equilibrium  
time for true resistivity and water production are different. 
Compared to true resistivity in PcRI measurements, water 
production reaches equilibrium faster since water flow is 
more directly responsive to pressure changes, whereas 
resistivity is affected by a slower process of water 
redistribution within the rock matrix, influenced by 
capillary pressure, fluid saturation distribution, 
wettability and rock properties. 

   Two different PcRI methods were conducted on a 
twin sample, A and B which are located only few 
centimeters apart. PcRI was conducted on sample A under 
NCP and temperature using an oil–water system with six 
capillary pressure steps of 50, 150, 500, 1,000, 2,500, and 
5,000 mbar. The PcRI on sample B was conducted under 
the same NCP, temperature, and fluid conditions, but 
there were three pressure steps, 500, 2,500, and 5,000 
mbar, where only equilibrium was achieved at the last 
pressure step, in contrast to sample A, which reached 
equilibrium at all pressure steps. As a result, the 
measurements on samples A and B are referred to as 
Multiple and Single, respectively. A time comparison 
reveals that sample A required 260 days for the Multiple 
measurement, whereas only 75 days were needed for the 
Single measurement. As presented in Table 1, the n-
saturation exponent calculated from the Multiple 
experiment is 2.04, whereas it is 2.08 for the Single 
measurement. 

The models were fitted to the transient water 
production and true resistivity data obtained from the 
Single measurement. Following the fitting, the 
experiment was extended to reach equilibrium time at 
5,000 mbar, matching the duration of the Multiple 
measurement, as shown in Figures 10 and 11.  

As shown in Figure 10, the multiple measurement was 
terminated prematurely at the final pressure step, before 
true resistivity had fully stabilized. However, as 
illustrated in Figure 11, water production had already 
reached sufficient stability. The RI at the final step was 
therefore predicted using the model, yielding a value of 
1191, as reported in Table 1. As listed in Table 1, the final 
RI and irreducible water saturation (Swi) achieved in the 
Multiple experiment were 1088 and 0.035 (frac), 
respectively. Based on the model’s prediction for the 
Single method, the RI and water saturation were 
calculated as 1151 and 0.025 (frac), respectively. The 
final RI prediction using the Single method differed by 
5% from the Multiple data and by 3% from the Multiple 
model. 
 
Table 1. Final RI and Swi values for the Multiple and Single 
methods, along with the model's predictions for the Single and 
Multiple method. 

 
A comparison of MICP and PcRI data in low water 

saturation regions is presented in Figure 12. The model-

derived estimate of final water saturation for the Single 
methodology closely matches the MICP data at 5,000 
mbar.  
 

 
Fig. 10. Example 9, RI versus time for samples A and B at NCP 
and temperature. The model for true resistivity was fitted to the 
data, extending the experiment to estimate equilibrium for 
sample B (dashed line). 
 

 
Fig. 11. Example 9, water production versus time for samples A 
and B at NCP and temperature. The model for water production 
was fitted to the data, extending the experiment to estimate 
equilibrium for sample B (dashed line). 
 

 
Fig. 12. Example 9, comparison of MICP and PcRI data in low 
water saturation regions for samples A and B. 

 
The model output yielded a saturation exponent of 

2.04, which matches the value obtained using the Multiple 
method, as illustrated in Figure 13. The availability of 
experimental data significantly influences model 

   B-Single 
(Data) 

B-Single 
(Model) 

A-Multiple 
(Data) 

A-Multiple 
(Model) 

Final RI 909 1151 1088 1191 
Swi 0.038 0.025 0.035 0.035 
n 2.08 2.04 2.04 2.04 
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accuracy, with greater data availability generally leading 
to improved estimations. However, reliable predictions 
require a minimum amount of data. By using statistical 
analysis, the models can predict equilibrium results with 
approximately 81% accuracy when data is collected for a 
period equal to 25% of the equilibrium period. Increasing 
the data collection period to 37% of equilibrium time 
improves the prediction accuracy to 99%. Thus, it is 
recommended that the PcRI time be at least 37% of 
equilibrium time to ensure a high degree of accuracy. This 
approach allows the models to accurately predict the 
equilibrium true resistivity and water production with 
sufficient transient production and resistivity data. 
Accordingly, if PcRI measurements are taken at a 
pressure step for 37% of equilibrium time, and the 
developed models are used to predict the results at 
equilibrium, up to 63% of the measurement time can be 
saved. 
 

 
 Fig. 13. Example 9, RI versus water saturation for samples A 
and B at NCP and temperature. Comparison of saturation 
exponents. 
 
Conclusions 
 
In conclusion, the developed exponential models 
demonstrate strong performance in predicting true 
resistivity and water production from PcRI 
measurements. Validation across a diverse range of 
sandstone and carbonate samples highlights their 
robustness, with slightly higher accuracy observed in 
sandstone formations.  
Key advantages of these models include: 

• Reliable data monitoring and quality control 
during PcRI measurements, ensuring 
consistency and integrity of results.  

• Correction and adjustment capabilities for PcRI 
data in cases of equipment malfunction or data 
anomalies.  

• High predictive accuracy, reducing 
measurement time by up to 63%, thereby 
enhancing laboratory efficiency and accelerating 
data delivery. 

• Improved analysis and interpretation of PcRI 
results, facilitating more accurate reservoir 

characterization and efficient experimental data 
management. 
 

Nomenclature 
𝑎𝑎1        Fitting constant in Equation (1), Ωm 
𝑎𝑎2        Fitting constant in Equation (2), ml 
𝑏𝑏1        Fitting constant in Equation (1), day-1 
𝑏𝑏2        Fitting constant in Equation (2), day-1 
𝑐𝑐1        Fitting constant in Equation (1), Ωm 
𝑐𝑐2        Fitting constant in Equation (2), ml 
K         Permeability, mD 
𝑅𝑅𝑅𝑅        Resistivity Index, dimensionless 
𝑅𝑅𝑡𝑡        Resistivity of rock partially saturated water, Ωm 
𝑡𝑡          Time, day 
𝑉𝑉𝑠𝑠              Volume of the water produced in the separator, ml 
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