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Abstract. The Australian Synchrotron micro-CT beamline was used to capture fast multiphase flow scans 
at 1s with 15-16s time lapse intervals at 3.6µm resolution. Two phase drainage flow experiments were 
conducted using a custom-built rig with a water-wet and a mixed-wet Bentheimer sandstone sample to 
observe the percolation of fluids in the pore spaces. During each injection cycle, fast dynamic batches of 50 
scans were taken resulting in large volumes of data. Conventional methods of image processing would not 
only be time consuming but could also lead to misclassification of phases, especially due to the presence of 
streak artifacts in the datasets. A workflow was established using the Sci-Py library for data preprocessing 
(translation and rotation) of fast batch scans followed by a U-ResNet model for the accurate segmentation 
of the images. 25000 2D paired gray-scale and WEKA segmented 256x256 pixel patches were used for 
training the model, the mean Intersection-Over-Union (mIoU) showed an accuracy of 0.93 during the testing 
phase. While phase accuracy on unseen dataset was recorded on an average as 0.93, and mIoU of 0.96, 
visual examination indicated that streak artifacts had been minimized. U-ResNet model was further 
compared with watershed-based segmentation in terms of accuracy, speed and 2D Minkowski functionals.   

1 Introduction  
The study of two-phase flow in porous media is essential 
to address several geological challenges like the 
environmental remediation of aquifers, hydrocarbon 
recovery, and carbon dioxide sequestration in geological 
reservoirs [1-3]. In the field of digital rock physics (DRP), 
an important tool for such studies of pore-scale flow is 
microcomputed tomography (micro-CT), which is a  non-
destructive imaging tool that captures two-dimensional 
(2D) trans-axial projections or slices of a  target specimen, 
that can be combined to produce a high resolution three-
dimensional (3D) image [4, 5].  

With micro-CT, it is critical that the target object 
does not change substantially during the scanning period, 
and therefore the flooding is stopped at different fractional 
flows during the experiment, and imaging is done only at 
equilibrium or quasi equilibrium [6]. Moreover, due to the 
low flux of lab-based micro-CT, the acquisition time is 
restricted to a range of several minutes to a few hours to 
acquire a high-quality image. This poses as a major 
challenge as several dynamic pore filling events occur in 
seconds and sometimes even in sub-second timeframes 
[6-8].  A low acquisition time in the order of seconds from 
a micro-CT often result in noisy images that interferes 
with the interpretation of the data. However, with the 
advancements in synchrotron based micro-CT systems, 
this challenge of acquiring fast, dynamic scans with X-ray 
micro-CT have become possible. This is mainly because 
the synchrotron radiations that is produced using bending 
magnets have a flux that is million times brighter than that 

of laboratory-based micro-CT systems [9]. Berg et al. [7] 
demonstrated the capture of pore-scale events such as 
Haines jump [10] and snap-off [11] in real-time using 
synchrotron based micro-CT systems. This was followed 
by several studies using synchrotrons to classify similar 
dynamic pore filling events in real-time [6, 8, 12-17].  

A synchrotron based micro-CT is more advanced 
and has several advantages over laboratory based / 
polychromatic micro-CT systems, but all X-ray based 
imagery is associated with some level of noise and 
artifacts. The two main artifacts commonly seen in scans 
acquired from synchrotron based micro-CT systems are 
ring artifacts, and streak artifacts. Ring artifacts are 
concentric rings that appear in the reconstructed image 
due to defects in the detectors of the micro-CT resulting 
in low or high beam intensities. On the other hand, 
scattered X-rays hitting the detector directly can cause 
bright pixels in regions resulting in streak artifacts [18]. 
While ring artifacts can be mitigated using correction 
algorithms in the reconstruction stage, the streak artifact 
is a  challenge to deal with in the reconstructed images as 
it interferes with the image classification / segmentation 
process.  

Image segmentation is a  method of labelling the 
voxels in an image into different classes which is later 
used for computation of several petrophysical properties. 
Some of the conventional methods for image 
segmentation are global multi-Otsu thresholding [19], 
marker-controlled Watershed [20], and converging active 
contours. Among these methods, most of them require 
manual inputs and quality control [21]. Hence, it has been 
found that during the segmentation of an image, both the 
user bias associated with different methods and the 
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presence of artifacts affect subsequent calculations and 
pore-scale modelling [22, 23].    

Another challenging aspect for synchrotron based 
micro-CT systems is that a  high temporal and spatial 
resolution needs to be used to effectively capture pore 
filling events dynamically, which result in more image 
acquisition during the experiment. This implies that 
terabytes of reconstructed images need to be processed, 
and so it can be a tedious and limiting task to utilize 
standard image processing techniques [24]. Therefore, a 
more efficient and automatic workflow is a  requirement 
to not only process such large volumes of datasets but also 
address any related artifacts occurring in the reconstructed 
images.   

With recent advancements in artificial intelligence 
(AI), deep learning which is a  subset of AI is a  potential 
breakthrough in the field of image processing. Deep 
learning techniques are finding more and more uses in 
data-driven and image based tasks mainly due to its 
support from improvements in GPU computing, 
optimization methods, and neural network architectures. 
[23]. Within deep learning, some of the common 
architectures used for pore scale image processing and 
workflows are Artificial Neural Networks (ANN), 
Convolutional Neural Networks (CNN), and Generative 
Adversarial Network (GAN) [23]. Among these different 
architectures, several studies have performed micro-CT 
image segmentation using CNN [25-28]. A CNN network 
comprises of a  stack of convolutional layers with 
activation functions and pooling / down-sampling layers 
that assist in identifying edges, textures and shapes of an 
input image. This ability of a  CNN network enables 
multiphase segmentation of an image without any user 
bias or manual intervention that is commonly associated 
with traditional image segmentation techniques [25].  

The aim herein is to develop a workflow that can 
assist in processing and segmenting large datasets on the 
scale of several terabytes. In the first part of the study, data 
preprocessing such as image translation, and rotation is 
done using the Python’s SciPy [29] library, followed by a 
confirmation of image registration using AvizoTM. In the 
second part of the study, we propose the use of a  U-
ResNet [30] model for image segmentation. The 
performance of this workflow was assessed on fast 1s 
multiphase flow scans that were conducted on both water- 
wet and mixed-wet Bentheimer sandstone samples at the 
Australian Synchrotron micro-CT beamline. The 
segmentation results from the U-ResNet model were 
evaluated by not only visually inspecting regions with 
streak artifacts, but also by using accuracy metrics such as 
phase accuracy, and mean Intersection-Over-Union  
(mIoU). Additionally, the two-phase segmentation was 
further compared with traditional segmentation 
techniques like watershed in terms of accuracy, speed and 
2D Minkowski functionals as a benchmark reference. 
Overall, this study evaluates the use of deep learning for 
an efficient, quick and a robust workflow for image 
processing of large datasets of micro-CT images with 
minimal user bias.  

2 Materials and Methods 

In the following subsections, we will discuss the datasets 
used, the architecture of the U-ResNet model, training 
protocol of the model, the workflow for image analysis, 
accuracy and morphological measurements, and finally 
the comparison of U-ResNet segmented images with 
traditional segmentation methods like watershed.   

2.1. Dataset 

Two Bentheimer sandstone (20mm length, 6mm 
diameter) samples were scanned dynamically during a 
two-phase coreflooding experiment at the Australian 
Synchrotron micro-CT beamline located in Clayton, 
Australia. While one of the samples was initially saturated 
with brine and classified as water-wet, the 2nd sample was 
aged for 14 days in crude oil at a  temperature of 80 degree 
Celsius. This controlled ageing process increased the 
wettability of the sample and so was classified as a mixed-
wet sample.  

The experimental setup for the coreflooding 
experiment is depicted in Figure 1 which was custom 
designed and built to adhere to the facilities available at 
the Australian Synchrotron micro-CT beamline.  
 

 

Fig. 1. Experimental setup for two-phase coreflooding 
experiment custom designed for the Australian Synchrotron 
micro-CT beamline.  
 
As mentioned earlier, the water-wet sample was first 
saturated with brine which contained 15% potassium 
iodide (KI) as a dopant to increase the contrast of phases. 
Later decane was pumped at 0.03cc/min and the sample 
was dynamically scanned to capture the percolation of 
decane through the pore spaces. During this drainage 
cycle, a  fast batch scans consisting of 50 scans were 
collected at an exposure time of 0.001s with 1001 
projections.  The core holder was mounted on the rotating 
stage while the pumps were situated on a custom-built 
trolley adjacent to the micro-CT table. Due to the flow 
lines connected to the coreholder, there was a restriction 
in rotating the sample 360 degrees.  

Effectively, the scanning would occur only during 
the run up to 180-degree rotation phase whereas no 
scanning would occur when the rotating stage returned to 
the initial 0-degree position. In this manner a drainage 
cycle was conducted on the water-wet sample whereby we 
captured fast multiphase flow scans at 1s with 15-16s time 
lapse intervals. The scan setting for our experiment was 
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23.5keV with a magnification of 1.806 to give us scans of 
3.6µm resolution.  A similar workflow was applied to the 
mixed-wet sample, and we ran fast batch scans for 
drainage cycle. Figure 2 depicts slice 0 of (a) fast batch 
scan number 30 from the 1st drainage cycle of the water-
wet sample, and (b) fast batch scan number 18 from the 
1st drainage cycle of the mixed-wet sample that was 
captured during the two-phase flow experiment. The 
reconstructed images were 16-bit images which were 
normalized to 8-bit images and then cropped to an image 
size of 1536 x 1536 x 160 voxels before conducting 
further image processing and analysis. It is noteworthy to 
mention that in this paper, drainage cycle refers to decane 
replacing brine for both water-wet and mixed-wet sample.  
 

  
(a)                                         (b) 

Fig. 2. Fast batch scan (a) number 30 of the water-wet sample 
and (b) number 18 of the mixed-wet sample captured from the 
drainage cycle during the two-phase flow coreflooding 
experiment. 

2.2. Data Preprocessing 
 
For both water-wet and mixed-wet samples, during the 
coreflooding experiment, the sample once loaded in the 
coreholder was never unloaded / moved till after the end 
of all intended cycles.  
 However, on examination of the reconstructed 
images, it could be seen that there were slight shifts in the 
global axis within the different fast batch scans. 
Additionally, angular misalignment was also noticed 
between the fast batch scans and the reference dry scan at 
the initial state of the sample. This meant that image 

registration had to be done. Considering the total number 
of datasets available, for computational efficiency, two 
functions namely shift, and rotate from SciPy [29] - the 
numerical library for Python programming was used. The 
initial slow scan of the water-wet / mixed-wet sample 
before the start of the experiment served as the reference 
datasets for the calculation of the image translation and 
rotation parameters of the numerous fast batch scans. The 
translated and rotated datasets were subsequently verified 
using the image registration module in AvizoTM ensuring 
that all datasets are well aligned.     

2.3. U-ResNet Model Architecture 

The U-ResNet model is a  combination of a U-Net [31] and 
a ResNet [32] thereby taking advantage of the strengths 
of both these networks. The proficiency of a U-ResNet 
model for image segmentation in geosciences has been 
demonstrated in several publications [28, 33]. The 
architecture of the U-ResNet model used in our study was 
adapted from that published by Tang et al. [34]. The 
ability of their model to successfully perform multiphase 
segmentation on fuel cells was used as a benchmark for 
our dataset. However we optimized our model and tuned 
the hyperparameters to cater to the fast batch scans dataset 
and so the final model implemented has several 
differences to that used by Tang et al. [34]. The model 
optimization and tuning of parameters has been discussed 
in the results section of this paper.  
 The U-ResNet model was initially untrained and 
consists of 3 encoder blocks and 3 decoder blocks as 
shown in Figure 3. The encoder block is responsible for 
extracting key features of the image as well as reduce its 
spatial dimensions. This is made possible with the help of 
2D convolutional blocks, batch normalization [35] which 
normalizes the training batches, an activation function 
namely rectified linear unit (ReLU) [36] and a MaxPool 
[37] block. Similarly, the restoration of the spatial 
dimensions of the image and the retention of features for 
segmentation is performed by the three decoder blocks. 
This is made possible with the help of 2D convolutional  

Fig. 3. Architecture of the U-ResNet model which consists of 3 encoder blocks that captures key features from the input image, while 
3 decoder blocks retain this information during upsampling. The model also consists of short skip connections and long skip 
connection thereby preserving vital information.  
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transpose blocks and batch normalization. However, the 
key aspect of a  U-ResNet [31, 32] model that enables it to 
perform better in comparison to other models for image 
segmentation is the inclusion of both short skip 
connections and long skip connections.  The long skip 
connections connect the encoder to the decoder, thereby 
transferring features and information from the shallow 
convolution layers to the deeper layers. This helps in 
preserving high resolution information that would be 
otherwise lost during the downsampling process. The 
short skip connections on the other hand ensures that the 
model remains stable and solves the problem of vanishing 
gradients during back propagation. The final layer maps 
the features to the number of segmentation classes / labels 
as defined by the user.  
 To penalize the model during the training stage, 
cross-entropy loss function was included. The loss 
function determines how well the model can predict the 
labels in comparison to the provided ground truth dataset. 
Decreasing loss values for both the training and the testing 
dataset over the course of the model’s training cycle 
indicates the improvement in the model’s predicting 
capabilities. Cross-entropy loss is given by  
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  −∑ �𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖 )�𝑁𝑁
𝑖𝑖=1  (1) 

 
where, 𝑁𝑁 is total number of phases, 𝑥𝑥𝑖𝑖 is the true 
probability of the 𝑖𝑖𝑖𝑖ℎ phase, and 𝑦𝑦𝑖𝑖  is the predicted 
probability of the 𝑖𝑖𝑖𝑖ℎ phase.  

2.4. Ground truth for Training Dataset 

For the U-ResNet model to be effectively trained to 
perform two-phase segmentation, it was important to 
establish a ground truth segmentation for the chosen 2D 
training orthoslices. A common method for this could be 
the use of intensity thresholding and the Magic Wand 
feature from AvizoTM as demonstrated by Tang et al. [34], 
but around 80 orthoslices were chosen for training and so 
applying this workflow would be a laborious task. 
Furthermore, as mentioned earlier, traditional 
segmentation techniques require a degree of user 
judgement which leads to subsequent bias in fine tuning 
the segmented image. This is where machine learning 
techniques like WEKA segmentation is useful. Trainable 
Weka Segmentation (TWS) [38, 39] is an open-source 
software that is available as a plugin in the popular image 
processing toolkit Fiji [40]. In TWS, the input gray-scale 
image is treated as a pixel classification problem. A set of 
pixels belonging to the decane phase was labelled as 
decane and another set as grain + brine phase. These 
patches were used to train a random forest classifier, and 
it was then applied to the rest of the image.  The selection 
of patches for training the WEKA segmentation classifier 
was done by an expert user, but the accuracy is still 
subjective as there still could be user-bias. The 
discrepancies arising from user-bias was not a  concern as 
this would be reduced through both morphological 
analysis as well as during the inference stage by the 
trained and tested U-ResNet model. In this manner high-
quality WEKA segmented 2D slices were generated and 

was selected as the ground truth data for training the 
model. However, it is noteworthy to mention that while 
WEKA is good at classifying 2D slices, it can struggle 
with 3D datasets depending on the domain size. While it 
took 9mins to segment a fast batch scan of 1536 x 1536 x 
160 voxels, the algorithm failed to converge for larger 
domain sizes. Figure 4 shows an example of the WEKA 
segmented ground truth for the corresponding 2D gray-
scale image of slice number 120 from fast batch scan 30 
of the water-wet sample.  
 

  
(a)                                        (b) 

Fig. 4. (a) Gray-scale image of slice number 120 from fast 
batch scan number 30 of drainage cycle 1 of the water-wet 
sample and (b) corresponding WEKA segmented 2D slice.  

2.5. Model Training and Testing 

The U-ResNet model was trained separately for the water-
wet and mixed-wet sample mainly due to the significant 
presence of streak artifacts in the latter. Around 30 2D 
orthoslices of 1536 x 1536 pixels of varying nonwetting 
phase distributions were identified from different 3D 
datasets of the water-wet sample, and around 50 2D 
orthoslices were identified from the mixed-wet sample for 
the model’s training. The slices were selected based on 
maximizing the features present across the dataset which 
not only included different saturation levels but also 
streak artifacts and minor beam hardening. These slices 
were cropped into 25000 patches of 256 x 256 pixels for 
training and 7000 patches for testing. The model was 
trained for 140 epochs with a batch size of 16 and learning 
rate of 0.00001 using AdamW solver [41]. A cosine 
annealing learning rate scheduler was included to adjust 
the learning rate based on a cosine function [42], which 
ensured that the learning rate dropped smoothly 
preventing any abrupt convergence of the model. This 
model was trained on a workstation with a single NVIDIA 
RTX 4090, 24 GB memory graphics card. The total 
training time for the water-wet sample was 13.3 hrs and 
that of the mixed-wet sample was 18.1 hrs with the 
available resources. The final trained and tested model 
required only 40s for the segmentation of a  3D fast batch 
dataset of 1536 x 1536 x 160 voxels.  

2.6. Image Analysis 

Prior to the assessment of the accuracy of the segmented 
images obtained from the trained and tested U-ResNet 
model, several steps of image processing were put in place 
to ensure accurate calculations. We implemented 
geodesic transformations [43] on all the binary segmented 
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images to ensure that isolated voxels were removed. 
Geodesic transformations involve the use of two input 
images, a  marker image wherein the binary segmented 
image has undergone a morphological operation, and a 
mask image which is the original segmented image [44]. 
For our dataset, we performed significant erosion on the 
segmented image using a structuring element of cube of 
large radius, and this eroded image acted as the marker 
image. The geodesic transformation was performed using 
the reconstruction from markers module available in 
AvizoTM. During the transformation, successive dilations 
are performed on the markers, and it ensures that a  dilated 
marker will not merge into a particle other than the marks. 
In this manner, geodesic transformations are iterated till it 
reaches stability [44]. The advantage of this workflow is 
that when an eroded set is used as markers, it can rebuild  
the original shapes of the retained particles and only 
remove the isolated voxels. The transformations were 
applied to both the foreground and background of the 
dataset to get the final transformed image. It was also 
ensured that the interpretation was performed in 3D with 
a neighbourhood connectivity of 26. An example of the 
removal of isolated voxels using geodesic transformation 
from fast batch scan 30 of the water-wet sample is shown 
in Figure 5. 
 

  
(a)                                       (b) 

Fig. 5. Fast batch scan number 30, slice 80 from drainage cycle 
1 of the water-wet sample (a) before geodesic transformation 
shows isolated voxels (b) while after geodesic transformation, 
a lot of these regions are removed / minimized.  

 
Since the fast batch scans resulted in partially 

saturated images, we used the technique explained by 
Culligan et al. [45] and Wildenschild et al. [18] to get 
ternary images. A dry reference scan was segmented by 
the U-ResNet model into a binary dataset with pores and 
grains. In the partially saturated images, the dataset was 
segmented into decane occupying pores as one phase and 
grains + brine as the 2nd phase. These two datasets are 
registered and then subtracted from each other to get a 
dataset which contains only the brine phase. The 
summation of the segmented dry scan along with this 
extracted brine phase dataset will result in a ternary image 
where the decane, brine and grain phases are clearly 
distinct. To prevent the external region or the region  
appearing outside the applied mask from interfering in the 
ternary image calculations, it was assigned a label of -1.    

The commonly occurring partial volume effect [18] 
was observed in the three phase images and so necessary 
corrections needed to be done before any morphological 
analysis. The correction involved the dilation of the 

boundary phase using a pixel value of 2-5 across all 
datasets. Since the dry scan was used to generate the 
ternary images, it was used as the boundary reference 
phase. This helped to keep in check that the dilation 
process did not shift any boundaries. A region of interest 
(ROI) extracted from slice 0 of fast batch scan 19 of the 
mixed-wet sample is shown in Figure 6 to highlight the 
prominence of partial volume effect at the boundaries as 
visible in (b) while (c) shows the effect being corrected at 
the boundaries.  
 

            
                                                                      
          (a)                         (b)                              (c)  
Fig. 6. Region of interest (ROI) taken from mixed-wet sample 
(a) fast batch scan number 19 from drainage cycle 1 to 
highlight the presence of (b) partial volume effect at the phase 
boundaries and (b) this effect being corrected using dilation. 

2.6. Measurement of Segmentation Accuracy 

Pixelwise accuracy and region-based accuracy 
measurements was implemented to verify the accuracy of 
the U-ResNet segmented images. At the end of each 
epoch of the training cycle, the mean Intersection-Over-
Union (mIoU) was calculated for the testing batch dataset. 
This is a  commonly used performance metric to evaluate 
image segmentation models by calculating the ratio of 
overlap between the predicted labels and the ground truth 
labels for an input gray-scale image [46, 47]. It is given 
by the equation,  
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑁𝑁+1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖
∑ 𝑝𝑝𝑖𝑖𝑖𝑖+ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗− 𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=0
𝑁𝑁
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=0   (2)                     

 
where 𝑁𝑁 + 1 represents the total number of phases, 𝑝𝑝𝑖𝑖𝑖𝑖 is 
the correctly predicted pixels belonging to phase 𝑖𝑖 / true 
positives, 𝑝𝑝𝑖𝑖𝑖𝑖  is the number of pixels belonging to phase 𝑗𝑗 
but are predicted as phase 𝑖𝑖 / false negatives, and 𝑝𝑝𝑗𝑗𝑗𝑗  is the 
number of pixels that belong to phase 𝑖𝑖 but are predicted 
as phase 𝑗𝑗 / false positives [34].  

Another metric that was used to assess the 
segmentation results was the phase accuracy. It is the ratio 
between the number of true positives and the overall 
pixels (sum of true positives and false positives). This 
phase accuracy was calculated for the U-ResNet  
segmented binary images during the inference stage and 
is given by 
 

𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖+𝑝𝑝𝑗𝑗𝑗𝑗

  (3) 

To calculate these metrics during inference, ground truth 
dataset is required, and so few slices from the water-wet 
sample and from the mixed-wet sample that was not used 
for training the U-ResNet model was selected. These 
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slices were carefully segmented by WEKA segmentation 
and kept aside as ground truth data. 

2.7. Comparison of U-ResNet segmentation with 
Watershed Segmentation 

An effective segmentation technique that is commonly 
used for multiphase segmentation is the watershed 
segmentation [20]. To compare the accuracy of our U-
ResNet model with traditional methods like watershed 
segmentation, one of the fast batch scans from the mixed-
wet sample was selected. The 3D domain was first filtered 
using non-local means filter and then was segmented 
using the watershed-based method available in AvizoTM. 
Then a 2D slice from the mixed-wet sample containing 
streak artifacts was selected for comparison. On this 2D 
slice, the total phase accuracy, and mean Intersection-
Over-Union (mIoU) was measured and visualized for 
each phase, and compared between the watershed 
segmented slice, the WEKA segmented (ground truth) 
image, and the U-ResNet segmented image. Finally, a  2D 
morphological analysis was also conducted using the 
imMinkowski package. The standard parameters such as 
perimeter, area, and 2D Euler characteristic of the labelled 
nonwetting phase, were computed and compared across 
the different segmented images. While the area is 
calculated by counting the intersection with 2D lines 
using the Crofton formula, the 2D Euler characteristic is 
calculated based on the number of connected components 
minus the number of holes [48].  

3 Results and Discussion  

In this section, we will first discuss the optimization of the 
U-ResNet architecture along with the tuning of 
hyperparameters. Following this, the training and testing 
cross-entropy losses along with the testing dataset 
segmentation accuracy results are showcased. Then 
inference conducted on one of the fast batch scans from 
both water-wet and mixed-wet sample is shown as 
examples of the model’s performance. This includes 
phase accuracy calculations as well as visually inspecting 
regions where streak artifacts are prevalent. Additionally, 
a  time-lapse of consecutive fast batch scans in both 
samples was visualized to observe pore-filling events. 
Finally, the segmentation of a  selected dataset by our U-
ResNet model is compared with watershed-based 
segmentation using the same metrics as mentioned earlier.  

3.1. Optimization of the U-ResNet model 

The U-ResNet model architecture that we initially  
deployed for our study had an additional encoder and 
decoder block resulting in a deeper model. Additionally, 
activation function, rectified linear unit (ReLU) was only 
enabled in the first encoder block. Some of the other key 
standouts was that the solver used was Adam [51] and a 
learning rate of 0.001 was initially set which was 
scheduled to reduce dynamically by 0.5 whenever the 

losses plateaued for 10 epochs. This model was scheduled 
to train for 140 epochs but during the monitoring of the 
test loss values, a  classic case of overfitting was noticed 
from around 25 epochs as seen in the training versus 
testing cross-entropy loss plot in Figure 7. Anticipating 
that the model could stabilize, the model was allowed to 
continue its run but eventually the training was aborted 
after 70 epochs. The upward trend of the testing data’s 
cross-entropy loss plot showed us that the model was not 
learning anything, but rather memorizing patterns in the 
training data. This implied that either the training dataset 
was not diverse enough or that the model’s architecture 
was too complex.    

 
Fig. 7. Training versus testing cross-entropy loss plot for the 
mixed-wet sample with a deeper U-ResNet model comprising of 
4 encoder and 4 decoder blocks. Testing loss values demonstrate 
a classic case of overfitting.   

After several iterations, it occurred to us that the model 
was too complex for our dataset and so the architecture 
was modified to only 3 encoder and 3 decoder blocks. 
Additionally, the solver was switched to AdamW and a 
cosine function was put in place to control the learning 
rate. These modifications in the model’s architecture and 
the hyperparameters helped in stabilizing the model. This 
exercise also sheds light on the fact that deeper and 
complex neural networks does not necessarily mean better 
results especially in applications like image segmentation. 
Depending on the complexity of the training dataset, and 
the task in hand, it is advisable to be cautious when 
choosing the right model and architecture. As seen here, 
deeper models can lead to overfitting and no new 
information is being added by the extra layers. The final 
architecture for our U-ResNet model is as described in 
Section 2.1.  

3.1. Accuracy of Testing Dataset Results 

The training versus testing cross-entropy loss plot for the 
mixed-wet sample is shown in Figure 8. The plot shows 
that the cross-entropy loss for the testing dataset 
converged to a value of 0.04 and showed stability till the 
end of the training cycle of 140 epochs. Correspondingly 
the testing accuracy was recorded to have converged to 
0.98 at the end of the run, where a value of 1.0 is the 
maximum accuracy. On the other hand, the mean 
Intersection-Over-Union (mIoU) for the testing dataset 
converged to a value of 0.93 indicating a high level of 
accuracy between the predicted labels and the ground 
truth labels. Though the training versus testing cross-



The 36th International Symposium of the Society of Core Analysts 

entropy loss plot for only the mixed-wet sample is shown, 
similar values were recorded for the water-wet sample as 
well. The cross-entropy loss for the testing dataset 
converged to a value of 0.03 while testing accuracy was 
0.98 and the mean Intersection-Over-Union (mIoU) was 
recorded as 0.95.    
   

 
Fig. 8. Training versus testing cross-entropy loss plot for the 
mixed-wet sample with U-ResNet model as a function of 
epochs. 
 

The label prediction / segmentation results by the U-
ResNet model during the testing stage of the water-wet 
sample as recorded at 121 epochs is depicted in Figure 9. 
The figure shows the input gray-scale image along with 
the WEKA segmented image that is fed as ground truth 
and finally the prediction by the U-ResNet model. Visual 
confirmation indicates that the predicted labels closely 
match that of the ground truth labels  
 

 
Fig. 9. Input gray-scale image, WEKA segmented ground truth 
segmented image, and finally the U-ResNet predicted 
segmented image of the testing dataset of the water-wet sample.  

3.2. Accuracy of Inference Dataset Results  

Since the results of the testing dataset showed good 
accuracy, the model was then deployed on unseen data, 
which includes all the slices from the fast batch scans that 
was not used for training and testing the network. The 
phase accuracy of the two-phase segmented images by the 
trained and tested U-ResNet model is visualized in the 
form of a confusion matrix as depicted in Figure 10. The 
accuracy of several slices was calculated, but as an 
example 1 slice each from the water-wet, and mixed-wet 
sample is shown here. In the figure, the confusion 
matrices are of (a) slice 100 from fast batch scan 30 of the 
water-wet sample, and (b) slice 80 from fast batch scan 21 
from the mixed-wet sample. The confusion matrices 
demonstrate that in both cases, the grain + brine phase is 
accurately labelled by the U-ResNet model, followed by 

the decane phase which itself shows a high accuracy 
varying from 0.93 to 0.94, where 1.0 is the maximum 
accuracy.  

  
(a)                                          (b) 

Fig. 10. Confusion matrix the U-ResNet segmentation results of 
(a) Slice 100 of fast batch scan number 30 (water-wet) (b) Slice 
80 of fast batch scan number 21 (mixed-wet). Both matrices  
show a good accuracy for decane phase prediction.  
 
 Since streak artifacts were prominent across the 
datasets, a  visual inspection was done of the datasets to 
assess the performance of the U-ResNet in mitigating 
these artifacts. Regions of interest (ROI) from the decane 
flooded mixed-wet sample prior to the drainage cycle as 
well as ROI from the fast batch dataset was selected for 
this purpose. The streak artifacts in the water-wet sample 
were not as prominent and so is not discussed here. These 
selected slices were not used in the training of the U-
ResNet model. In Figure 11, (a) and (b) which are slices 
807 and 756 from the dry sample, it can be seen in the 
segmentation results that the U-ResNet model has 
accurately classified the regions covered by the streak 
artifacts. These regions otherwise would have been 
misclassified as pore in the grain regions and affected 
further physical calculations.  
 

                           
(a)                                               (b)  

Fig. 11. Regions of interest (ROI) of prominent streak artifacts  
depicted as gray-scale images and their corresponding U-ResNet 
segmentation – (a) Slice number 807, and (b) slice number 756 
from the dry mixed-wet sample.  
 
 To further verify the segmentation accuracies, mean 
Intersection-Over-Union (mIoU) was calculated for slice 
100 and slice 80 of water-wet and mixed-wet samples 
respectively, and the score was an average of 0.96. This 
meant that 96% of the U-ResNet segmented image 
overlaps well over the WEKA segmented image. It is 
noteworthy to mention that since the ground truth datasets 
were manually segmented with the help of WEKA 
segmentation, it is possible that errors / bias could have 
occurred in these regions in the training dataset. While 
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this inherent bias is unavoidable, the trained U-ResNet  
would be consistent across all data sets. Overall, the 
accuracy measures of both mIoU and the phase accuracy 
indicate that the segmentation results by the U-ResNet  
model are quite accurate. Additionally, visual inspection 
of regions with streak artifacts also confirm that the U-
ResNet model has prevented any mislabelling of pixels.  

3.3. Time-Lapse of Decane invading Pore Spaces 

Figure 12 depicts two consecutive fast batch scans (a) 30 
and (b) 31 of the water-wet sample after applying U-
ResNet segmentation and the image processing workflow 
explained in Section 2.6.  These fast batch scans were 
selected to observe the invasion of decane which is mostly 
prominent from scans 30 to 49 with a major flooding 
evident occurring between adjacent scans 30 and 31.  

   
                                                                      

(a)                                       (b)            
Fig. 12. A sequence of percolation of decane in the pore spaces 
as captured during the fast batch scans (a) 30 and (b) 31 of the 
water-wet sample.  
 
 For a closer look at the flow of decane into the water-
wet sample, 3 consecutive fast batch scans 30, 31, and 32 
were visualized as a time-lapse event in the XZ direction 
which is the direction of flow. This time-lapse event is 
depicted as 3D renderings in Figure 13. Several pore 
filling events can be seen across the consecutive fast batch 
scans, and as expected during a drainage cycle in the 
water-wet sample, the decane fills the larger pores and 
throats first.  
 

 
    

 
                                               

 

Fig. 13. Time-lapse of decane pushing out brine from the pore 
spaces in the water-wet sample as visualized in the direction of 
flow, XZ direction. Only pore spaces are depicted in this 3D 
rendering and not the solid matrix, decane is shown in red.  
 
 Figure 14 depicts two consecutive fast batch scans (a) 
18 and (b) 19 of the mixed-wet sample. These fast batch 
scans indicate that decane has pushed out brine in a much 
faster rate (fast batch scan 18) in comparison to the water-
wet sample (fast batch scan 30) though the flow rate was 
consistent across both samples with the same pore 
volumes injected per scan. This could be due to the 
presence of partial oil-wet pores in the mixed-wet sample 
facilitating more disperse invasion of decane.    
 

  

                                                                     
(a)                                           (b)                 

Fig. 14. A sequence of percolation of decane in the pore spaces 
as captured during the fast batch scans (a) 18 (b) 19 of the mixed-
wet sample. 
 
 The time-lapse event of percolation of decane in the 
mixed-wet sample across fast batch scans 18, 19, and 20 
is shown in Figure 15. As observed, the oil tends to 
occupy large and small pores in approximately equal 
proportion, suggesting that mixed-wet conditions were 
achieved.  
  

 
 

 
 

 
Fig. 15. Time-lapse of decane pushing out brine from the pore 
spaces in the mixed-wet sample as visualized in the direction of 
flow, XZ direction. Only pore spaces are depicted in this 3D 
rendering and not the solid matrix, decane is shown in red.  
 
  Although these visualizations further substantiate the 
accuracy of our U-ResNet model, a  thorough 
morphological analysis is necessary to study the pore-

∆t = 15.2s 

∆t = 15.01s 

∆t = 15.03s 

∆t = 14.83s 
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scale physics. At this point, we can only make qualitative 
assessments that demonstrate the resulting images are free 
or artifacts, capture pore filling events, and demonstrate 
consistently different behaviors between the water-wet 
and mixed-wet samples.   
 
3.4. Comparison of U-ResNet segmentation 
results with Watershed segmentation  
 
To compare the segmentation accuracy of our U-ResNet 
model with watershed-based segmentation, batch scan 19 
of the mixed-wet sample was selected. In AvizoTM, the 
non-local means filter was applied before conducting 
watershed segmentation. The non-local means filter was 
recorded to have taken 40s for denoising the selected fast 
batch scan of domain size 1536 x 1536 x 160 voxels. The 
watershed segmentation took 1min20s to segment this 
dataset. Therefore, the workflow to apply watershed 
segmentation took 2mins to segment a 3D dataset of this 
domain size, while our U-ResNet model required 40s for 
the same 3D dataset. Table 1 shows a comparison of the 
time taken by watershed segmentation and our U-ResNet 
model to segment all 50 fast batch scans of the drainage 
cycle of each sample.  The total time required to segment 
the fast batch scans demonstrates that our U-ResNet 
model is 3 times faster, 67% more efficient than the 
watershed segmentation. It is noteworthy to mention that 
this time recorded by the U-ResNet model was the 
processing time using a single NVIDIA GPU of 24 GB 
memory. This performance can be enhanced by using 
multiple GPUs as the 3D datasets can be processed in 
parallel, thereby reducing the segmentation time even 
further.  
 
Table 1. Comparison of time taken to segment 50 fast batch 
scans of 3D domain size 1536 x 1536 x 160 by watershed 
segmentation and our U-ResNet model. 
 

 
 
 For visual comparison, slice 82 of fast batch scan 19 
was selected as this slice consists of streak artifacts. 
Figure 16 (a) depicts region of interest (ROI) of the streak 
artifact which is segmented by (b) by watershed 
segmentation and (c) our U-ResNet model for 
comparison. In these binary segmented images where 
decane is classified as one phase, and grain + brine is 
classified as another phase, streaks are clearly 
misclassified as decane in the watershed segmented ROI 
as evident in sub-figure (b). This implies that further 
image processing and analysis would be affected by these 
misclassified regions. On the other hand, our U-ResNet  
model has nullified the effect of streak artifacts as seen in 
sub-figure (c), thus highlighting the accuracy of this 
model in mitigating such effects.  

 

        
(a)                      (b)                     (c)            

Fig. 16. Visual comparison of streak artifact mitigation. (a) Slice 
82, fast batch scan 19, mixed-wet sample region of interest 
(ROI). (b) Watershed segmentation ROI (d) U-ResNet 
segmentation ROI. U-ResNet model has reduced the effects of 
streak artifacts successfully.  
 
 To compare the segmentation accuracy, the phase 
accuracy of the same selected 2D slice number 82 was 
calculated and was found to be 99.12% for the U-ResNet 
model, and 97.38% for the watershed segmented image. 
For further investigation of the segmentation accuracy, 
mean Intersection-Over-Union (mIoU) was calculated 
and the mIoU score was found to be 95.9% for our U-
ResNet model and 90.2% for watershed segmentation. 
This means that for our U-ResNet model, nearly 96% of 
the predicted segmented image overlaps well with the 
WEKA segmented / ground truth image. A lower mIoU 
score for watershed segmentation in comparison to phase 
accuracy is because mIoU penalizes boundary 
mismatches, and thus misclassified regions like streak 
artifacts will affect its score while phase accuracy only 
counts the number of correctly labelled pixels without 
considering boundaries. The mIoU score was then 
visualized for the decane phase and grain + brine phase in 
the form of bar graphs as shown in Figure 17. The figure 
shows that our U-ResNet model outperforms the 
watershed segmentation in labelling each phase.  
 

 
Fig. 17. Mean Intersection-Over-Union (mIoU) visualized for 
both decane and (grain + brine) phase to compare U-ResNet 
segmentation with watershed segmentation. The bar graphs 
indicate U-ResNet outperforms watershed segmentation.  
 
 Table 2 shows a comparison of the percentage error 
differences in computations of the 2D Minkowski 
functionals, i.e., area, perimeter, and 2D Euler 
characteristic of the nonwetting phase across both U-
ResNet and watershed segmented 2D slice in comparison 
to the WEKA segmented / ground truth 2D slice number 
82 of fast batch scan 19. Table 2 shows that while area 
and perimeter have -7% and -2% percent error difference 
between the U-ResNet segmented image and the WEKA 
segmented image, the percentage error difference is 28% 
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and 47% for the watershed segmented image. 
Additionally, 2D Euler characteristic for the U-ResNet  
image indicates only a 2% error when compared to the 
ground truth image, while the watershed segmentation 
shows a high percentage error difference of 166%. Thus, 
the table highlights that U-ResNet segmented image has 
the least percentage errors in the 2D Minkowski 
functionals when compared to the WEKA segmented 
image.  
 
Table 2. Comparison of 2D Minkowski functionals of WEKA 
segmented image / ground truth, Watershed segmentation, U-
ResNet segmented image. 
 

 
 
 
4 Conclusion 
 
A U-ResNet model was presented that can segment fast 
batch scans of porous media captured at 1s with 15-16s 
time lapse intervals during multiphase drainage 
coreflooding experiment conducted on synchrotron based 
micro-CT systems with focussed mitigation of streak 
artifacts. 30 to 50 2D orthoslices that included slices with 
strong streak artifacts were segmented using WEKA 
segmentation and used for training the model. The model 
was trained separately for the water-wet sample, and the 
mixed-wet sample, and on testing, it was seen that while 
the testing accuracy was 0.98 for both samples, the mean 
intersection over union varied between 0.93 and 0.95 
which can act as an indicator that the U-ResNet predicted 
segmentation was mitigating the effects of streak artifacts. 
This was later verified visually in the inference datasets. 
Furthermore, phase accuracies visualized in the form of 
confusion matrices on the inference dataset showed a 
range of 0.93 to 0.94.  
 Additionally, our U-ResNet model was compared 
with traditional methods like watershed segmentation on 
a 2D slice from the mixed-wet sample that had prominent 
streak artifacts. It was seen that our U-ResNet model 
outperformed watershed segmentation in mitigating these 
streak artifacts which was observed both visually and as 
well as the total mIoU score and phase mIoU score 
wherein the U-ResNet model provided a higher score. The 
performance of our U-ResNet model was further assessed 
by conducting a 2D morphological analysis and compared 
with that of watershed segmentation. It was seen that our 
U-ResNet model could capture 2D Minkowski 
functionals at an average of -2% error.  
 The significant strength of our U-ResNet model lies 
in the fact that it requires only 1/3rd of the time to segment 
a 3D domain size of 1536 x 1536 x 160 voxels when 
compared to watershed segmentation. This means that for 
a  drainage cycle of 50 batch scans, our U-ResNet model 
is 3 times faster or 67% more efficient on a single 
NVIDIA GPU of 24GB memory. The implications of this 

are that with multiplied GPUs, parallel processing 
becomes possible thereby reducing the time required to 
accurately segment large datasets even further. Overall, 
this analysis indicates that the U-ResNet model performs 
better than traditional methods like watershed 
segmentation not only in terms of speed but also in 
accuracy as confirmed by both visual and metric 
calculations.  
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