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Abstract. Distinguishing between different lithologies is an important component of reservoir 
characterization. It is particularly important in thin bedded gas turbidite reservoirs, where most of the gas is 
often located in thin sand layers. If one has core material then identifying the various lithologies can usually 
be relatively straightforward. However, core retrieval is expensive, so cores are generally only obtained 
from a small fraction of drilled wells. Thus, lithology profiles need to be estimated from other data such as 
well logs. The present study compared different neural network approaches to predict lithology in thin 
bedded gas turbidite reservoirs in two wells in different regions: one in the Nile delta and the other in 
Miocene sediments in the Polish Carpathian Foredeep. The neural network approaches included (i) 
conventional single back-propagation neural networks (BPNNs), (ii) modular neural networks (MNNs) that 
employ a committee of several back-propagation neural networks, and (iii) quantum neural networks 
(QNNs). The QNNs were tested since some authors in other research areas have proposed that they are 
potentially better at classification problems than conventional BPNNs, which can sometimes have difficulty 
distinguishing the boundaries between different classes. The neural networks were trained on combinations 
of well logs using a genetically focussed methodology, which trains the networks on a short representative 
interval or genetic unit. This approach is potentially very effective in terms of cost and time. The lithologies 
predicted by the various approaches were then compared with analysis of the cores for each well. The 
results for the well in the Nile delta showed that the QNNs overall outperformed the single BPNNs and the 
MNNs, and were particularly better at predicting the thin sand layers in the test intervals. The results for the 
well in the Polish Carpathian Foredeep also showed that the QNNs were marginally the best at correctly 
identifying the sand intervals with depth in the simple Model 1, compared to the traditional statistical 
techniques (involving principal component analysis and discriminant analysis) and the other conventional 
neural network approaches. QNNs also predicted the highest total number of correct lithologies with depth 
in the more detailed Model 2. In summary, this study indicated the potential of QNNs for improving 
lithology classification in thin bedded gas turbidite reservoirs. The results also demonstrated that the 
methodology only requires a short representative interval to train the neural networks in order to deliver 
good predictions in the much larger test intervals. 

1 Introduction 

1.1 Traditional Lithology Classification  

Lithology classification is usually performed using 
drill cuttings or core data.  Using drill cuttings, however, 
could lead to incompleteness due to mud swirling, loss 
of some constituents, or circulation loss. Core data is 
more useful, but is usually taken only at specific 
intervals of interest, because it is expensive to obtain, 
and as a result complete lithological descriptions within 
wells are not always achieved.  Therefore, lithology 
prediction from wireline logs, which are abundant in 
most wells, are a potential solution to this problem. 

Traditionally, cross plots of two porosity logs (such 
as neutron-density), or data based on three porosity logs 
(such as the M and N plot) have been used for lithology 
determination.  Later, computerised methods were also 
applied, such as the FacioLog (Schlumberger [1]). The 
Faciolog utilises statistical principal component analysis 
and cluster analysis to segment the well into clusters 
where each cluster is related to a different lithofacies. 
Another statistical method, discriminant analysis, can 
also be employed to infer lithology from logs.  
Discriminant analysis takes the original log data and 
projects the cluster centres as far apart as possible, whilst 
projecting points from the same cluster closest to each 
other.  Delfiner et al. [2] used the discriminant function 
(a Bayesian decision rule) to correlate wireline log 
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values with a lithofacies database.  The method  has been 
tested in several environments and compared with cores 
and mud log descriptions.  Busch et al. [3] also used 
discriminant analysis to predict lithology with 
calibration to core data. The approach was applied in a 
field with a complex mixture of different clastic and 
carbonate rock types (shale, limestone, siltstone, 
phosphatic limestone, phosphatic mudrock and sideritic 
mudrock) with 75% accurate prediction in the test 
dataset comprising  1,264 samples. 

The present study compared various conventional 
neural network approaches with quantum neural 
networks to predict lithology in a thin bedded turbidite 
gas reservoir in a well in the Nile Delta and compared 
the results with core data. The study also compared 
standard statistical approaches with conventional and 
quantum neural networks to predict lithology in a thin 
bedded turbidite gas reservoir in a well in the Polish 
Carpathian Foredeep. The results were again compared 
with core data.  

1.2 Lithology Classification from Conventional 
Neural Networks 

 Neural networks have been applied by several 
authors for lithology classification [4-9].  Rogers et al. 
[4] introduced the first application of feed-forward back-
propagation neural networks (BPNNs) for this purpose.  
In their study, the two neural networks trained on two 
different theoretical datasets successfully determined the 
4 different lithologies (limestone, dolomite, sand, and 
shale) from well logs.  The lithology outcomes from the 
neural networks in the test dataset agreed well with 
interpreted lithologies.  Three selected wireline logs 
(bulk density, gamma ray and neutron porosity) were 
used as input. In the constructed neural network 
architecture, the number of hidden neurons were 3 and 4 
respectively, corresponding to each of the two training 
datasets, whereas the number of neurons in the output 
layer was the same, 4, corresponding to the 4 lithofacies 
to be classified. Wong et al. [5] compared back-
propagation neural networks and discriminant analysis.  
The developed neural network had 3 inputs 
corresponding to two wireline logs (bulk density and 
sonic) and the ratio of these logs.  A single hidden layer 
had 4 hidden neurons. The neural network gave a 
comparable overall outcome to the discriminant analysis 
approach when predicting 4 different lithofacies 
(mudstone, sandy mudstone, sand and carbonate 
cemented  beds) in the test dataset comprising 65 core 
data points.  Moreover, the neural network performed 
better in terms of sand identification with no single 
misidentification in all 16 sand points. 

Note that two approaches can be applied using back 
propagation neural networks.  The first uses a single 
neural network to predict all the lithologies.  This means 
that the number of output neurons in the output layer is 
equal to the number of lithologies.  The second is the 
modular neural network (MNN) approach, which 
employs a committee of many neural networks, and one 
neural network is trained for predicting only one 

lithology.  The output layer has only one neuron, which 
predicts a  value in the range from 0 to 1.  By selecting 
the highest value from all of the derived output values 
from each individual network, the final output to the 
predicted lithology is then assigned.  This has been 
shown to considerably improve the outcomes in several 
case studies [10,11].  Bhatt and Helle [12] applied 
modular neural networks to predict 4 depositional facies 
of the Ness formation, namely channel sand, crevasse, 
lake and coal in a North Sea oilfield.  Initially, the 
architectures of all neural networks were defined and 
simulated on synthetic wireline log data based on a 
model of 3 facies in 17 layers with thicknesses ranging 
from 3 m to 55 m.  One committee, comprising 9 
redundantly joined back-propagation neural networks, 
trained on 9 different training datasets, was used to 
predict one facies.  Five wireline logs (gamma ray, 
density, neutron porosity, sonic transit time and 
resistivity) were used as input.  The number of hidden 
neurons was 4.  Each training dataset consisted of 60 
samples, equally divided for each facies, giving 20 
samples per facies.  It resulted in a total of 540 training 
samples.  When applied to real data, this committee-
modular approach successfully identified 4 facies 
throughout the field with a misidentification rate of 4.7% 
in the training well to a maximum of 10% in other wells.  
The outcomes from the neural network were comparable 
to the outcomes described from the core data.  Therefore, 
the overall accuracy was quite high.  However, the 
committee was not able to predict the thin coal layers of 
thickness less than 50 cm, because the layers in the 
training datasets were at least 3 m.  Note that one facies 
may consist of more than one lithology (crevasse facies 
consists of fine-grained sand interbedded with clay-rich 
material).  

1.3 Lithology Classification from Quantum Neural 
Networks (QNNs)  

The present paper compares both conventional neural 
networks and quantum neural networks (QNNs) in 
conjunction with a Genetic Petrophysics approach, 
which uses data from a short Representative Genetic 
Unit (RGU) to train the networks, for lithology 
prediction from wireline logs in thin bedded turbidite gas 
reservoirs in (i) the Nile delta , and (ii) Miocene 
sediments in the Polish Carpathian Foredeep.  This is the 
first time, to our knowledge, that QNNs have been 
applied to lithology classification, and compared with 
more traditional approaches in such reservoirs. The main 
purpose was to find the best way to improve the 
identification of thin sand bodies within the turbiditic 
sequences, where most of the gas resides. Previously, 
thin bed sand identification from wireline logs in these 
wells had been problematic. 

Although conventional feed-forward neural networks 
trained by back-propagation have been used with 
success, they can have difficulties recognising the actual 
lithology in the overlapping areas.  The limitation of 
conventional BPNNs motivated the development of 
inherently fuzzy feed-forward neural networks, known 
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as quantum neural networks (QNNs).  Purushothaman 
and Karayiannis [13] first introduced the learning 
algorithm and architectures of QNNs and claimed that 
QNNs were able to learn the uncertainty in the sample 
data. In terms of network architecture, QNNs are still 
feed-forward neural networks. The major difference 
between conventional fast forward neural networks 
(FFNNs) and QNNs is the activation function of the 
hidden neurons.  The hidden neurons of QNNs have 
multilevel activation functions instead of the 
conventional sigmoid functions. Each multilevel 
function is formed as the sum of many sigmoid functions 
shifted by the quantum intervals.  The mathematical 
formula is as follows: 
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where sgm is the sigmoid function, sgm (x) = 1/(1+e-x), 
βh is a  slope factor, θi defines the jump position in the 
transfer function, and ns is the number of quantum levels 
in the quantum hidden neurons.  If ns = 1 and θi = 0, the 
multilevel activation function becomes the ordinary 
sigmoid activation function and the QNN becomes a 
conventional FFNN.  For example, the responses of a  
three-level quantum activation function and a sigmoid 
activation function are shown in Figure 1.  The quantum 
intervals add an additional degree of freedom that can be 
exploited during the learning process to capture and 
quantify the structure of the input space [14]. More 
detail on the QNN learning algorithm is described in 
[13]. 

Since the introduction of QNNs, few real-world 
applications of QNNs have been carried out.  
Purushothaman and Karayiannis [13] tested QNNs in 
three different theoretical datasets with positive 
outcomes.  The first was a simple two-class dataset with 
16 data points, the second was a three-class hybrid 
dataset with 60 data points, and the third was a two-class 
non-convex dataset. Despite the fact that the overall 
learning time in QNNs was about 50% more than 
BPNNs the outcomes from QNNs in these training 
datasets were better than BPNNs.  This study established 
the merit of the QNN architecture for recognising 
structures in data [13]. Kretzschmar et al. [14] compared 
the performances of conventional FFNNs and QNNs on 
two-dimensional speech data. Unlike conventional 
FFNNs, which produced smooth bell-like surfaces for 
each class, QNNs quantized certain regions of the input 
space by creating staircase-like surfaces for each class.  
Therefore, they concluded that QNNs are capable of 
representing and quantifying the uncertainty inherent in 
the training data. It was also shown that simple post-
processing of the QNN outputs made QNNs an attractive 
alternative to conventional FFNNs for pattern 
classification applications [14]. 

Lithology classification from wireline logs is, to a 
certain extent, a  fuzzy classification.  Conventional 
wireline log responses may not always identify thin 
beds. The present study was partly designed to see if 

QNNs could improve lithology classification in turbidite 
reservoirs where thin sand beds exist. 

2 Datasets and Methods  

2.1 Nile Delta Datasets and Neural Network 
Lithology Predictors  

In the Nile Delta dataset, wireline log data from a 40 m 
interval and core photos from the lower 29 m of this 
interval were provided. The high resolution wireline log 
data was recorded at about every 9 cm  depth.  Since no 
depth shift was provided by the company, high-
resolution probe magnetic susceptibility measurements 
on the slabbed core [15] were used as a tool to deduce 
the depth shift. A comparison between the magnetic 
susceptibility measurements and the wireline gamma ray 
log allowed an approximate depth shift to be made. A  
Representative Genetic Unit (RGU) was selected from 
the slabbed core and its wireline log signature in order to 
train the various neural network predictors.  This 4 m  
long RGU consisted of representative lithologies seen in 
the entire cored interval of the well. It included a Bouma 
sequence comprising a basal graded fining upwards sand 
overlain by a thin interval of plane laminations, cross 
laminations and then shale. The RGU also comprised 
two types of sand in the turbidite sequences: a  relatively 
clean sand, and a greenish sand containing some clay 
(including glauconite). The number of training data 
points in the RGU was 46 compared to 328 in the entire 
cored interval. 

Three main Genetically Focussed Neural Network 
(GFNN) training datasets were constructed based on the 
encoded lithology according to the core description in 
conjunction with input wireline logs as follows:  

(i) The first dataset used three key wireline logs 
(gamma ray, bulk density and sonic transit time) 
resulting in 3 inputs to the neural network,  

(ii) The second dataset added an extra porosity log 
(neutron porosity) to the above combination of three key 
wireline logs, resulting in 4 inputs to the neural network.  

(iii) The third dataset added a high-resolution 
resistivity log, the micro laterolog (MLL), to the above 
combination of three key wireline logs (instead of 
neutron porosity), resulting in 4 inputs to the neural 
network. 

All the neural network simulations were carried out 
using the Linux-based version of the Stuttgart Neural 
Network Simulator (SNNS).  For the first training 
dataset, three neural network approaches were carried 
out as follows: 
BP3-2. Firstly, a  back-propagation learning algorithm 
was used to train a feed-forward neural network to 
predict 2 lithologies: sand and shale.  The hidden layer 
contained 4 hidden neurons and the output layer 
contained two output neurons: sand and shale.  Therefore 
BP3-2 directly outputs either sand or shale  (the numbers 
3-2 refer to the number of inputs and outputs 
respectively). 
MNN3-2. Secondly, the modular approach was 
employed to predict the lithology.  The committee 
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MNN3-2 consisted of two neural networks, BP3-Sa and 
BP3-Sh, which were trained separately using a back-
propagation algorithm to predict sand or shale 
respectively.  The encoded lithology was represented as 
0 or 1 depending on the neural network.  For BP3-Sa the 
encoded value was 1 for sand and 0 for shale.  For BP3-
Sh the encoded value was 0 for sand and 1 for shale.  
The final output of lithology was selected by comparing 
the output from the two component networks in the 
committee MMN3-2. 
QNN3-2. Thirdly, a  quantum neural network was trained 
to directly predict lithology. The hidden layer contained 
4 hidden neurons with 3 quantum levels (i.e. the 
quantum activation function had 3 quantum levels) and 
the output layer contained two output neurons: sand and 
shale. Thus QNN3-2 directly outputs 2 types of 
lithology: sand or shale. 

For the second and the third datasets, three similar 
modified neural network approaches were carried out as 
follows: 
BP4-2 (I) and (II). Again a back-propagation learning 
algorithm was used to train a feed-forward neural 
network to predict 2 lithologies: sand and shale.  The 
hidden layer this time contained 5 hidden neurons and 
the output layer contained two output neurons: sand and 
shale.  “I” denotes the second training dataset and “II” 
denotes the third training dataset. 
MNN4-2 (I) and (II). The modular committee MNN4-2 
consisted of two neural networks, BP4-Sa and BP4-Sh, 
which were separately trained using a back-propagation 
learning algorithm to predict sand and shale. The final 
output of lithology was selected by comparing the output 
from the two component networks BP4-Sa and BP4-Sh 
in the committee MMN4-2.   
QNN4-2 (I) and (II). Quantum neural networks were 
again trained to directly predict lithology. This QNN4-2 
used the same wireline logs and lithological data as for 
BP4-2. The hidden layer this time contained 5 hidden 
neurons with 3 quantum levels, and the output layer 
contained two output neurons: sand and shale.  Thus 
QNN4-2 also directly output 2 types of lithology: sand 
or shale. 

2.2 Polish Carpathian Foredeep Datasets, Statistical 
Predictors and Neural Network Lithology Predictors 

The prediction of sandstone beds with depth using 
wireline logs by different approaches in the Miocene 
sediments from the Polish Carpathian Foredeep has 
previously been problematic.  This is due to several 
reasons.  Firstly, the thin interbedded sand and shale 
nature of these turbidite deposits, as well as the absence 
of thick sand (most sand beds are less than 1 m in 
thickness).  Secondly, the lack of any high-resolution 
logs other than the micro-spherically focussed log 
(MSFL), and the lower sampling rate of wireline logs 
measurement (at 25 cm) within the limited log suite that 
is available.  Partly because of that, the MSFL did not 
exhibit any higher resolution detail than other resistivity 
logs: deep induction (ILD), medium induction (ILM), 
deep laterolog (LLD), and shallow laterolog (LLS). 

The data available for the well in the Polish 
Carpathian Foredeep for the present study comprised 
wireline log data in the depth interval from XX45–
XX98.75 m.  This interval was cored in the sections 
XX45–XX55.5 m and XX57–XX98.75 m.  All 
conventional wireline logs (gamma ray, spectral gamma 
ray, resistivity, neutron porosity, sonic transit time and 
bulk density) were available.  The wireline log data was 
recorded at every 25 cm depth.  Detailed lithological 
description of the core in these cored sections was also 
available.  

Initially, the logs were depth matched as closely as 
possible to the core data.  This refined depth matching 
was conducted by constructing a synthetic lithology 
curve from core data.  The synthetic lithology curve in 
sand content percentages was calculated using 0.5 m 
vertical resolution and 0.25 m steps, which were close to 
the gamma ray resolution and measurement steps, so it 
was then matched to the gamma ray log. 

The 19 m interval from XX71–XX90 m was selected 
as the training interval, as it seemed representative of the 
range of lithologies present in the well. A relatively large 
coarsening upward sequence was observed throughout 
this interval obtained from the core description. The 
basal section consisted of a  thick shale layer of about 6 
m, overlain by 6 m of thick shale interbedded with thin 
sand layers having less than 40% of sand content. The 
top section contained 7 m of shale and sand interbedded 
with more than 50% of sand content according to the 
core analysis.  

Principal component (PC) analysis and discriminant 
analysis (DA) were carried out in this training interval 
for lithology prediction throughout this well. The 
outcomes from these statistical approaches have been 
compared to the outcomes from the neural network 
approaches in this study. 

The training datasets for the neural network 
simulations were then constructed based on two models 
as detailed bellow.  The number of wireline logs used as 
input in the neural network simulations was 3, namely 
gamma ray, sonic transit time, and neutron porosity logs 
(GR, DT and NPHI).  The reason for choosing these 
particular three logs is twofold.  Firstly, previous studies 
suggested that the gamma ray combined with one or two 
porosity logs gave good prediction of petrophysical 
parameters in sand-shale lithologies [16,17].  Secondly, 
some initial results of statistical approaches suggested 
that these were important logs for differentiating the 
lithologies. Sand content in percentage (%) derived from 
core analysis was used to classify lithologies based on 
the criteria of two models as follows: 
Model 1:   
Sand: if the sand content is more than 50%. 
Shale: if the sand content is less than 50%. 
 
Model 2:   
Sand: if the sand content is more than 80% then it is 
sand. 
Shaly sand: if the sand content is from 50 % to 80%. 
Sandy shale: if the sand content is from 20 % to 50%. 
Shale: if the sand content is less than 20%. 
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Sand content (%) was estimated from the core, and then 
converted to lithology according to the two models. The 
results were then compared with the predictions from  
the statistical and neural network approaches. All neural 
network simulations were carried out again using the 
Linux-based version of the Stuttgart Neural Network 
Simulator. The three main neural network approaches in 
this study were carried out as follows: 
NN3-1. Firstly, a  conventional feed forward neural 
network was trained to predict sand content in volume 
percentage.  The TACOMA learning algorithm [18] was 
applied to train the network.  The training data consisted 
of 3 wireline logs (GR, DT and NPHI), along with the 
core derived value of sand content in the training 
interval.  The trained neural network produced one 
output: sand content.  The predicted sand content was 
consequently used to characterise the lithology 
according to the criteria  in Model 1 and Model 2. 
 NN3-2 and NN3-4. Secondly, conventional feed 
forward neural networks were trained to directly predict 
lithology. The TACOMA learning algorithm was again 
applied to train the network.  In these cases, the training 
data consisted of encoded lithology (derived from the 
core data in the training interval according to the two 
models), along with the 3 key wireline log inputs (GR, 
NPHI and DT). For NN3-2, which corresponded to 
Model 1, the lithology consisted simply of 2 types (sand 
and shale), so the output layer had two output neurons 
for the two lithologies: sand and shale.  For NN3-4, 
which corresponded to Model 2, the lithology now 
consisted of 4 types (sand, shaly sand, sandy shale and 
shale), so the output layer had 4 output neurons for these 
4 lithologies. 
QNN3-2 and QNN3-4. Thirdly, quantum neural 
networks were trained to directly predict lithology.  
QNN3-2 and QNN3-4 used the same wireline logs and 
lithological data as for NN3-2 and NN3-4. The 
difference was the hidden layer in the quantum neural 
networks, which contained 4 hidden neurons with 3 
quantum levels. Thus the QNN3-2 output consisted of 2 
types of lithology for Model 1, whereas the QNN3-4 
output consisted 4 types of lithology for Model 2. 

3 Results and Discussion 

3.1 Results and Discussion for the Nile Delta well 

Table 1 (a) summarizes the results for the number of 
correctly predicted lithologies at the correct depths for 
all the approaches in the test interval. The outcomes of 
the lithology predictions with depth for the first dataset 
using three key wireline logs (DT, GR and RHOB) as 
input are shown in Figure 2.  The results showed that 
the neural network lithology predictions agreed quite 
well with the core lithology.  The predictors gave 183 to 
200 correct values for the lithology elements out of 282, 
i.e. from 65% to 71% in the test interval. 

 The predictions normally improved when moving 
from conventional back-propagation neural networks to 
modular neural networks and then to quantum neural 
networks for all three training datasets, except that 

MNN4-2 and QNN4-2 gave almost identical results.  
When using 3 wireline logs (first training dataset), the 
total number of correct values increased from 185 (BP3-
2 predictor) to 187 (MNN3-2 predictor) to 198 (QNN3-2 
predictor).   When using 4 wireline logs (second training 
dataset), the total number of correct predicted values 
increased from 190 (BP4-2(I) predictor) to 200 (both 
MNN4-2(I) and QNN4-2(I) predictors).  When the high-
resolution resistivity log MLL was used (third training 
dataset), the total number of correctly predicted values 
increased from 183 (BP4-2(II) predictor) to 187 (MNN4-
2(II) predictor) and then 186 (QNN4-2(II) predictor). 

Note that QNN3-2 was the best at sand identification, 
giving 65 correct values out of a  total of 111. This is 
particularly important in this well, since most of the gas 
is in the thin sand intervals. QNN4-2(I) was the best 
shale identifier, giving 152 correct values out of a  total 
of 171. 

The differences between the core lithology and the 
predictions with depth by the various neural network 
approaches employed could be due to slight inaccuracies 
in the depth matching between the core and log data in 
the highly heterogeneous test interval.  Therefore, to 
assess the possible influence of depth shifting, the total 
numbers of predicted lithology elements from each 
neural network predictor were also calculated.  Table 1 
(b) summarises the results for the test interval.  This 
shows that the total amount of sand was better predicted 
by all predictors (compared to the results of Table 1 (a)).  
The best outcomes were from the QNN3-2 predictor, 
which predicted 100 sand elements and 182 shale 
elements, compared to the core values of 111 sand 
elements and 171 shale elements.  These results are 
better than those derived from the conventional back-
propagation neural networks (although BP4-2(II) was 
very close), and suggest that quantum neural networks 
can provide significantly better estimates of net sand to 
gross ratio in thin interbedded turbidite reservoirs.  Note 
that QNN3-2 correctly identified the sand layers at 
depths XX35.2–XX35.8 m and XX42.03–XX42.41 m, 
whereas all other predictors failed to identify them.  
Moreover, QNN3-2 was also good at identification of 
thin sand layers, for example the 9 cm sand layer at 
depth XX56.55 m, which all other predictors missed. 

3.2 Results and Discussion for the Polish Carpathian 
Foredeep well 

Table 2 (a) summarises the results for the number of 
correctly predicted lithologies at the correct depths for 
Model 1 for all the approaches in the test intervals. The 
outcomes of the lithology predictions with depth for all 
approaches for Model 1 are shown in Figure 3. All 
methods gave reasonable outcomes in the test intervals 
with results ranging from 60%–73% of the correct 
values. Discriminant analysis on the principal 
components gave the best results scoring 98 correct 
lithologies out of a  total of 134 and the neural net 
approach QNN3-2 gave 96 correct results.  The QNN3-2 
was again best at identifying the sand, whilst the 
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discriminant analysis on principal components was 
marginally best at identifying the shale. 

The differences between the core lithology and the 
predictions with depth by the various neural network 
approaches employed could be due to one or more of the 
following reasons: 
1. Slight inaccuracies in the depth matching between 
core and log data.  
2. The selected training interval may have not been 
completely representative of the overall well interval.  
3. The wireline log resolution is lower (at 25 cm per 
reading, compared to the high resolution logs of 9 cm 
per reading for the Nile Delta well) whereas the core 
description was continuous at high resolution.   

In order to assess the possible influence of slight 
inaccuracies in depth matching on the results, the total 
numbers of each lithology from each method were 
compared to the totals given by the core data (i.e., the 
values ignored whether the lithologies were predicted in 
the correct positions with depth compared to the core).  
These values are given in Table 2 (b) for the test 
intervals for Model 1.  The total values for sand and 
shale by each method are very close to those given by 
the core data, suggesting that slight inaccuracies in depth 
matching is a  likely explanation for the differences with 
depth between the predicted lithologies and those 
indicated by the core description. The results suggest 
that the net to gross ratio is well predicted even if the 
exact location of the sand beds are less well predicted. 

Table 3 (a) summarises the results for the number of 
correctly predicted lithologies at the correct depths for 
Model 2 for all the approaches in the test intervals. The 
outcomes of the lithology predictions with depth for all 
approaches for Model 2 are shown in Figure 4. All 
methods gave relatively good outcomes for shale in the 
test intervals, with results ranging from 68–74% of the 
correct values.  However, for all methods the outcomes 
were significantly lower for the remaining 3 lithologies 
(sand, shaly sand, and sandy shale).  The QNN3-4 and 
NN3-4 approaches gave marginally better results in the 
test intervals.  The reason the neural net approaches gave 
slightly better results than the statistical methods in the 
test intervals may be partly because the neural network 
matched the actual values better within the training 
interval.   

Table 3 (b) for Model 2 showed that the total 
amount of sand in the test intervals is again generally 
better predicted than the number of correct sand values 
with depth given in Table 3 (a), particularly for the 
NN3-4 approach.  However, the total amount of shale is 
over-predicted, whilst the shaly sand and sandy shale are 
generally under-predicted. 

4 Conclusions 

The following conclusions can be drawn: 

4.1 General 

1. QNNs have been successfully applied to lithology 
classification in thin bedded turbidites, we think for the 

first time, suggesting this could be a promising approach 
for other heterogeneous depositional environments.   
2. Identifying thin sand bodies in turbidite sequences 
using conventional statistical approaches (principal 
component analysis and discriminant analysis) and 
wireline log data has often been problematic.  However, 
neural networks trained on representative data have 
demonstrated good predictions verified by core in this 
study. In general, QNNs provided better outcomes 
compared to conventional feed-forward BPNNs and 
MNNs, especially in the task of sand body identification.   
 
4.2 Nile Delta well 

3. The QNN predictors were particularly better at 
predicting the sand, including thin sand intervals, 
compared to the other neural net approaches. This is 
especially important in this well where the sand intervals 
contain most of the gas.  
4.The use of three key wireline logs (GR, DT, and 
RHOB) as input for the QNN predictor was better than 
two other cases that used an additional wireline log.   
4. The total number of each predicted lithology 
(irrespective of whether the predictions were correctly 
predicted at the exact depth) gave better results than the 
total number of correct predictions with depth. This 
suggests that predictions with depth in the test intervals 
are likely to better match the actual lithology from core 
data with improved depth shifting of the high resolution 
log and core data.  One approach could be to use high-
resolution measurements (such as probe magnetic 
susceptibility [15]) to improve the depth shifting, as was 
done and verified in the training dataset. 
5. Integrating the Genetic Petrophysics approach, 
utilizing a small Representative Genetic Unit (RGU) for 
training with QNNs, is potentially very cost-effective, 
and should be especially useful in other studies where 
limited data is available.  
 
4.3 Polish Carpathian Foredeep well 

6. Both the statistical and neural network techniques 
gave good predictions of the total amounts of each 
lithological element, whereas the exact predictions with 
depth were less well predicted. Moreover, the 
predictions for the simple Model 1 were better than for 
the slightly more detailed Model 2.  These results 
suggested that slight inaccuracies in depth matching, 
which was difficult due to the poorer resolution of the 
logs, was a likely explanation.  Therefore good depth 
matching of the logs to the core data is necessary for 
accurately predicting the variations with depth. 
 
D. K. P. thanks the Natural Sciences and Engineering Research 
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5 List of Abbreviations 

BPNN Back-Propagation Neural Network 
DT  Delta T (Acoustic Transit Time) 
FFNN     Feed-Forward Neural Network 
GFNN Genetically Focused Neural Network 
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GR  Gamma Ray 
ILD  Deep Induction log 
ILM   Medium Induction log 
LLD   Deep Laterolog 
LLS   Shallow Laterolog 
MLL  Micro Laterolog 
MNN Modular Neural Network 
MSFL  Micro-Spherically Focused Log 
NPHI Neutron Porosity 
QNN  Quantum Neural Network 
RHOB Bulk Density 
RGU  Representative Genetic Unit 
SNNS Stuttgart Neural Network 
TACOMA Task Decomposition by Correlation Measures 
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Table 1. (a) Comparisons of the number of correctly predicted lithological elements at the correct depths from the various 
neural network predictors, along with the core values, in the Test Interval (XX35–XX60 m) of the cored section of the well 
in the Nile Delta. (b) Comparisons of the number of predicted lithological elements in the same Test Interval, irrespective of 
whether those lithological elements were predicted at the correct depths.  
*Indicates the best sand predictor in each case.  
(a) 
Lithology Core BP3-2 MNN3-2 QNN3-2 BP4-2 MNN4-2 QNN4-2 

     I II I II I II 

Sand 111 36 42 65* 48 54 51 53 48 43 

Shale 171 149 145 133 142 129 146 134 152 143 

Total 282 185 187 198 190 183 200 187 200 186 

 
(b) 
Lithology Core BP3-2 MNN3-2 QNN3-2 BP4-2 MNN4-2 QNN4-2 

     I II I II I II 

Sand 111 58 71 100* 73 98 76 90 77 71 

Shale 171 224 221 182 209 184 206 192 205 211 

Total 282 282 282 282 282 282 282 282 282 282 

 
Table 2. (a) Comparisons of the number of correctly predicted lithological elements at the correct depths from the various 
statistical and neural network predictors, along with the core values, in the Test Intervals (XX45–XX70 m and XX90–X100 
m) of the cored section of the well in the Polish Carpathian Foredeep for Model 1. DA = Discriminant Analysis, and PC = 
Principal Components. (b) Comparisons of the number of predicted lithological elements in the same Test Interval, 
irrespective of whether those lithological elements were predicted at the correct depths. 
*Indicates the best sand predictor(s) in each case. 
 (a) 

Lithology Core 

 

DA on Raw 

Data 

DA on PC NN3-1 NN3-2 QNN3-2 

Sand 53 33 33 28 22 34* 

Shale 81 56 65 56 58 62 

Total 134 89 98 84 80 96 

 
(b) 

Lithology Core 

 

DA on Raw 

Data 

DA on PC NN3-1 NN3-2 QNN3-2 

Sand 53 58 51 53* 45 53* 

Shale 81 76 83 81 89 81 

Total 134 134 134 134 134 134 
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Table 3. (a) Comparisons of the number of correctly predicted lithological elements at the correct depths from the various 
statistical and neural network predictors (*indicates the best overall predictor), along with the core values, in the Test 
Intervals (XX45–XX70 m and XX90–X100 m) of the cored section of the well in the Polish Carpathian Foredeep for Model 
2. DA = Discriminant Analysis, and PC = Principal Components. (b) Comparisons of the number of predicted lithological 
elements in the same Test Interval, irrespective of whether those lithological elements were predicted at the correct depths. 
(a) 

Lithology Core 

 

DA on Raw 

Data 

DA on PC NN3-1 NN3-4 QNN3-4 

Sand 17 2 3 6 2 5 

Shaly Sand 36 18 8 7 7 6 

Sandy Shale 50 5 12 12 18 22 

Shale 31 21 22 21 23 21 

Total 134 46 45 46 50 54* 

 
(b) 

Lithology Core 

 

DA on Raw 

Data 

DA on PC NN3-1 NN3-4 QNN3-4 

Sand 17 5 24 33 17 30 

Shaly Sand 36 51 30 20 21 20 

Sandy Shale 50 15 24 26 37 41 

Shale 31 63 56 55 59 43 

Total 134 134 134 134 134 134 

 

 
 
Fig. 1. The responses of a three-level quantum activation function (QNN) and sigmoid activation function (SGM). 
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Fig. 2. Comparisons of the lithology predictions with depth from neural network predictors for the first training dataset using 
3 key wireline logs (DT, GR, RHOB), along with the core derived lithology, in the training and test intervals of the well in 
the Nile Delta. 
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Fig. 3. Comparisons of the lithology predictions with depth from statistical and neural network predictors, along with the 
core derived lithology, in the training and test intervals of the well in the Polish Carpathian Foredeep for Model 1. PC refers 
to discriminant analysis on the principal components, and ROW refers to discriminant analysis on the raw data output from 
the well. 
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Fig. 4. Comparisons of the lithology predictions with depth from statistical and neural network predictors, along with the 
core derived lithology, in the training and test intervals of the well in the Polish Carpathian Foredeep for Model 2. PC refers 
to discriminant analysis on the principal components, and ROW refers to discriminant analysis on the raw data output from 
the well. 
 
 


