
SCA2025-1067 

* Corresponding author: wei.shao@halliburton.com 

Effective Symbolic Regression-Based Petrophysical Model 
Development Workflow and Efficient Software Tool for Enabling Easy 
Utilization 

Wei Shao1,*, Songhua Chen1  
Hyung T. Kwak2, Jun Gao2 ,  Mohammed  Abdul-Qadir2,   Abdullah Alkhaldi2 , and  Gabor Hursan2 
1Halliburton, USA 
2Saudi Aramco, Kingdom of Saudi Arabia 

Abstract. Developing petrophysical interpretation models integrating multiphysics measurements is 
challenging. Symbolic regression (SR) offers a key advantage over other machine learning methods by 
generating analytical expressions enabling petrophysicists to assess consistency with physical principles and 
understand relevancy of the input variables. Existing SR packages are not optimized for petrophysical 
modeling, which often relies on limited and error-prone core samples. To address this, we developed a 
software solution using genetic programming-based SR to produce transparent, interpretable prediction 
equations. Our workflow consists of five components: (1) statistical feature selection, (2) symbolic 
regression for multiphysics fusion, (3) ensemble modeling, (4) conditional branching for formation 
heterogeneity, and (5) model discrimination for optimization. To enhance usability, we integrated multiple 
open-source SR packages into a user-friendly interface, providing tools for data preparation, visualization, 
and model evaluation. This implementation simplifies workflow execution, making SR-based petrophysical 
modeling accessible to users without advanced programming skills. 

1 Introduction  
Developing accurate and reliable petrophysical 
interpretation models remains a critical challenge in 
subsurface reservoir characterization. The integration of 
multiphysics measurements, such as well logs, core 
samples, and data from Routine Core Analysis (RCA) and 
Special Core Analysis (SCA), is often essential for 
constructing robust models that provide meaningful 
insights into reservoir properties. However, the 
complexity and inherent uncertainties in these datasets 
make it difficult to establish empirical relationships that 
align with physical principles while maintaining 
prediction accuracy. 

Symbolic regression (SR) [1, 2] has emerged as a 
powerful machine learning approach for developing 
predictive models in petrophysics. Unlike traditional 
machine learning models such as neural network models, 
which often act as black boxes, SR generates explicit 
analytical expressions that describe relationships between 
input parameters and target properties. This transparency 
enables petrophysicists to assess the consistency of 
derived equations with known physical laws, ensuring 
model interpretability and allowing for a  deeper 
understanding of variable importance in predictions. 

Despite the availability of commercial and open-
source SR packages, most existing solutions are not 

optimized for petrophysical applications, particularly 
when dealing with limited and noisy core sample data. 
Measurement errors, formation heterogeneity, and 
nonlinearity in petrophysical properties further 
complicate the development of reliable models. The 
absence of tailored SR tools designed specifically for 
petrophysical analysis has limited the broader adoption of 
this technique within the industry. 

To address these challenges, we have developed a 
comprehensive workflow that utilizes genetic 
programming-based symbolic regression to create 
transparent and interpretable petrophysical models. The 
workflow consists of five essential components: (1) 
statistical methods for feature selection, (2) symbolic 
regression for fusing multiphysics measurements, (3) an 
ensemble procedure to integrate multiple SR models, (4) 
conditional branching to account for formation 
heterogeneity, and (5) a  model discrimination framework 
to optimize and validate results. 

While this workflow has demonstrated effectiveness 
in generating accurate petrophysical models, its adoption 
has been hindered by the need for significant scientific 
expertise in evaluating and interpreting SR outputs. 
Different SR packages may yield dissimilar equations and 
varying model performances, requiring users to make 
informed decisions about model selection and validation. 
This complexity poses a barrier to petrophysicists who 
may not have extensive experience with symbolic 
regression methodologies. 
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To facilitate the practical application of our 
workflow, we have developed user-friendly software 
implementation that integrates multiple open-source SR 
packages. The software features an intuitive interface for 
data preparation, visualization, and exploration, enabling 
users to interact seamlessly with their datasets. In addition 
to executing the five key workflow components, it 
provides functionalities for postprocessing and evaluating 
SR-based petrophysical models. By simplifying model 
development and validation, our software aims to bridge 
the gap between advanced symbolic regression techniques 
and real-world petrophysical analysis, making it 
accessible to a broader range of practicing professionals. 

To demonstrate the effectiveness of our approach, 
we apply the SR-based petrophysical interpretation 
workflow to two datasets: one from an unconventional 
reservoir and the other from carbonate formation. 
Specifically, we derive formation resistivity factor models 
for the carbonate reservoir and permeability equations for 
the heterogeneous unconventional reservoir. We 
demonstrate how each workflow component enhances 
model performance. This study highlights the potential of 
SR-based techniques in advancing petrophysical 
modeling and improving reservoir characterization in 
complex geological settings. 

2 Overview of existing petrophysical 
modelling techniques 

Petrophysical modeling for new reservoirs typically 
involves a range of approaches, each with its strengths and 
limitations. A common method is to adapt an existing 
model by tuning its parameters, often in combination with 
facies-based techniques for handling complex reservoirs. 
Facies identification, however, relies on subjective 
methods such as petrographic analysis and core data, 
which may not be applicable to heterogeneous formations. 
Furthermore, discrete facies models often struggle to 
capture continuous or transitional variations within 
formations, limiting their effectiveness in complex 
geological settings. 
 Another approach is mechanistic modeling, which is 
based on fundamental physical principles. While these 
models are grounded in physics, they often require 
simplifications to make the equations solvable, reducing 
their accuracy when applied to complex systems with 
heterogeneous characteristics. 
 Empirical models offer a  data-driven alternative, 
relying on observed relationships between petrophysical 
parameters. However, these models can overlook 
important physical constraints and are often limited by the 
diversity of training data and the simplistic functional 
forms they use, making them less suitable for capturing 
the complexity of natural reservoirs. 
 Artificial Intelligence (AI)-based models have gained 
traction as a powerful tool for capturing nonlinear 
relationships among petrophysical properties. These 
models can potentially offer higher accuracy by 
recognizing complex patterns within the data. However, 
they often operate as "black boxes," offering limited 
transparency regarding how predictions are made and 

whether they adhere to physical or geological principles. 
This lack of interpretability—especially when integrating 
diverse measurements like NMR, resistivity, and acoustic 
logs—can limit trust in their results and hinder their 
adoption in operational workflows. 
 Furthermore, AI-based models typically require large 
datasets to effectively train the model. However, many 
petrophysical models rely on core samples, and the 
number of available core samples is often limited due to 
cost and time constraints. This lack of sufficient data can 
hinder the performance of AI models, as they may 
struggle to generalize without a  robust dataset to learn 
from. 

3 Symbolic Regression for petrophysical 
modelling 
Unlike traditional machine learning, Symbolic Regression  
produces explicit mathematical equations that 
petrophysicists can examine, validate, and interpret. This 
transparency enhances model evaluation by ensuring 
physical plausibility and enabling targeted adjustments. 
 In formation evaluation, multiple logging tools are 
often used to estimate the same petrophysical parameter, 
but integrating these multi-sensor outputs into a unified 
model is challenging. SR provides an efficient and 
interpretable solution by combining data from various 
sources into a coherent mathematical framework. 
 We have applied SR to a range of petrophysical and 
reservoir description problems, as demonstrated in [3] and 
[4], which showcase its strengths in interpretability and 
model flexibility. To develop petrophysical models, we 
evaluated several SR frameworks, including four open-
source algorithms—PySR [5], Rils-Rols [6], HeuristicLab 
Genetic Regressor [7], and AI-Feynman [8]—as well as 
one commercial tool, DataRobot’s Eureqa [9]. Each 
method has unique strengths; combining different SR 
approaches can further enhance prediction performance. 
 Some symbolic regression (SR) frameworks may be 
less suited for petrophysical modeling. For example, 
while AI-Feynman performs well on purely physics-based 
problems by leveraging principles such as symmetry, 
dimensional reduction, and variable separability, it may 
be less effective for complex, heterogeneous rock 
characterization applications. Based on our experience, 
we have applied AI-Feynman to several petrophysical 
problems with limited success. 
 PySR, HeuristicLab Genetic Regressor, and 
DataRobot’s Eureqa are symbolic regression techniques 
based on genetic programming (GP). In contrast, Rils-
Rols utilizes iterated local search and ordinary least 
squares methods. However, it supports only a limited and 
predefined set of operators and notably lacks branching 
operators, which are essential for capturing the 
heterogeneity of complex reservoirs. Even so, we 
achieved some success with it on certain petrophysical 
problems. 
 HeuristicLab is a  GUI-based genetic programming 
(GP) platform, primarily designed for experimentation 
with the genetic process, including selection, crossover, 
mutation, parameter tuning, and fitness evolution. While 
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it offers considerable flexibility for algorithmic 
exploration, its graphical interface does not adequately 
meet the practical needs of petrophysicists. Additionally, 
we experienced only limited success when applying it to 
our petrophysical problems. 
 DataRobot’s Eureqa is web-based commercial 
software. Its graphical user interface is more focused on 
model tuning, evaluation, and interpretability. However, 
it still lacks several features required for petrophysical 
applications. Despite these limitations, we have 
successfully developed various petrophysical models 
using Eureqa ([3], [4]). 
 PySR is a  code-based symbolic regression (SR) 
software library that requires advanced programming 
skills to be used effectively. We have found PySR to be 
very powerful for handling small- to medium-sized 
petrophysical datasets. However, it can be prone to 
overfitting, often producing overly complex models that 
are neither interpretable nor explainable.  
 To address these challenges and enable the efficient 
application of SR to petrophysical problems, we 
developed a GUI-based software platform that integrates 
several SR packages. This platform includes GUI features 
specifically tailored to the needs of petrophysicists—such 
as tools for data evaluation, quality control, and model 
validation—making these advanced techniques more 
accessible to users without programming backgrounds. 
 Moreover, simply applying SR to develop 
petrophysical models does not always yield optimal 
results, largely due to the inherent noise present in well 
logging and core analysis data. While SR is generally 
well-suited for small datasets, core data is often extremely 
limited. For example, only 29 core samples were available 
for constructing the permeability model discussed in the 
Examples section. To overcome these limitations, we 
developed a comprehensive workflow specifically 
designed for complex petrophysical modeling tasks, 
which are detailed in the following section.  
 

4 SR workflow for petrophysical 
modelling 
The workflow comprises five key components, outlined 
below. A detailed description can be found in the paper 
by Chen et al. [3], while a summary is provided here. 
  
4.1 Correlation heatmap for multiphysics 
measurement selection 
  
The first step in developing SR-based petrophysical 
models is selecting relevant measurement data as input 
variables. While physics provides initial guidance, rock 
heterogeneity can obscure clear dependencies. We use 
correlation heatmaps to gain an initial understanding of 
variable relationships, guide feature selection and 
engineering, and inform the evaluation of the models. 
 
4.2 Symbolic Regression (SR) 
  

Our primary focus is on genetic programming-based 
Symbolic Regression (SR) to derive mathematical 
expressions for petrophysical problems. This approach 
searches the mathematical expression space using a 
genetic algorithm, evolving equations through operations 
such as crossover and mutation. Its stochastic nature 
promotes the generation of diverse and valid solutions, 
making it both robust and adaptable for integrating a wide 
range of measurements. 
 Our software can also integrate non–genetic 
programming-based SR packages, such as Rils-Rols. 
However, in this paper, we primarily focus on the 
integration of PySR as an example. 
 
4.3 Ensemble modeling 
  
To enhance model reliability, ensemble modeling 
aggregates multiple SR-generated equations from a single 
SR package or across multiple packages. This approach 
ensures generalizability, particularly when data size is 
limited. The ensemble model is formed using weighted  
combinations of base models, improving predictive 
accuracy while maintaining interpretability. 
 
4.4 Conditional branching 
  
Input variables often correlate with the target in distinct 
clusters. Traditionally, identifying such clusters relies on 
expert judgment, which can introduce bias. Data-driven 
techniques like clustering and pair plotting can help, but 
the resulting branches are often difficult to express 
mathematically and may miss optimal, non-linear splits 
that symbolic regression (SR) can uncover during 
training. 
 In genetic programming-based SR, branching can be 
controlled by including or excluding operators like 𝑚𝑚𝑚𝑚𝑚𝑚  
and 𝑚𝑚𝑚𝑚𝑚𝑚. While branching can enhance model accuracy, 
excessive use may lead to overfitting and reduce the 
model's ability to generalize. Therefore, branching is 
selectively enabled—either when unbranched models 
underperform or when justified by statistical correlation 
analysis, as illustrated in the Examples section. 
 
4.5 Model selection criteria 
  
Optimal model selection aims to balance three key 
factors: the complexity of the model’s mathematical 
expression, the complexity of physical measurements 
required, and the model’s prediction accuracy. Each 
model is evaluated and assigned an overall score based on 
these criteria . 
 Let 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  represent the model’s prediction error, such 
as mean square error (MSE). Let 𝐶𝐶1 denote the 
complexity of the model’s mathematical expression, and 
𝐶𝐶2 represent the complexity of physical measurements. 
The overall score of a  model is defined as follows: 
 
               𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +  𝜆𝜆 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (1) 
 
where 𝜆𝜆 is a  weighting factor that controls the trade-off 
between prediction error and model complexity. The 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  term combines the two components, 𝐶𝐶1 
and 𝐶𝐶2, and is defined as: 
 
                       𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = log(𝐶𝐶2) ∗ 𝐶𝐶1          (2) 
 
𝐶𝐶2  is determined by several factors, including the 
sensitivity of the physical parameters, the reliability of the 
measured data, and the robustness of the measurements to 
noise. The simplest approach is to define 𝐶𝐶2 as the 
number of physical measurements used in the model, plus 
1. The addition of 1 ensures that the logarithmic term 
remains valid, even when only a single physical 
measurement is included. 

5 Software implementation 

The software is a  standalone desktop application 
developed using Python and the PyQt5 GUI framework, 
enabling the creation of feature-rich applications with a 
native and intuitive user interface. A desktop-based 
architecture is chosen over a web-based approach to allow 
users to develop petrophysical models efficiently with 
limited resources, such as a standard laptop. Given that 
most petrophysical models rely on a limited number of 
data samples, symbolic regression (SR) model 
development can be easily performed on modern 
laptops—such as those equipped with an Intel® Xeon® 
W-11955M CPU @ 2.60 GHz and 32 GB RAM—without 
the need for high-performance computing infrastructure. 
 

 

 

Fig. 1. Symbolic regression workflow software graphic user interface 

Figure 1 shows a snapshot of the user interface, which 
is organized into seven panels (each corresponding to a 
tab in Figure 1) designed to support the execution of the 
five key components of the SR workflow. These panels 
include: 
1. Data Panel 
2. Crossplot Panel 
3. Data Editing and Filtering panel, 
4. Heatmap Panel, 
5. Target Heatmap panel, 
6. SR Model Training Panel, 

7. SR Model Evaluation Panel 
 

Each panel is designed to support specific tasks in 
the petrophysical modeling workflow, including data 
exploration, feature selection, model training, and 
performance evaluation. The interface incorporates a 
range of graphical tools for data visualization and 
analysis, with functionalities aligned to the typical 
requirements of petrophysical interpretation. 

The Data panel provides an overview of the 
statistical properties of the dataset, including histograms 
for each feature. This allows users to gain a preliminary 
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understanding of data distributions and helps identify 
potential outliers. 

The Crossplot panel is specifically designed for 
petrophysicists to identify patterns related to lithology, 
fluid type, porosity, and saturation. It helps users visually 
explore relationships between variables and select 
relevant features for training SR models. Additionally, it 
helps detect potential outliers or anomalous data samples 
that may affect model performance. Figure 2 illustrates an 
example of anomalous data in the top left corner of a 
density versus neutron crossplot. 

 

 

Fig. 2. Density (RHOB) versus neutron (NPHI) crossplot 
showing anomalous data in the top left corner, shaded 
according to mobility values 

 
The two heatmap panels implement the first 

component of the SR workflow. The Target Heatmap 
panel allows users to examine the correlations between a 
selected feature and all other features in the dataset—not 
just the designated target variable for the SR model. This 
helps users better understand feature interdependencies 
and guides effective input selection for model 
development. 

The SR Model Training panel implements both the 
Symbolic Regression and Conditional Branching 
components of the workflow. It provides users with the 
flexibility to experiment with various combinations of 
input features to identify those that are most relevant and 
consistent with established petrophysical principles. 
Conditional Branching is implemented using 𝑚𝑚𝑚𝑚𝑚𝑚  and 
𝑚𝑚𝑚𝑚𝑚𝑚 operators, allowing the model to adapt to formation 
heterogeneity and capture different petrophysical regimes 
within the dataset. 

Another unique feature of this panel is the ability to 
train the SR model using target values in either linear or 
logarithmic scale. This is particularly important for 
petrophysical parameters that span several orders of 
magnitude—such as permeability and mobility—which 
are often more appropriately analyzed and interpreted on 
a log scale. This flexibility enhances model stability and 
interpretability for such wide-ranging datasets. 

The SR Model Evaluation panel implements the 
Ensemble Modeling and Model Selection Criteria 
components of the workflow. This panel allows users to 
assess and compare multiple SR models generated during 
training. Currently, the Model Selection Criteria are 

based on two key factors provided by the PySR 
framework: model complexity and fitting error. This 
enables users to strike a balance between accuracy and 
interpretability when selecting the most appropriate 
model for petrophysical analysis. The Ensemble 
Modeling approach is implemented through a weighted 
linear combination of the selected models at this stage, 
enhancing robustness and generalization of the final 
prediction. 

5 Examples 
Two examples are presented to demonstrate the process 
of developing petrophysical models using the proposed 
workflow and software. 
 
5.1 SR-based permeability models 
 
A total of 29 core samples were collected from five wells 
in an unconventional reservoir. The dataset includes 
porosity and permeability (P&P) measurements, nuclear 
magnetic resonance (NMR) data, as well as X-ray 
diffraction (XRD) and X-ray fluorescence (XRF) 
analyses. The permeability (𝐾𝐾) of these samples is very 
low, accompanied by relatively low total porosities 
(𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ) as illustrated in Figures 3 and 4. 
 

 

 
 

 

Fig. 3. Permeability and porosity distributions of the data 
samples. 
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Fig. 4. Crossplot of permeability and porosity of the data 
samples. 

 
Figure 5 illustrates the poor performance of 

traditional NMR-based models (Coates and SDR [10]) 
when using default parameter values. To improve their 
accuracy, it is common practice to calibrate the model 
parameters to better fit the data, as shown in Figure 6. 
However, even with adjusted parameters, both models 
still demonstrate unsatisfactory performance. 

 

 

 

Fig. 5. SDR and Coates model performances with default 
parameters 

 

 

 

Fig. 6. SDR and Coates model performances with parameter 
values obtained through data fitting 

 
The following outlines the steps of using the SR 

workflow and software to develop permeability models 
from 29 data samples obtained from unconventional 
reservoirs. 

First, by examining the porosity distribution in 
Figure 3 and the crossplot of permeability versus porosity 
in Figure 4, several potential outliers are identified. 

Using the crossplot panel in the software to further 
examine correlations among various features in the 
dataset, the outliers were narrowed down to two samples, 
as shown in Figure 7. One sample had 𝑇𝑇2,𝐺𝐺𝐺𝐺 (geometric 
means of NMR transverse relaxation time) value less than 1 
ms, while the other had a permeability greater than 0.1 
mD.  

 

 

Fig. 7. Crossplot of permeability and 𝑇𝑇2,𝐺𝐺𝐺𝐺 of the data 
samples. 

 
Figure 8 further confirms that the sample with a  

𝑇𝑇2,𝐺𝐺𝐺𝐺  value less than 1 ms could be an outlier, while the 
other sample may not be, as it follows the general trend in 
terms of 𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹 (Free Fluid Index) versus 𝐾𝐾 (permeability).  
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Fig. 8. Crossplot of permeability and 𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹 of the data samples. 
 

The identified outlier was removed using the “Data 
Editing and Filtering” panel, leaving 28 samples for 
developing the permeability model. 

Before using the software to derive SR based 
permeability models, we re-evaluated the performance of 
the SDR and Coates models with the remaining 28 
samples. As shown in Figure 9, the performance of both 
traditional permeability models improved significantly. 
These improved performances are used as the baseline for 
evaluating the SR-based permeability models. 

 

 

 

Fig. 9. SDR and Coates model performances with parameter 
values obtained through data fitting using the remaining 28 
samples 

 
Figure 10 shows the correlations of input variables 

(𝑇𝑇2,𝐺𝐺𝐺𝐺 ,𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹 ,𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵) to the target variable 𝐾𝐾 using 
Pearson and Spearman heatmaps. Here,  𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵  represents 
bound volume irreducible.  

We also included several engineered input 
variables, such as, log�𝑇𝑇2 ,𝐺𝐺𝐺𝐺� , log (𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ), based on our 
domain knowledge and experience. The SR algorithm will 
determine whether these engineered variables are 
included in the final models. 

 

 

Fig. 10. Heatmaps of the input variables versus the target 
variable 

 
Equation 3 presents the model derived using 

DataRobot's Eureqa. Figure 11 illustrates the model’s 
performance evaluated on the entire dataset, while Figure 
12 displays the performance separately for the training 
datasets. The results indicate that the model outperforms 
both the Coates and SDR models. The performance 
results on the testing datasets are not shown due to the 
small size of the testing set, as the statistical significance 
of the performance on these datasets is limited. Instead, 
the overall model performance on both the training and 
testing datasets is presented in Figure 11. 

 
             𝐾𝐾 = 0.01 + 0.12 ∗ 𝜙𝜙2 ∗ 𝑇𝑇2 ,𝐺𝐺𝐺𝐺                 (3)                            
 

 

Fig. 11. Performance of the SR-based permeability model in 
Equation 3 evaluated over the entire dataset, encompassing 
both training and testing dataset 

 

 
 

Fig. 12. Performance of the SR-based permeability model in 
Equation 3 evaluated over the training dataset 
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Equation 4 represents the model derived using the 

PySR. As shown in Figure 13, it demonstrates better 
performance on both the training and the entire datasets 
compared to the model in Equation 3. 

However, Equation 4 is significantly more complex 
than Equation 3. Additionally, it shows a positive 
correlation between 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵  and 𝐾𝐾, which contradicts both 
the heatmaps in Figure 10 and our current understanding 
of the underlying relationship between  𝐾𝐾 and 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵 . 

 

  𝐾𝐾 = 0.12𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹(�𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑇𝑇2 ,𝐺𝐺𝐺𝐺�
log�𝑇𝑇2,𝐺𝐺𝐺𝐺� + 4.16  )      (4)    

 

 

 

Fig. 13. Performance of the SR-based permeability model in 
Equation 4. 

 
Equation 5 presents another model derived using the 

PySR. As shown in Figure 14, its performance has 
improved compared to Equation 4. Additionally, the 
model is simpler than Equation 4 and only slightly more 
complex than Equation 3. 

At first glance, the term − 0 .035

1.6−log  (
𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹
𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵

)
 may appear 

unusual. However, Figure 15 reveals that value 1.6 acts as 
a threshold, effectively separating the data point with the 
highest permeability from the rest of the dataset. 

 

  𝐾𝐾 = 0.76 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑒𝑒
− 0.035

1.6−log (𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹
𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵

)
                      (5) 

 
 

 
 

 

Fig. 14. Performance of the SR-based permeability model in 
Equation 5. 

 

 

Fig. 15. Threshold value in Equation 5 used to classify the 
dataset into two categories  

 
Equation 5 highlights the capability of symbolic 

regression (SR) methods to identify potential 
heterogeneity or facies within the formation. It was 
derived without the use of branching operators such as 
max or min. In contrast, Equation 6 incorporates SR 
branching operators and demonstrates slightly improved 
performance over Equation 5, as shown in Figure 16. 

Equation 6 uses  𝑇𝑇2 ,𝐺𝐺𝐺𝐺  as the branching variable, 
while Equation 5 relies on the ratio used  𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹

𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵
 . 

Interestingly, Figure 17 reveals that both equations 
segment the dataset in a similar way, despite using 
different variables. Together, these models provide 
complementary insights into the underlying structure of 
the dataset. 

 

𝐾𝐾 = �𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑒𝑒
𝑇𝑇2,𝐺𝐺𝐺𝐺−134 .08      𝑖𝑖𝑖𝑖 𝑇𝑇2 ,𝐺𝐺𝐺𝐺 > 133.7420

𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑒𝑒−0.35                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
      (6)  
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Fig. 16. Performance of the SR-based permeability model in 
Equation 6. 

 

 

Fig. 17. Threshold value in Equation 6 used to classify the 
dataset into two categories 
 
5.2 SR-based resistivity models 
 
A total of 30 core samples from carbonate reservoirs were 
used to develop symbolic regression (SR)-based 
resistivity models. A previous study [3] detailed several 
SR-based models derived using the DataRobot’ Eureqa. 
In this paper, we introduce a new resistivity factor model 
(Equation 7), developed using the PySR. This model aims 
to enhance our understanding of the reservoirs by 
examining and comparing the mathematical formulations 
of different SR-based models. 

One of the key objectives is to derive the 
cementation factor m, which is traditionally treated as a 
constant. However, using a constant value for m is often 
insufficient in the context of complex carbonate 
reservoirs. A more common approach involves using 
facies-dependent m values, but identifying facies can be 
challenging in practice. 

 

            𝐹𝐹 = 1
𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1.9                                 (7) 

 
Equation 7 presents the resistivity factor model 

derived from PySR, and Figure 18 illustrates the model's 
strong performance. Notably, the cementation factor can 
be expressed as: 

 
          𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1.9                                     (8) 
 

where 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represents the macro porosity, expressed as 
a fraction. 
 Figure 19 shows the distribution of 𝑚𝑚 as calculated 
using Equation 8, which falls within the expected ranges 
for carbonate reservoirs. 

 

 
 

 

Fig. 18. Performance of the SR-based resistivity factor model 
in Equation 7. 
 

 

Fig. 19. 𝑚𝑚 distributions calculated using Equation 8 

  Equations 9 and 10 present the resistivity models 
derived from DataRobot [3]. Figure 20 displays the 
distribution of m, while Figure 21 illustrates the model's 
performance. 
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                           𝐹𝐹 = 1 .93
𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚

                                      (9)                                                                     

       𝑚𝑚 = 0.21 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇2 ,𝐺𝐺𝐺𝐺)− 0.29𝑙𝑙𝑙𝑙𝑙𝑙  (𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )           (10) 

 
 

 

Fig. 20. 𝑚𝑚 distributions calculated using Equation 10 
 
 

 

Fig. 21. Performance of the SR-based resistivity factor model 
in Equation 9 

 
Compared to the models from PySR (Equations 7 

and 8), the overall performance is similar. However, the 
distributions of the cementation factor 𝑚𝑚 differ noticeably 
(Figures 19 and 20). These differences are discussed from 
the following perspectives. 

First, the comparison between the two different 
cementation equations provides deeper insight into the 
lithology of these rocks than the standard Archie equation 
[11]. Equation (9) indicates that both pore size and 
porosity influence the cementation factor. In this rock set, 
although porosity and overall pore size (represented by 
𝑇𝑇2 ,𝐺𝐺𝐺𝐺) are positively correlated, as shown in Figure 22, 
their individual relationships with the cementation factor 
differ as shown in Figures 23 and 24. Total porosity tends 
to be more negatively correlated with m, whereas 
𝑇𝑇2 ,𝐺𝐺𝐺𝐺  shows a mixed trend—some values are positively 
correlated with m, while others are negatively correlated. 
This variability may be attributed to the dominance of 
either vugs or more connected pores in different samples. 
Such behavior is consistent with carbonate rocks 
containing poorly connected vugs. 

A similar insight is reflected in Equation 7, which  
can be reformulated as: 

 
                      𝑚𝑚 = (𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 0.1) + 2                      (11)                   

 
In this form, the value 2 represents Archie’s 

standard cementation exponent. When 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 0.1, the 
cementation factor m is less than Archie’s standard, 
suggesting reduced cementation. Conversely, when 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 > 0.1, m exceeds the standard value, indicating 
increased cementation—potentially due to the presence of 
more vugs or poorly connected porosity. 

 

 

Fig. 22. Correlations between total porosity and 𝑇𝑇2 ,𝐺𝐺𝐺𝐺  

 

 

Fig. 23. Correlations between total porosity and 𝑚𝑚 

 

 

Fig. 24. Correlations between  𝑇𝑇2 ,𝐺𝐺𝐺𝐺  and 𝑚𝑚 

 
Second, the expressions in Equations (7) and (9) 

involve different tortuosity factors, represented by the 
numerators in both equations. This difference is not 
surprising when one acknowledges that tortuosity and 



The 36th International Symposium of the Society of Core Analysts 

cementation factors are not truly independent, even 
though they appear to be so in Archie’s original empirical 
formulation. The variation in the m distributions in 
Equations (7) and (9) can thus be seen as two different 
ways of representing the interplay between cementation 
and tortuosity factors. Assuming tortuosity to be a fixed 
constant overlooks the inherent heterogeneity of the rock. 
Therefore, recognizing that tortuosity and cementation 
factors are interdependent may offer deeper insights into 
how rock lithology and porosity influence the formation 
factor. 

6 Conclusion 
We present a  symbolic regression-based workflow for 
petrophysical modeling, enabled by the development of a  
user-friendly software tool. The software integrates 
multiple open-source SR packages and guides users 
through data preparation, model generation, and 
evaluation—making advanced SR techniques accessible 
to petrophysicists. Applied to both unconventional and 
carbonate reservoirs, the workflow demonstrates its 
ability to produce accurate, interpretable models that 
capture the complex heterogeneities of formations. By 
bridging the gap between machine learning and practical 
petrophysical analysis, the software significantly lowers 
the barrier to adopting symbolic regression in developing 
reliable and interpretable data-driven petrophysical 
models. 
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